
Performance of neural network basecalling tools 
for Oxford Nanopore sequencing
Ryan R. Wick1*, Louise M. Judd1, Kathryn E. Holt1,2

1 Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
2 London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK

* rrwick@gmail.com

Abstract

Basecalling, the computational process of translating raw electrical signal to nucleotide sequence,
is of critical importance to the sequencing platforms produced by Oxford Nanopore Technologies
(ONT). Here we examine the performance of different basecalling tools, looking at accuracy at the
level of bases within individual reads and at majority-rules consensus basecalls in an assembly. We
also investigate some additional aspects of basecalling: training using a taxon-specific dataset, using
a larger neural network model and improving consensus basecalls in an assembly via additional
signal-level analysis with Nanopolish. Training basecallers on taxon-specific data resulted in a
significant boost in consensus accuracy, mostly due to the reduction of errors in methylation motifs.
A larger neural network was able to improve both read and consensus accuracy, but at a cost
to speed. Improving consensus sequences (‘polishing’) with Nanopolish somewhat negates the
accuracy differences in basecallers, but pre-polish accuracy does have an effect on post-polish
accuracy, so basecaller choice is still relevant even when Nanopolish is used.

Introduction

Oxford Nanopore Technologies (ONT) long read sequencing is based on the following concept: pass
a single strand of DNA through a membrane via a nanopore and apply a voltage difference across
the membrane. The nucleotides present in the pore will affect the pore’s electrical resistance, so
current measurements over time can indicate the sequence of DNA bases passing through the pore.
This electrical current signal (a.k.a. the ‘squiggle’ due to its appearance when plotted) is the raw
data gathered by an ONT sequencer. Basecalling for ONT devices is the process of translating this
raw signal into a DNA sequence. It is not a trivial task as the electrical signals come from single
molecules, making for noisy and stochastic data. Furthermore, the electrical resistance of a pore is
determined by the bases present within multiple nucleotides that reside in the pore’s narrowest
point (approximately five nucleotides for the R9.4 pore), yielding a large number of possible states:
45=1024 for a standard four-base model. When modified bases are present, e.g. 5-methylcytosine,
the number of possible states can grow even higher: 55=3125. This makes basecalling of ONT
device signals a challenging machine learning problem and a key factor determining the quality
and usability of ONT sequencing.

Basecalling is an active field, with both ONT and independent researchers developing methods.
Modern basecallers all use neural networks, and these networks must be trained using real data.
The performance of any particular basecaller is therefore influenced by the data used to train its
model. This is especially relevant when basecalling native (not PCR-amplified) DNA, which can
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contain base modifications. A basecaller’s performance in such a case may depend on whether the
modifications and their sequence motifs were represented in its training set.

Basecalling accuracy can be assessed at the read level (read accuracy) or in terms of accuracy
of the consensus sequence (consensus accuracy). Read accuracy measures the sequence identity
of individual basecalled reads relative to a trusted reference. Consensus accuracy measures the
identity of a consensus sequence constructed from multiple overlapping reads originating from the
same genomic location. Consensus accuracy generally improves with increased read depth, e.g. a
consensus built from 10 reads is likely to be less accurate than one built from 100 reads.

While read and consensus accuracy may be correlated, this relationship is not guaranteed.
I.e. more accurate reads do not necessarily produce a more accurate consensus. Random read
errors are unlikely to appear in the consensus, as they occur in the minority of reads at their locus.
Systematic errors that occur in many reads can however appear in the consensus. Low accuracy
reads can therefore produce a perfect consensus sequence, provided their errors are random and the
read depth is sufficiently large. Conversely, high accuracy reads can create an imperfect consensus
regardless of the read depth, if they contain systematic errors.

Consensus accuracy is usually the main concern for applications with high read depth, such as
genome assembly. For other applications, particularly those with low read depths, read accuracy
is important. For example, clinical metagenomics may rely on data from a very small number
of non-human reads 1, and inaccurate reads could make it harder to identify and characterise
pathogens.

