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Abstract

Single-cell RNA sequencing has enabled researchers
to quantify the transcriptomes of individual cells,
infer cell types, and investigate differential
expression among cell types, which will lead to a
better understanding of the regulatory mechanisms
of cell states. Transcript diversity caused by
phenomena such as aberrant splicing events have
been revealed, and differential expression of
previously unannotated transcripts might be
overlooked by annotation-based analyses.
Accordingly, we have developed an approach to
discover overlooked differentially expressed (DE)
gene regions that complements annotation-based
methods. We applied our algorithm to two datasets
and discovered several intriguing DE transcripts,
including a transcript related to the modulation of
neural stem/progenitor cell differentiation.

Keywords: Single-cell RNA sequencing;
Differential expression analysis; Non-negative
matrix factorization

Background
The advancement of single-cell technology has enabled
to investigate various tissues [1, 2] and species [3, 4]
with single-cell RNA sequencing (scRNA-seq), which
enables comprehensive cell typing and the elucida-
tion of cell compositions and dynamics. In particular,
scRNA-seq can reveal the subtle differences among cell
states, such as intermediate stages of differentiation.
By investigating differentially expressed (DE) genes
among such cell states, we can elucidate regulatory
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processes including cell fate determination [5]. In ad-
dition to traditional gene-level differential expression
analyses, various novel analyses have been proposed for
scRNA-seq studies, including the detection of differ-
ential distributions of expression levels [6] and differ-
ential splicing [7, 8], isoform-level differential pattern
analysis [9], discriminative learning approach for dif-
ferential expression analysis [10], and dynamic predic-
tion through the comparison of spliced and unspliced
mRNAs [11]. Thus, the development of various com-
putational analysis methods that utilize information at
the single-cell level is essential to advance the current
understanding of RNA biology.

Recent comprehensive analyses of RNA-seq data
have revealed the existence of various overlooked tran-
scripts. For example, a comprehensive tumor analysis
revealed that many tumors contain aberrant splicing
patterns (neojunctions) that are not detected in nor-
mal samples [12]. Additionally, numerous genetic vari-
ants are related to aberrant splicing associated with
certain diseases [13]. Therefore, it is important to de-
tect novel splicing patterns, as well as detect differ-
ential expression of annotated transcripts. The tran-
scriptomes of unstudied cell types, including rare cell
types, can be revealed by scRNA-seq analyses, and we
can now discover such cell type-specific splicing events.

In addition to major types of alternative splicing
(AS), underappreciated classes of AS events, such as
retained introns and microexons, are known to have
essential roles, for example, in neuronal development
[14]. Intron retention, which is common in tumors, can
generate peptides and be a source of neoepitopes for
cancer vaccines, and therefore the detection of novel in-
tron retention events is medically important [15]. Fur-
thermore, alternative polyadenylation, which produces
isoforms that have 3′-untranslated regions (UTRs) of
different lengths, is also known to be associated with
several biological processes [16].

To reveal such complex AS patterns, several com-
putational approaches have been developed that can
detect previously unannotated splicing patterns. For
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Figure 1 Graphical abstract of the overlooked differentially
expressed gene region (ODEGR). Coverage of scRNA-seq
data and annotated transcripts in the region (a) and
previously unannotated transcripts such as novel alternative
splicing patterns, intron retention, and unannotated antisense
transcripts (b). Although annotation-based expression profiling
and the following differential expression analysis is an effective
approach to find DE transcripts (c), such a method might
overlook the differential expression of unannotated transcripts
(d).

example, spliced aligned reads (exon–exon junction
reads) are beneficial in identifying the spliced mRNA
structures [17, 18]. As another example, non-negative
matrix factorization (NMF) has been used to decom-
pose data into essential patterns and predict AS pat-
terns from microarray data [19] and RNA-seq data
[20].

In addition to these complex AS patterns, other
types of transcripts, such as antisense transcripts tran-
scribed from gene regions, are known to be essential
regulators of gene expression [21]. In light of such com-
plex transcript structures, typical differential expres-
sion analysis based on previously annotated transcript
structures might overlook some important DE genes.
To find DE genes without relying on existing anno-
tation, distinct approaches have been proposed that
identify DE regions from read coverage data [22, 23].