ONT have released multiple pore types during their history, but the R9.4 pore (and its minor
revision R9.4.1) has been available for longest: from October 2016 to the present. Its release also
corresponds to approximately when command-line basecallers became available – before that users
needed to basecall with ONT’s cloud-based Metrichor service. This study aims to quantify the
performance of various basecalling tools developed for ONT’s R9.4 pore and to explore the impact
of model training on basecalling accuracy. It may provide guidance to those wishing to get the
most out of ONT sequencing signals, and in particular could help readers to decide whether recent
progress warrants re-basecalling older signal data with a newer basecaller or custom-trained model.

Methods

Basecallers tested
We tested four basecalling programs developed by ONT – Albacore, Guppy, Scrappie and Flap-
pie – and ran all available versions compatible with R9.4 reads. Albacore is a general-purpose
basecaller that runs on CPUs. Guppy is similar to Albacore but can use GPUs for improved base-
calling speed. While the two basecallers have coexisted for about a year, ONT has discontinued
development on Albacore in favour of the more performant Guppy. Both Albacore and Guppy
are only available to ONT customers via their community site (community.nanoporetech.com).
Scrappie (github.com/nanoporetech/scrappie) is an open-source basecaller which ONT describes as
a ‘technology demonstrator’. It has often been the first of ONT’s basecallers to try new approaches,
with successes later being incorporated into Albacore and Guppy. Scrappie is really two basecallers
in one: Scrappie events, which carries out an event-segmentation step prior to basecalling with its
neural network, and Scrappie raw, which basecalls directly from raw signal. We excluded some
older versions of Scrappie events which rely on events first being defined by another program, as
this requirement makes it not a standalone basecaller. Flappie (github.com/nanoporetech/flappie)
has recently replaced Scrappie and uses a CTC decoder to assign bases 2.

We also tested Chiron (github.com/haotianteng/Chiron), a third-party basecaller still under
development that uses a deeper neural network than ONT’s basecallers 3. We excluded older
basecallers no longer under development, such as Nanonet, DeepNano 4 and basecRAWller 5.

Custom model training
Sloika (github.com/nanoporetech/sloika) is ONT’s neural network training toolkit which can be
used to make models for use in Guppy. To explore the effect of the training set on basecalling
performance, we used Sloika v2.1 to train a model (‘custom-Kp’) tailored to K. pneumoniae. The
training reads came from 50 different isolate genomes: 30 K. pneumoniae (chosen based on their
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phylogenetic uniqueness, each from a different lineage), 10 from other species of Enterobacteriaceae
and 10 from other families of Proteobacteria (Fig S1, File S1). Our training reads came from 20
different MinION runs, 10 of which were barcoded runs that contributed multiple genomes to the
training set. Illumina reads were also available for all genomes, and we used SKESA 6 (v2.3.0) to
produce high-quality contigs for each.

From an initial collection of 5 629 714 reads, we trimmed each read’s signal at the fast5 level,
removing low-variance open-pore signal 5 and then an additional 2000 signal values from the start
and end of the reads which served to remove adapter and barcode signals. We also discarded
short reads (<50 000 signal values), leaving 1 985 997 trimmed reads. We basecalled these reads
(using Albacore v2.3.4) to select reads based on length (>5 kbp), completeness of alignment to the
SKESA contigs (<30 bp unaligned) and quality over a sliding window (no indel regions exceeding
25 bp in size). This further reduced our set to 766 551 reads. We filtered the reads once more
(following Sloika’s training instructions: example_training.sh), this time on the quality of the
raw-signal-to-reference alignment. We set aside 20 of the resulting reads from each genome (1000
in total) to use as a validation set, leaving 226 166 for training the neural network. Sloika subdivides
these reads into ‘chunks’ of 4000 signal values, of which there were 7 693 885.

Using Sloika with this entire training set would have required an unrealistically large amount
of RAM, so we produced a fork of Sloika (github.com/rrwick/sloika) modified to load training data
in smaller batches. We trained the custom-Kp model for 4750 batches (100 chunks per batch) on an
NVIDIA P100 GPU, which took 36.5 hours.

Albacore, Guppy and Scrappie all use an architecture that ONT calls RGRGR – named after its
alternating reverse-GRU and GRU layers (Fig S2, left). To test whether more complex networks
perform better, we modified ONT’s RGRGR network by widening the convolutional layer and
doubling the hidden layer size (Fig S2, right). We trained this ‘custom-Kp-big-net’ model in Sloika
using the same bacterial training set. Training on an NVIDIA P100 GPU for 4400 batches took 48
hours.

Read sets
To test basecaller performance, we used a set of reads generated using a MinION R9.4 flowcell to
sequence native DNA extracted from the bacterium Klebsiella pneumoniae. The bacterial sample
(isolate INF032, BioSample accession SAMEA3356991) was isolated from a urinary tract infection in
an Australian hospital 7. It was sequenced as part of a barcoded MinION run with other Klebsiella
isolates, following the DNA extraction and library preparation protocol described in Wick et al.
2017 8. This particular sample was chosen for benchmarking basecalling accuracy because it had a
good yield of ONT reads (see below) and contained no plasmids, making for a simpler assembly. It
is not in the same K. pneumoniae lineage as any of the genomes used to train our custom models
(Fig S1). Since the sequenced DNA was native, it contains base modifications, the most relevant of
which is Dcm methylation (conversion of cytosine to 5-methylcytosine at particular motifs) which
is common in some species of Enterobacteriaceae 9. High-quality Illumina reads were available for
this sample: DNA was extracted and sequenced as 125 bp paired-end reads via Illumina HiSeq 2000
at the Sanger Institute, producing 5 455 870 reads (ENA accession ERR1023765) with 133× read
depth over the INF032 chromosome 7. This allowed us to generate an accurate reference sequence
via hybrid assembly using Unicycler 8 (v0.4.0) which produced a single 5 111 537 bp contig with a
GC-content of 57.6%.

A subset of ONT reads was extracted for benchmarking basecallers against the reference
genome of INF032. The entire barcoded MinION run containing INF032 was demultiplexed using
Deepbinner 10, using its --require_both option for high-precision demultiplexing. This produced
70 494 reads (∼1.1 Gbp) for the barcode corresponding to INF032. We further reduced this dataset
by basecalling with Guppy v1.6.0 (the current version at the time of read selection), aligning the
resulting reads (using minimap2 11 v2.14) to the INF032 reference genome and selecting those with
a ≥22 kbp alignment to the reference. This served to exclude ‘junk’ reads, very low-quality reads,
improperly demultiplexed reads (belonging to a different isolate) and short reads. The threshold of
≥22 kbp was chosen because it reduced the dataset to approximately 100× mean read depth for
the INF032 genome. The resulting set contained 15 154 reads with lengths ranging from 22–134
kbp (N50=37 kbp) and totalling ∼550 Mbp. These reads are significantly longer than the longest
repeat in the INF032 genome (the ∼5.5 kbp rRNA operon) so each can be reliably mapped to its
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correct location on the reference genome. The Guppy qscore distributions (Fig S3) show that while
the selection process removed the lowest quality reads, the resulting reads still span a wide quality
range, with 458 (∼3%) falling below ONT’s ‘fail’ threshold of Q7. This read set (hereafter referred
to as the ‘benchmarking set’) was used with all basecallers and versions.

In addition to the primary K. pneumoniae benchmarking set, we also prepared test read sets for
nine additional genomes. These include three other K. pneumoniae genomes and one genome each
from six different bacterial species: Shigella sonnei, Serratia marcescens, Haemophilus haemolyticus,
Acinetobacter pittii, Stenotrophomonas maltophilia and Staphylococcus aureus. As well as covering a
wider range of species, these read sets span a wider date range (Feb 2017–Aug 2018) and include both
R9.4 and R9.4.1 flowcells (File S1). They were prepared in the same manner as the benchmarking
set, but we adjusted the alignment length threshold for each set as appropriate for the genome and
read depth (3 kbp to 33 kbp, see File S1). These read sets (hereafter referred to as the ‘additional
sets’) were used to more thoroughly assess the current version of Guppy (v2.2.3) using its default
model, its included flip-flop model and our two custom models (custom-Kp and custom-Kp-big-net).