In single-cell technologies, full-length scRNA-seq
data such as Smart-Seq [24, 25] provide powerful data
that can reveal these complex transcript structures.
Other scRNA-seq protocols, such as SUPeR-Seq [26],
which can capture non-poly(A) transcripts, will also be
useful to detect various overlooked DE transcripts. In
particular, we have developed a single-cell full-length
total RNA-seq (RamDA-seq) method and have vali-
dated that it precisely captures full-length transcripts
and also captures various types of RNAs such as en-
hancer RNAs [27]. By utilizing such scRNA-seq data,

we can perform differential expression analyses be-
tween cell states more precisely.

Accordingly, we have developed an approach to
discover Overlooked Differentially Expressed Gene
Regions (ODEGRs), which is derived from several
kinds of transcripts such as novel AS patterns, intron
retention, and antisense transcripts, to complement
the annotation-based differential expression analysis of
single-cell data (Fig.1). Our approach utilizes the com-
position of scRNA-seq data, which contain informa-
tion from many samples (i.e., cells), and decomposes
the mapped count data for gene regions using NMF.
With NMF, we can computationally extract repro-
ducible signals corresponding to transcript structures
and their associated expression profiles without relying
on transcript annotations (Fig.2(a)). In addition, the
non-negative constraint of NMF, which is its principal
difference from other matrix decomposition methods,
is effective in preserving the relation of the magnitude
of expression. Next, we developed the following scores
for a gene region: T±NMF, T±TPM, and ∆TNMF−TPM.
T±NMF represents the scores that quantify the differ-
ential expression levels between two groups based on
the NMF result (Fig.2(b)), while T±TPM represents the
scores that quantify the differential expression lev-
els for annotation-based expression data (Fig.2(c)).
Thus, ∆TNMF−TPM represents the score that quanti-
fies the differential expression that is not detected in
the annotation-based approach (Fig.2(d)). We inves-
tigated gene regions with high ∆TNMF−TPM values in
order to discover ODEGRs.

We applied our algorithm to two real datasets: (1)
mouse embryonic stem (ES) cells and primitive en-
doderm (PrE) cells and (2) neural stem cells (NSCs)
derived from human induced pluripotent stem (iPS)
cells. First, we evaluated whether the NMF-based ap-
proach could quantify and find local DE regions from
simulated data. We also evaluated whether it could
detect AS switches within a gene, as determined by
annotation-based analysis. Our algorithm was indeed
able to detect such DE regions without relying on tran-
script annotations. Then, we applied our method to
real datasets to detect ODEGRs and found several in-
triguing examples. From the perspective of previous re-
search, our results correspond, for example, to unanno-
tated splicing patterns, antisense transcript, and unan-
notated 3′-UTRs of adjacent genes. In particular, some
ODEGRs are related to critical regulatory mechanisms
such as the modulation of differentiation and tissue-
specific imprinting. Thus, our novel differential expres-
sion analysis method identified some important ODE-
GRs and can complement annotation-based methods,
making it a useful method for analysis in the increasing
number of scRNA-seq experiments.
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Figure 2 Graphical abstract of our algorithm to discover ODEGRs. First, we use non-negative matrix factorization (NMF) to
decompose the mapped read count matrix (X) for a gene region (a), and then use t-statistics to quantify the differential expression
level while keeping the positive maximum and negative minimum values (b). We also quantify the differential expression level using
an annotation-based expression profile (in a transcripts per million (TPM) matrix) (c). Finally, we quantify the unexpectedness of
differential expression based on the above values (d).

Results
NMF-based approach for discovering ODEGR
In this research, we focused on detecting DE gene re-
gions that were overlooked in the differential expres-
sion analysis of previously annotated transcripts from
mapped read count data. We divided a gene region into
100-bp bins and described a read count matrix for a
gene region with a C × L matrix X, where C is the
number of cells and L is the number of bins. First, we
decomposed X into two non-negative matrices (using
non-negative matrix factorization):

XT ≈WH (1)

where W and H are L ×K and K × C non-negative
matrices (K is the factorization rank) referred to as
“metagenes” and “metagene expression profiles” in
previous studies, respectively [28, 29]. In this research,
we hypothesized that W corresponds to the transcript
structure including splicing patterns and that H cor-
responds to the expression for each structure in each
cell.

Second, we quantified the differential expression level
of a structure k ∈ (1...K) between two groups A and
B based on Welch’s t-test:

T
(K)
NMF,k =

Hk,CA
−Hk,CB√

s2k,A

|CA| +
s2k,B

|CB |

, (2)

where CA is the list of cells whose labels are A and
Hk,CA

, s2k,A, and |CA| are the sample mean of Hk,·,

variance, and size of group A, respectively. Owing to
the non-negative constraint, the relation between the
two groups (i.e., Hk,CA

− Hk,CB
can be greater or

smaller than 0) will be consistent with the relation in
the original expression space. Our goal was to identify
overlooked differential expression, and therefore, such
relations, as well as their absolute values, were effec-
tive indicators for discovering ODEGRs. Therefore, we
defined the following two scores, which correspond to
the relation Hk,CA

> Hk,CB
and Hk,CA

< Hk,CB
, re-

spectively:

T
(K)+
NMF = max(0,max

k
T

(K)
NMF,k),

T
(K)−
NMF = min(0,min

k
T

(K)
NMF,k).

(3)

In NMF, the factorization rank (K) must be decided
in advance, and the value is critical for analytical re-
sults. The various transcript structures cannot be sep-
arated with small K values and are excessively sepa-
rated with large K values. In either case, the expres-
sion profiles become ambiguous, and we might overlook
the DE regions if an inappropriate K value is selected.
Therefore, we decomposed the data with several K val-
ues (K ∈ (2, 5, 10) in this research) and calculated the
positive maximum and negative minimum values:

T+
NMF = max

K∈(2,5,10)
T

(K)+
NMF ,

T−NMF = min
K∈(2,5,10)

T
(K)−
NMF .

(4)
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Next, we defined similar scores for the TPM (tran-
scripts per million) matrix, which represents the ex-
pression profile based on annotated transcripts (we
used log10(TPM + 1) in actuality). We described the
list of transcripts for the gene region using T and cal-
culated Welch’s t-statistic as before for a transcript
t ∈ T , which is referred to as TTPM,t. Then, the scores
for the gene region were defined by the positive maxi-
mum and negative minimum among transcripts of the
gene as follows:

T+
TPM = max(0,max

t∈T
TTPM,t),

T−TPM = min(0,min
t∈T

TTPM,t).
(5)

Lastly, we developed a score to detect ODEGRs as
follows:

∆TNMF−TPM

= max(T+
NMF − T

+
TPM,−(T−NMF − T

−
TPM)).

(6)

Because these is no global NMF optimization algo-
rithm, we calculated ∆TNMF−TPM using three different
random seeds and also used minimum ∆TNMF−TPM to
obtain reliable ODEGRs (see the Methods section).

We also developed a score ∆TNMF−Mean that mea-
sured the overlooked differential expression merely us-
ing the mean of the coverage. We used this score to
evaluate whether the NMF-based approach separates
the signal and detects complex DE patterns. We cal-
culated the mean of the logarithm of data for a cell
c (

∑L
l=1 log10(Xc,l + 1)/L, where L is the number of

bins) as well as the corresponding Welch’s t-statistic
as before and ∆TNMF−Mean likewise.

Dataset
In this research, we used scRNA-seq data from the
following two experiments.

mES-PrE dataset
The first dataset is derived from mouse ES cells and
primitive endoderm (PrE) cells subjected to RamDA-
seq and was examined in our previous study [27]. We
used the data from 5G6GR mouse ES cells samples at
0 and 72 h after dexamethasone induction and defined
the cell type at each time point as ES cells (92 cells)
and PrE cells (93 cells), respectively.

hNSC-NC dataset
The second dataset corresponds to human neural
stem cells (NSCs) derived from iPS cells measured by
RamDA-seq. There is heterogeneity within the popu-
lation, and some subpopulations other than the NSC
subpopulation were identified (Additional file 1: Fig.

S1). After clustering these cells and defining the cell
types based on marker gene expression, we identified
515 NSCs and 80 partially differentiated neural cells
(NCs).

Validation on simulation dataset
At first, we investigated the performance of NMF-
based differential expression quantification and whether
our approach can quantify the local differences in a re-
gion using simulation data. The simulation data were
generated from the mES-PrE dataset such that the
data matrix includes local DE patterns of length L′

(see Methods section for detailed procedure). Then,
we regarded the simulation and raw data as positive-
control and negative-control datasets, respectively. We
evaluated the ability to detect local DE regions based
on ∆TNMF−Mean. We also compared the performance
when we used K = (2, 5, 10), as mentioned in Eq. (4),
or one fixed value (i.e., K = 2, 5, or 10) for calculating
T+
NMF and T−NMF.
The area under the ROC curve (AUROC) values for

all, K = 2, K = 5, and K = 10 were 0.98, 0.93, 0.93,
and 0.90, respectively for simulation data with L′ =
100 (Fig.3(a)). The AUROC values for the L′ = 50
dataset were 0.98, 0.91, 0.96, and 0.93, respectively,
and those for the L′ = 10 dataset were 0.94, 0.64,
0.86, and 0.94, respectively (Fig.3(b),(c)). In all cases,
our algorithm using multiple K values showed high
performance, and therefore, our NMF-based approach
is useful for discovering various local differences.