Read and consensus accuracy
We ran all basecallers on the benchmarking read set, with each producing either a FASTQ or FASTA
file suitable for downstream analysis. To allow a comparison of speed performance, all basecalling
was carried out on the same computer: six core (12 thread) Intel Xeon W-2135 CPU, 32 GB RAM,
NVIDIA GTX 1080 GPU and 1 TB NVMe SSD. Basecalling was carried out using all 12 CPU threads,
or if supported by the basecaller, on the GPU.

To assess read accuracy, we aligned each basecalled read set to the reference INF032 genome
using minimap2 11 (v2.12). Each read’s identity was defined as the number of matching bases in
the alignment divided by the total alignment length including insertions and deletions, a.k.a. the
‘BLAST identity’ (lh3.github.io/2018/11/25/on-the-definition-of-sequence-identity). Unaligned reads
were given an identity of 0%. Each basecaller’s overall read accuracy was defined as the median
identity of the reads in the set.

We used Rebaler (github.com/rrwick/Rebaler) to generate a consensus sequence from each
basecalled read set. Rebaler is a reference-based assembler written for the purpose of comparing
basecallers. It works by first replacing all parts of the reference genome using read sequences
and then polishing the genome with multiple rounds of Racon 12. This approach ensures that the
assembled genome will have the same large-scale structure as the reference, but small-scale details
(e.g. basecalls) will not be affected by the reference sequence. Even after multiple rounds, Racon does
not always converge to the best possible sequence, so we used Rebaler with an iterative approach:
running the assembly multiple times, each time with shuffled input reads and a rotated (shifted start
position) reference genome. We used 10 iterations, each of which resulted in a slightly different
assembly. These ten assemblies were then used as the ‘reads’ for a final Rebaler assembly, giving a
more accurate result than any of the 10 input iterations.

To assess consensus accuracy, we divided each final Rebaler assembly into 10 kbp pieces and
analysed them in the same manner used for the reads: aligning to the reference and calculating
identity. Each basecaller’s overall consensus accuracy was defined as the median accuracy of these
10 kbp pieces.

To classify consensus sequence errors by type, we aligned each assembly to the reference using
NUCmer 13 (v3.1) and then classified each error based on the reference context. An error was
classified as ‘Dcm’ if it occurred in a Dcm-methylation motif (CCAGG or CCTGG). It was classified
as ‘homopolymer insertion’ or ‘homopolymer deletion’ if the error added or removed a base from a
homopolymer three or more bases in length. If the previous categories did not apply, the error was
classified as ‘insertion’, ‘deletion’ or ‘substitution’ as appropriate.

Polishing
This study is focused on the performance of basecalling tools, and post-assembly polishing with
raw signal data is a separate topic that falls outside our scope. However, many users who produce
ONT-only assemblies will run Nanopolish on their result, which uses the raw read signals to improve
the consensus accuracy of an assembly. This raises the question: does basecaller choice matter if
Nanopolish is used downstream? To assess this, we ran Nanopolish v0.10.2 14 on each final Rebaler
assembly and assessed the consensus accuracy as described above.
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Fig 1. Read accuracy, consensus accuracy and speed performance for each basecaller version, plotted against the release
date (version numbers specified in File S1). Accuracies are expressed as qscores (also known as Phred quality scores) on a
logarithmic scale where Q10=90%, Q20=99%, Q30=99.9%, etc. Each basecaller was run using its default model, except for
Guppy v2.2.3 which was also run with its included flip-flop model and our two custom-trained models.

Results and Discussion

Default model performance
Albacore’s development history shows two distinct improvements in both read and consensus
accuracy: in April 2017 (version 1.0.1) and August 2017 (version 2.0.1) (Fig 1). The first corresponds
to the addition of a transducer to the basecaller 15, which allowed for better homopolymer calls
(see error profile details below). The second corresponds to the switch to raw basecalling, where
the sequence is called directly from the raw signal without an event-segmentation step. After
August 2017, however, Albacore’s performance remained fairly constant with subsequent releases,
achieving read accuracy of Q9.2 and consensus accuracy of Q21.9 with the last version tested
(v2.3.4).