Validation with alternative isoform expression
We also investigated whether the NMF-based ap-
proach can quantify the complex DE patterns associ-
ated with genes that have alternative isoform expres-
sion. Based on the TPM matrix calculated from the an-
notation, we defined the positive-control and negative-
control datasets. The former consists of the gene set
with different isoforms expressed in different groups,
while the latter consists of the remaining genes (see
the Methods section for detailed definitions). Then,
we evaluated the ability to detect such complex DE
patterns based on ∆TNMF−Mean.

The positive-control examples of alternative isoform
expression in the mES-PrE dataset were Frmd4a and
Pde4d, which are known for frequent transcription
start site (TSS) switching events [30] (Fig.4(a),(b)).
Based on our criteria, both Frmd4a and Pde4d were
highly ranked (53rd and 23rd out of 4,965 genes, re-
spectively).

The examples in the hNSC-NC dataset were RTN4,
also known as NOGO, which encodes the Nogo-A iso-
form that contains exon 3 and is expressed in neu-
ral precursor cells [31] (Fig.4(c)), and MAP4, which
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Figure 3 The ROC curves for the simulated dataset. Simulation results for (a) L′ = 100, (b) 50, and (c) 10, where L′ is the length
of local differential expression patterns.

is known for its alternative isoform expression across
neural cell types [32] (Fig.4(d)). These genes were
highly ranked in our criteria (40th and 1st out of 6,491
genes, respectively.) Thus, the typical genes with al-
ternative isoform expression are highly ranked in our
criteria ∆TNMF−Mean.

Overall, the AUROC values (for threshold 15) were
about 0.79 and 0.83 for the mES-PrE and hNSC-NC
datasets, respectively (Fig.5). Although our algorithm
overlooked some alternative expression patterns, the
high AUCROC values demonstrated the effectiveness
of our algorithm for discovering previously unanno-
tated DE transcripts.

Discovery of ODEGRs
Next, we investigated the existence of ODEGRs by
using ∆TNMF−TPM. In brief, the values of Welch’s t-
statistics based on NMF (T+

NMF and T−NMF) and TPM
(T+

TPM and T−TPM) were highly correlated (Pearson’s
correlation coefficients for the mES-PrE dataset and
hNSC-NC dataset were about 0.83 and 0.84, respec-
tively), and large ∆TNMF−TPM values were observed
for only a small fraction of genes (Additional file 1:
Fig. S2). Therefore, we ranked genes by ∆TNMF−TPM

in descending order to identify ODEGRs. (The ac-
tual procedure of ∆TNMF−TPM calculation is described
in the Methods section.) Only a small fraction of
genes had large positive values of ∆TNMF−TPM (Ad-
ditional file 1). Five genes in the mES-PrE dataset
had ∆TNMF−TPM Z-scores over 3 while 39 genes in
the hNSC-NC dataset did. Although the number of
ODEGRs discovered by our algorithm were few, sev-
eral intriguing ODEGRs were identified.

mES-PrE Dataset
The read coverage and transcript annotation for the
six highest-ranking genes in the mES-PrE dataset are
shown in Fig.6.

The 1st and 4th ranked genes were Zmynd8 and
Brd1, and numerous reads were mapped to the spe-
cific intron regions of these genes (Fig.6(a)(d)). The
novel enhancer-associated antisense transcripts for
these genes have previously been reported in mESCs
[33], and this suggests that our approach can detect
several kinds of DE transcripts, including antisense
transcripts.

The 2nd ranked gene was Utrn, and two distinct cov-
erage patterns of peaks that correspond to exons were
observed in ES and PrE cells, respectively (Fig.6(b)).
Since the annotation contains only one isoform, this
DE pattern was overlooked in the annotation-based
approach. We used GENCODE vM9 such that the
analytical results were consistent with previous work
[27], and we also considered the possibility that the
latest annotation includes the isoforms correspond-
ing to such patterns. We recalculated the TPM val-
ues using GENCODE vM18, and T+

TPM = 46.2 and
T−TPM = −15.5 for vM18, in comparison to T+

TPM = 0.0
and T−TPM = −4.4 for vM9 (Additional file 1: Section
3.2 and Fig. S4). This result suggests the existence of
DE transcripts that were not annotated in vM9. A sim-
ilar result was observed for the 7th ranked gene Arid5b
(Fig. S4). These results demonstrate the potential of
our approach for discovering previously unannotated
isoforms.

The 3rd ranked gene was Echdc2, which had numer-
ous reads mapped to its 3′ intron region (Fig.6(c)).
Although such a pattern is consistent with intron re-
tention, this mapping pattern is continued from adja-
cent gene Zyg11a, and the coverage at the 3′ intron of
Echdc2 is correlated with coverage at the Zyg11a re-
gion (Additional file 1: Section 3.3 and Fig. S5). These
results suggest that an unannotated long isoform of
Zyg11a exists and overlaps with the Echdc2 region.
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Figure 4 Examples of alternative isoform expression. The visualizations of read coverage and transcript annotations for (a)
Frmd4a, (b) Pde4d, (c) RTN4, and (d) MAP4, respectively. (a) and (b) are the examples from the mES-PrE dataset, while (c) and
(d) are the examples from the hNSC-NC dataset. These figures are visualized with Millefy, which provides genome-browser-like
visualizations of scRNA-seq datasets https://github.com/yuifu/millefy.

The 5th ranked gene was Macf1, and numerous reads
were mapped to the specific intron region of the gene
in PrE cells (Fig.6(e)). An exon was annotated for the
region in vM18, and the DE transcript including the
exon was overlooked in differential expression analysis
using vM9, which was also the case for Utrn and Arid5b
(Fig. S4).

The 6th ranked gene was Gata6 (Fig.6(f)). The ex-
ogenous Gata6, which lacks a 3′UTR end, is arbitrarily
expressed in these ES cells. After dexamethasone in-
duction, Gata6 is transported into the nucleus, ES cells
differentiate into PrE cells, and the level of expressed
endogenous Gata6 increases. Because the annotation
file does not include exogenous structure, annotation-

based TPM cannot reflect the exogenous expression
patterns, which resulted in high ∆TNMF−TPM values.

hNSC-NC Dataset
In comparison to the results of the mES-PrE dataset,
the results of the hNSC-NC dataset contained uninter-
esting patterns among the most highly ranked genes
(Additional file 1: Section 3.1 and Fig. S3). Therefore,
we show six high-ranking genes of great interest in the
hNSC-NC dataset (Fig.7).

The 2nd ranked gene was PSMB7, and many reads
from NSCs were mapped to its 3′ intron region, which
is similar to the result for Echdc2 in the mES-PrE
dataset (Fig. 7(a)). The coverage pattern was contin-

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 8, 2019. ; https://doi.org/10.1101/543447doi: bioRxiv preprint 

https://github.com/yuifu/millefy
https://doi.org/10.1101/543447
http://creativecommons.org/licenses/by/4.0/


Matsumoto et al. Page 7 of 13

(a) 
 
 
 
 
 
 
 
 
 
 
 
(b)

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log10(p)>15
log10(p)>10
log10(p)>5

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log10(p)>15
log10(p)>10
log10(p)>5

Figure 5 The ROC curves for detecting genes with
alternative isoform expression. The results for the (a)
mES-PrE and (b) hNSC-NC datasets.

ued from the adjacent gene NEK6, and the coverage of
the intron region is correlated with the that of NEK6
(Fig. S5). This result suggests the existence of an unan-
notated long transcript of NEK6 that overlaps with the
PSMB7 region.

The 6th ranked gene was COPG2, and numerous
reads were mapped to its 3′ intron regions, resembling
the results for Echdc2 and PSMB7 (Fig.7(b)). These
reads are also likely to be derived from transcripts of
the adjacent gene MEST, which may have an unan-
notated long transcript. Intriguingly, in mouse, Mest
is an imprinted gene, and a long isoform of Mest (re-
ferred to as MestXL) is expressed in the developing
central nervous system, which results in the repression
of Copg2 on the same paternal allele [34]. Therefore,
the long transcript of MEST and the tissue-specific im-
printing of COPG2 depending on the long transcript
are thought to occur in human. Thus, the detection of
overlapping unannotated transcripts can be associated
with regulatory mechanisms.

The 10th and 15th ranked genes were GREB1L and
GRB10, and distinct AS patterns are suggested by the

difference in mapped read counts between NSCs and
NCs, especially for the intron region (Fig.7(c),(d)). In
GREB1L, several reads mapped to the 5′ intron re-
gion (left side of the heatmap in Fig.7(c)), and the
long isoform appears to be expressed in NSCs. Our
NMF-based algorithm detected such overlooked dif-
ferences (T+

NMF = 13.8) in contrast to the annotation-
based approach (T+

TPM = 0.8). Since RamDA-seq de-
tects not only mature mRNAs but also pre-mRNAs,
many reads mapped to intron regions are considered
to be derived from pre-mRNA expression [27]. Because
the annotation-based algorithm does not usually use
intron-mapped reads, our proposed algorithm that uti-
lizes such information is effective for AS pattern iden-
tification, especially for genes with alternative TSSs.