Guppy was publicly released in late 2017 (v0.3.0) and its accuracy stayed relatively constant
and similar to that of Albacore for most of its version history (up to v1.8.5 in October 2015). The
latest version of Guppy (v2.2.3, released January 2019) performed worse on read accuracy (Q8.9)
but better on consensus accuracy (Q22.8) using its default model. However, this version also comes
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with an optional ‘flip-flop’ model which has similar consensus accuracy (Q23.0) but much better
read accuracy (Q9.7).

Scrappie events was the worst-performing basecaller tested. Scrappie raw performed better, and
the latest version (v1.4.1) performs similarly to Albacore (Q9.3 read accuracy and Q22.4 consensus
accuracy). Scrappie’s successor Flappie (released November 2018) showed an improvement in read
accuracy (Q9.6) but not in consensus accuracy (Q22.0).

Relative to ONT’s basecallers, Chiron performed poorly on read accuracy (Fig 1). However,
Chiron v0.3 had the highest consensus accuracy (Q25.9) of all tested basecallers using their default
models. The latest version, v0.4.2, did not perform as well (Q7.7 read accuracy and Q21.4 consensus
accuracy).

While Albacore and Guppy are similar in terms of accuracy metrics, Guppy is an order of
magnitude faster (∼1 500 000 bp/s vs ∼120 000 bp/s) due to its use of GPU acceleration (Fig 1).
Despite also using GPU acceleration, Chiron was the slowest basecaller tested (∼2500 bp/s), with
the INF032 test set taking more than 2.5 days to basecall. This means that Chiron would take over a
month to basecall a typical MinION yield of 10 Gbp, making it impractical for anything but very
small read sets. Flappie also suffered from low speed performance (∼14 000 bp/s).

Custom model performance
Running Guppy v2.2.3 with our custom-Kp model (trained on unamplified DNA from 30 K. pneu-
moniae, 10 other Enterobacteriaceae and 10 other Proteobacteria, see Methods and Fig S1) produced
a modest increase in read accuracy (Q9.5) and a large increase in consensus accuracy (Q28.5) for
the benchmarking set, relative to the default model (Fig 1). This demonstrates that there is a benefit
for using taxon-specific training data. The default and custom-Kp models performed similarly in
terms of speed.

Our custom-Kp-big-net model delivered even further improvements in both read accuracy
(Q10.4) and consensus accuracy (Q31.6), showing that more complex neural networks also have
the potential to give improved results, but at a cost to speed performance. The custom-Kp-big-net
model could not be run on the GPU because it uses neural network layers that are not pre-compiled
into the Guppy program. It had to be run on the CPU instead, which along with the increased
complexity of its neural network, resulted in a speed two orders of magnitude slower than Guppy
run with the default or custom-Kp models on GPU (∼13 000 bp/s).

Our custom-trained models were designed for K. pneumoniae and performed well on the K. pneu-
moniae benchmarking set. To see if these results generalise to other genomes (both K. pneumoniae
and more distantly-related species), we also ran all available Guppy models on the additional sets
(Fig 2). The flip-flop model performed better than the default model for all genomes, with a mean
improvement of +0.71 in the read qscore and +0.36 in the consensus qscore. The custom-Kp model
performed much better than the default model for genomes in Enterobacteriaceae (K. pneumoniae
and S. sonnei), with mean qscore improvements of +0.63 (read) and +4.72 (consensus). However,
these benefits were not seen for species outside of Enterobacteriaceae, where the mean qscore
changes were 0.00 (read) and -1.64 (consensus). This taxon-specific improvement is likely due to
the custom-Kp model’s ability to more accurately call Dcm-methylation motifs which are found
in Enterobacteriaceae 9 (see details below). The improved performance of custom-Kp-big-net over
the custom-Kp model was not taxon-dependent and showed mean qscore improvements of +1.01
(read) and +3.15 (consensus) across all genomes. In almost all cases, the custom-Kp-big-net model
produced the most accurate reads and consensus, the exception being S. aureus where the flip-flop
model produced the most accurate reads.