For GRB10, numerous reads were mapped to its 5′

intron, and cell-type-specific TSS switching likely oc-
curs for this gene (Fig.7(d)). GRB10 is an imprinted
gene and is known for its unique TSS switch mech-
anism in mouse [35]. In the differentiation of mESCs
into motor neurons, the expression of Grb10 changes
from the maternal to paternal allele. The upstream
promoter is used for maternal expression, and the
downstream alternative promoter is used for pater-
nal expression. Therefore, the 5′ intron-mapped reads,
which are detected in only NSCs, support the alter-
native TSS based on the above mechanism and reflect
DE patterns, observable by utilizing intron reads.

The 17th ranked gene was PTPRN2, and there ap-
pears to be a short unannotated transcript in NSCs
(Fig.7(e)). Notably, in mouse, an alternative promoter
exists downstream of Ptprn2, and the transcription
from the promoter drives the miR-153 precursor tran-
script embedded in the Ptprn2 gene region [36]. More-
over, miR-153 is highly expressed in mouse neural
stem/progenitor cells (NSPCs), and the repression of
miR-153 leads to differentiation, and hence, miR-153
modulates NSPCs [37]. Human miR-153 is located in
PTPRN2 [38], and therefore, the short transcript in
the 3′ region is likely a key factor that distinguishes hu-
man NSCs and NCs but is overlooked by annotation-
based analysis.

The 18th ranked gene was GPI, and numerous reads
from NCs were mapped to its central intron region
(Fig.7(f)). In GPI, the existence and conservation of
a minisatellite in its intron have been reported [39].
Although the increase in such reads might be an arti-
fact caused by repetitive sequences, a NC-specific tran-
script might exist in the region.

Discussion
In this research, we developed a novel computational
approach for differential expression analysis of scRNA-
seq data based on matrix factorization of mapped
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Figure 6 Examples of high-ranking genes in the mES-PrE dataset. The results for the six top-ranked genes (in descending order)
(a) Zmynd8, (b) Utrn, (c) Echdc2, (d) Brd1, (e) Macf1, and (f) Gata6 are visualized.
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Figure 7 Examples of high-ranking genes in the hNSC-NC dataset. The results for (a) PSMB7, (b) COPG2, (c) GREB1L, (d)
GRB10, (e) PTPRN2, and (f) GPI, the 2nd, 6th, 10th, 15th, 17th, and 18th ranked genes, respectively, are visualized.
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count data to discover overlooked DE gene regions.
Matrix factorization methods, such as principal com-
ponent analysis, are a practical approach to extract
essential structures and uncover biological knowledge
from large-scale biological data [40]. To take advan-
tage of the large number of cells assayed in scRNA-
seq data, we proposed an NMF-based approach to ex-
tract reproducible patterns and quantify differences in
these patterns among groups. In particular, we used
non-negative constraint to quantify DE patterns while
preserving information about the group in which the
patterns were expressed, and we developed a score
that identifies ODEGRs by using positive maximum
and negative minimum values. Such computational
approaches which utilize numerical constraints based
on the biological subjects can facilitate further omics
studies.

We applied our algorithm to two scRNA-seq datasets
and discovered several unannotated DE patterns, in-
cluding DE antisense transcripts. In addition, our al-
gorithm utilized mapping patterns in intron regions to
discover overlooked alternative TSS patterns. Specifi-
cally, we detected an unannotated transcript which is
a key factor for regulating differentiation. Thus, our
approach has the potential to identify essential over-
looked DE genes.

Although our algorithm was able to identify several
intriguing ODEGRs, it remains difficult to distinguish
the cause of DE transcripts such as those associated
with antisense transcripts or the long unannotated
transcripts of adjacent genes. In addition, the detected
ODEGRs are few, and thus the impact on whole ex-
pression analyses is quantitatively small. However, our
approach can discover novel transcripts and will en-
able further experimental and computational analyses
of these transcripts, which will deepen the current un-
derstanding of the complex gene expression landscape.

As shown in the validation of alternative isoform ex-
pression, our algorithm overlooked several genes with
alternative isoform expression. One limitation of our
algorithm is that its detection of changes involves small
exons, because small changes have little effect on the
objective function and are overlooked in matrix factor-
ization. In addition, we used the count data with a 100-
bp bin size (see the Methods section), which also over-
looked the differences in small exons. Although this
problem might be solved by using smaller bin sizes,
NMF computational time and data size increase sub-
stantially with increases in matrix size, so additional
improvements are therefore necessary. Moreover, our
algorithm overlooks DE patterns in the filtered regions
such as those with gene overlap or those with low map-
pability. Therefore, other approaches, such as methods
based on exon–exon junction reads [17, 18], will be

useful to make up for each other’s weak points and to
complement annotation-based analyses.

Several effective computational expression analysis
methods for scRNA-seq data, such as for cell typing
and for reconstructing differentiation trajectories, have
been developed so far. In this research, we have pro-
posed a novel application of scRNA-seq data for dis-
covering overlooked DE transcripts. Here, we have de-
veloped an algorithm for differential expression anal-
ysis between two groups, and this approach might be
useful for analyzing cellular heterogeneity and discov-
ering transcripts with an overlooked multimodal dis-
tribution.

Conclusions
In summary, we have developed an algorithm to dis-
cover overlooked DE gene regions from scRNA-seq
data. First, we confirmed that our algorithm could
detect complex DE patterns such as simulated local
differential expression and alternative isoform expres-
sion. Then, we applied our algorithm to two single-cell
full-length total RNA-seq datasets and discovered in-
triguing examples of differential expression, including a
transcript related to the modulation of NSPC differen-
tiation. Our approach complements annotation-based
analysis and is an effective approach for better under-
standing cellular regulatory mechanisms using single-
cell studies.

Methods
Data processing
The mouse ES-PrE dataset was derived from our pre-
vious work [27], and we regarded cells 0 h and 72 h
after induction as ES and PrE cells, respectively. The
scRNA-seq reads were aligned to the mouse mm10
genome using HISAT2 [41] with the parameters “–dta-
cufflinks -p 4 -k 5 -X 800 –sp 1000,1000,” and uniquely
mapped reads were selected using the BAMtools “fil-
ter” command with the parameters “-isMapped true
-tag NH:1” and the SAMTools “view” command with
the parameter “-q 40.” The genome-wide coverage
data were generated from these mapped data using the
“bamCoverage” command in deepTools(2.7.10) [42]
with the parameters “–binSize 1 –smoothLength 1 –
normalizeUsingRPKM.” We also quantified transcript-
level expression data (i.e., TPM matrix) from scRNA-
seq data using the Sailfish(v0.9.2) [43] “quant” com-
mand with the parameter “-l U” and GENCODE vM9
annotation.

The human NSC-NC dataset was measured us-
ing RamDA-seq for cell populations derived from
NSCs differentiated from iPS cells. The scRNA-seq
reads were aligned to the human hg38 genome with
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STAR(v2.5.2a) [44], and the coverage data was con-
structed with “bamCoverage” command as mentioned
above. We also quantified the transcript-level expres-
sion data (TPM matrix) with Sailfish(v0.10.0) based
on GENCODE v24 gene annotation. Based on the
known marker gene expression, we identified subpop-
ulations in the data (Additional file 1: Fig. S1). In
particular, we found that a subpopulation expressed
some stemness marker genes, such as SOX2, LIN28,
and POU5F1, and another subpopulation expressed
neural marker genes, such as ASCL1. We regarded the
cell types corresponding to those two subpopulations
as NSCs and NCs, respectively.

For both datasets, we generated a mapping count
data matrix for each gene region as follows. First,
we extracted the transcript list so that the mean ex-
pression of a transcript t is over a set threshold (i.e.,∑

c log10(TPMt,c + 1)/C > 0.5, where C is the num-
ber of cells). Next, we constructed the unique protein-
coding gene list, which corresponds to the above tran-
script list. Then, we selected 6,921 and 9,359 genes
from each dataset and constructed a count data matrix
(100-bp bins) for each gene region from the genome-
wide coverage data of each cells. The gene regions were
defined by the genomic start location and end loca-
tion of the row of the gene in the GENCODE GTF
files (vM9 for the mES-PrE dataset and v24 for the
hNSC-NC dataset). We filtered the bins that contained
various genes because the target gene might falsely
be regarded as occurring in an ODEGR owing to the
differential expression of other overlapping genes. We
also filtered the bins that were derived from regions
with low mappability. This is because such bins might
falsely be regarded as a differentially expressed re-
gion owing to the misalignment of reads. In this re-
search, we defined bins with low mappability as those
for which the minimum of 24-bp mappability (down-
loaded from https://bismap.hoffmanlab.org [45])
was 0.5 or less. Then, the genes that remained with
bin sizes under 100 were filtered. In this way, 4,965
and 6,491 genes were selected for differential expres-
sion analysis.