Neither the custom-Kp model nor the custom-Kp-big-net model use the new neural network
architecture present in Guppy’s flip-flop model. Presumably, a model based on this flip-flop
architecture and trained on our custom training data would enjoy both the benefits of the flip-flop
model (improved accuracy for all genomes) and of the custom-Kp model (improved accuracy for
Enterobacteriaceae). However, the current version of Sloika (v2.1.0) does not allow for custom
training with the flip-flop architecture.
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Fig 2. Read and consensus accuracy from Guppy v2.2.3 for a variety of genomes using different models: the default
RGRGR model, the included flip-flop model and the two custom models we trained for this study. Both custom models
used the same training set which focused primarily on K. pneumoniae, secondarily on the Enterobacteriaceae family and
lastly on the Proteobacteria phylum.

Consensus error profiles
In order to understand the impact of the various basecallers on different kinds of consensus
basecalling errors, we quantified error profiles for the K. pneumoniae benchmarking genome in
terms of the number of errors in Dcm-methylation sites, homopolymers and other sites (Fig 3). All
ONT basecallers performed poorly with Dcm-methylation sites when using the default models, and
these make up a large proportion of total consensus errors (∼0.4% error relative to the reference).
This implies that the models were trained on data lacking Dcm methylation and have therefore
not learned to call the sites reliably. Conversely, running Guppy v2.2.3 with our custom-trained
models resulted in almost no Dcm errors (∼0.002%) because Dcm methylation was well represented
in our training set. Chiron was trained on E. coli reads 3 where Dcm modifications are expected 9,
and Chiron versions 0.2 and 0.3 accordingly yielded very few Dcm errors (<0.025%). Chiron v0.4.2
yielded 0.29% Dcm errors (and more errors in general), suggesting that it was trained on a different
dataset from previous versions.

After Dcm motifs, incorrect homopolymer lengths made up the majority of errors (Fig 3).
ONT’s progress on this front is evident in the performance of Albacore, whose consensus accuracy
improvements over time have mostly come from a reduction in homopolymer errors, from 0.53%
in v0.8.4 down to 0.13% in v2.3.4. More recently, Guppy v2.2.3 has shown further improvement,
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bringing homopolymer errors down to 0.07%. While our custom-Kp model performed slightly worse
than Guppy’s default model for homopolymers (0.10%), the custom-Kp-big-net model performed
better (0.05%).
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Fig 3. Consensus errors per basecaller for the K. pneumoniae benchmarking set, broken down by type. Dcm refers to
errors occurring in the CCAGG/CCTGG Dcm motif. Homopolymer errors are changes in the length of a homopolymer
three or more bases in length (in the reference). This plot is limited to basecallers/versions with less than 1.2% consensus
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Nanopolish performance
Nanopolish can use the raw signal data to fix errors in a consensus sequence, and it includes
special logic for both Dcm methylation and homopolymers. We found that Nanopolish improved
the consensus accuracy for our benchmarking set in nearly all cases, with the exception of our
custom-Kp-big-net model (Fig 4). The pre-Nanopolish consensus accuracy was correlated with
the post-Nanopolish accuracy (R2=0.580), indicating that a basecaller’s consensus accuracy still
matters even if Nanopolish is also used. While Nanopolish was able to account for Dcm methylation
(using its --methylation-aware option), it often only corrected ∼70–80% of Dcm errors (Fig S4).
Accordingly, the rate of Dcm errors in the pre-Nanopolish assembly was the strongest predictor of
post-Nanopolish accuracy (R2=0.809), with the best results (>Q29 consensus) coming from the four
basecallers with very low Dcm error rates (Chiron v0.2–v0.3 and both custom models). The effect
of additional rounds of Nanopolish was tested on the Guppy v2.2.3 assembly and gave only a small
increase in accuracy (from Q27.5 after one round to Q28.3 after four rounds, Fig S5).
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February 7, 2019 8/14

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 7, 2019. ; https://doi.org/10.1101/543439doi: bioRxiv preprint 

https://doi.org/10.1101/543439
http://creativecommons.org/licenses/by-nc/4.0/


DNA base substitutions (often referred to as single nucleotide polymorphisms or SNPs) identified
from pathogen whole-genome sequence comparisons are now used routinely by public health and
infection control laboratories to investigate suspected outbreaks of foodborne and other infectious
diseases 16. ONT platforms could potentially be useful in such investigations due to their portability
and cost effectiveness for small sample sizes. However, the smallest number of substitution errors
we encountered in a genome assembly (using Guppy v2.2.3 with the custom-Kp-big-net model and
Nanopolish) was 337 substitutions (Fig S6, File S1), which at ∼10 times the number of true SNPs
expected between bacterial pathogen genomes linked to the same outbreak 16 would constitute
an unacceptably high false positive rate for this application. While it is possible that tailored
strategies for SNP calling from ONT reads could reduce the number of false positives, assembly-
based sequence comparisons (which are frequently used in public health labs 17,18) would require
dramatic improvements in basecalling accuracy.