Implementation and computational cost

We computed NMF with the NMF package in the R
statistical computing environment [29] and used the
objective function based on the Euclidean distance be-
tween the data matrix X and the reconstructed ma-
trix WH as calculated by factorization [46]. The raw
count matrix data has excessively large values in some
bins, and such large values cause the underestimation
of the influence of the remaining bins in the objec-
tive function. Therefore, we applied a log10(count + 1)

transformation to the count values before NMF cal-
culation. The scripts are available at GitHub (https:
//github.com/hmatsu1226/ODEGRfinder).

Since the NMF calculations of all gene regions are
independent from each other, we performed NMF for
each gene region in parallel using Sun Grid Engine. In
the NMF analysis with K = 10 for the first 1,000 gene
regions, the computational times were about 1.7 hours
and 10.9 hours with maximum memory usage of about
240 Mb and 544 Mb for the mES-PrE and hNSC-NC
datasets, respectively.

Validation method
Simulation dataset
We constructed simulation data from the mES-PrE
dataset. First, we calculated the mean of the logarithm
of the coverage of a gene region (

∑L
l=1 log10(Xc,l +

1)/L, where L is the number of bins and c is the in-
dex of a cell). We then calculated the p-value of the
t-test comparing this value between the ES cells and
PrE cells and extracted the top 100 most significant
DE genes. Second, we randomly selected a sample of
count data (X) from these 100 DE genes, and reshaped
the C ×L matrix X into a C ×L′ matrix X′ (L′ < L)
by averaging Xc,i from i = b(b − 1)(L − 1)/L′c to
bb(L − 1)/L′c for each bin b corresponding to X′c,b.
Then, we randomly selected a gene from among 4,965
genes and combined the count data for the gene us-
ing the above matrix X′ so that the combined matrix
had the local DE pattern. However, if the two selected
genes had the same DE trend, that is, both satisfied
− log10(p-value) > 10 for the same side in the cor-
responding t-test, the combined matrix did not have
the local DE pattern, and so we selected one of the
4,965 genes at random again. We generated a positive-
control datasets with 1,000 datapoints as above for
L′ = 10, 50, and 100, and we regarded the raw data as
the negative-control set.

Alternative isoform expression definition
We defined genes with alternative isoform expression
based on the TPM matrix. We defined a gene that
satisfied − log10(p-value) for a corresponding t-test for
T+
TPM and T−TPM over α as belonging to the positive-

control set, and the remaining genes as belonging to
the negative-control set. We used α = 5, 10, and 15
and the number of genes in the positive-control set
were 75, 25, and 8 for the mES-PrE dataset and 333,
95, and 51 for the hNSC-NC dataset, respectively.

Discovery of ODEGR
We investigated the ODEGRs based on their ranked
∆TNMF−TPM values in descending order. Even if
∆TNMF−TPM is large, the annotation-based approach
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also detects the DE when TTPM is sufficiently large.
Therefore, we used min(0, T+

NMF − T+
TPM) instead of

T+
NMF − T+

TPM if T+
TPM > 10 and min(0,−(T−NMF −

T−TPM)) instead of −(T−NMF − T
−
TPM) if T−TPM < −10

for calculating ∆TNMF−TPM to discover overlooked DE
gene regions (see Algorithm 1).

Algorithm 1 Calculate ∆TNMF−TPM

∆T ← −∞
if T+

TPM > 10 then

∆T ← max(∆T,min(0, T+
NMF − T+

TPM))
else

∆T ← max(∆T, T+
NMF − T+

TPM)
end if
if T−TPM < −10 then

∆T ← max(∆T,min(0,−(T−NMF − T−TPM)))
else

∆T ← max(∆T,−(T−NMF − T−TPM))
end if
return ∆T

We also considered the reproducibility of NMF re-
sults. As there is no global optimization algorithm for
NMF, the result depends on the initialization. Accord-
ingly, we calculated ∆TNMF−TPM for a gene with three
initial values generated by different random seeds,
and we used only the minimum value of ∆TNMF−TPM

among the three trials to filter unreliable differences.
The reproducibility of NMF and filtered genes is de-
scribed in Additional file 1.
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