Conclusions

Best results, in terms of both read and consensus accuracy for the K. pneumoniae benchmarking
set, were obtained using Guppy v2.2.3 with a custom model trained on data mostly from the same
species (Fig 1). This superior performance seems to largely come from correct handling of Dcm
methylation (Fig 3). Since DNA modification patterns can differ between taxa, we propose our
results may represent a more general trend: native DNA basecalling accuracy is best when the
model was trained on native DNA from the same species or a sufficiently close relative to have
similar DNA modifications.

For most basecallers, full information is not disclosed on the taxa and DNA type (native or
amplified) used to train the default model. We encourage developers to be more transparent in
this regard and to consider providing multiple trained models when possible (e.g. amplified, native
human, native E. coli, etc.) so users can choose one which most closely matches their organism.
For users with sufficient quantities of training data, high-performance computers with GPUs and
computational expertise, we recommend custom model training to maximise basecalling accuracy.
Our custom-Kp-big-net model shows that even more accurate results are possible with bigger
neural networks, including substantial improvements in read-level accuracy, but at a cost to speed
performance (Fig 1).

ONT sequencing has seen enormous gains in both yield and accuracy over the past few years,
but our results show there is still much room for improvement. Across all basecallers, models
and genomes, the best consensus accuracy we observed was Q32.2 (99.94% identity). This equates,
on average, to ∼3000 errors in a 5 Mbp genome. Many of these errors are substitutions which
could lead to false-positive SNP calls, a potentially major impediment to outbreak investigations.
In order to achieve a perfect bacterial genome assembly, the consensus accuracy will need to be
orders of magnitude higher, e.g. Q70 (one error per 10 Mbp). Progress will likely come from many
fronts: changes in technology and chemistry, improvements in basecalling, and development of
post-assembly polishing tools. Until this goal is reached, hybrid assembly or polishing with Illumina
reads will remain a necessity for researchers that depend on highly accurate sequences.
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Supplementary material

File S1. supplementary_tables.xlsx
This spreadsheet contains information on each test read set, basecaller commands, all accuracy and error data results, and
information on the training sets used for the custom models.
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Fig S1. Tree of the genomes used for custom Sloika training. All isolates are from the Proteobacteria phylum, with
an emphasis on the Enterobacteriaceae family (red) and Klebsiella pneumoniae (blue). The genomes used to test base-
callers/models are also included in this tree in green, but were not used to make training data.
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Fig S2. ONT neural network architectures. The RGRGR network (left) is used in Albacore, Guppy and Scrappie raw, and
it was used to train the custom-Kp model. The big-net (right) is a modification of the RGRGR network, with a wider
convolution and larger hidden data. For both networks, the convolutional layer reduces the data length (n) by a factor
of five (i.e. there are five raw data values per predicted state). There are 1025 possible predicted values: 1024 for each
possible 5-mer plus an additional ‘stay’ state.
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Fig S3. Qscore distributions (according to Guppy v1.6.0) for the entire barcoded MinION run (top) and the selected INF032
reads (bottom).
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Fig S5. Consensus errors with repeated iterations of Nanopolish, using the Guppy v2.2.3 dataset. Accuracy improves only
slightly with successive iterations, with most of the improvement coming from Dcm errors.
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Fig S6. Number of consensus sequence substitution errors per basecaller, before (B) and after (A) Nanopolish. All
substitution types (both Dcm-related and non-Dcm-related) are counted.

February 7, 2019 14/14

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 7, 2019. ; https://doi.org/10.1101/543439doi: bioRxiv preprint 

https://doi.org/10.1101/543439
http://creativecommons.org/licenses/by-nc/4.0/

