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Abstract1

Mutualistic networks are highly dynamic, characterized by high temporal turnover of species2

and interactions. Yet, we have a limited understanding of how the internal structure of3

these networks and the roles species play in them vary through time. We used six years of4

observation data and a novel statistical method (dynamic stochastic block models) to assess5

how network structure and species’ structural position within the network change across6

time in a quantitative plant–pollinator network from a dryland ecosystem in Argentina. Our7

analyses revealed a core–periphery structure persistent through seasons and years. Yet,8

species structural position as core or peripheral were highly dynamic: virtually all species9

that were at the core in some seasons were also peripheral in other seasons, while many10

other species remained always peripheral. Our results illuminate our understanding of the11

dynamics of ecological networks and have important implications for ecosystem management12

and conservation.13

Keywords: core–periphery structure, stochastic block model, mutualistic networks, plant–14

pollinator interactions, species role, temporal dynamics15
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Introduction16

Studies of plant–animal mutualisms have historically focused on the interactions between17

one or a few plant species and their animal mutualists (1; 2). This approach guided decades18

of research, illuminating our understanding of the natural history, ecology and evolution of19

plant–animal mutualisms, but at the same time limiting our understanding of how interac-20

tions operate in their broader community context (3). More recently, the use of a network21

approach to study of plant–animal mutualistic interactions in their community context has22

offered new insights on the relative specialization and reciprocal dependence of these in-23

teractions and, ultimately, the ecological and evolutionary processes that depend on them24

(4; 3; 5; 6). The study of mutualistic networks has revealed several pervasive properties,25

including nestedness (7), modularity (8), and asymmetry in both specialization (9) and inter-26

action strength (10), all of which are believed to have important ecological and evolutionary27

implications (11; 12; 6; 13).28

Mutualistic networks are also characterized by high temporal variability, with species and29

interactions switching on and off through time. In other words, these networks exhibit high30

temporal turnover of species and interactions (14; 15; 16), in spite of an apparent stability in31

some aggregate network attributes such as connectance and nestedness (14; 17). Past studies32

have shown that the most persistent interactions are those located at the network core (the33

most densely connected region of the network), which usually involves abundant, frequently34

interacting species, and many occasional peripheral species (16; 18). What we still don’t35

know is the extent to which the structural position of individual species as core or peripheral36

varies through time. In other words, is there a persistent set of core species that form the37

backbone of the network over seasons and years? Or is the core itself also highly dynamic,38

with species switching between core and peripheral positions?39

Answering the above questions is essential to improve our understanding of how different40

species contribute to community stability and to guide management and conservation efforts.41

For example, the existence of a stable set of species at the network core could represent a42
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reasonable target for biodiversity conservation—a small, manageable set of keystone species43

on which to focus conservation efforts (19; 20; 21; 22; 23). Conversely, a highly dynamic44

network core would make that target more elusive, with a larger, variable set of potentially45

keystone species.46

Here we evaluate how the structure of a plant–pollinator network and the structural po-47

sition of species in the network change across time. We focus on a previously published48

bipartite, weighted (non-binary) plant–pollinator network spanning six years in a dryland49

ecosystem in Villavicencio Nature Reserve, Argentina (16). Our network representation fo-50

cuses on the relative ecological effects between pairs of interacting species (usually referred51

to as dependences, 10; 24). Using a recent statistical framework (dynamic stochastic block52

models, hereafter dynSBM) (25), we quantify the temporal switching of the structural posi-53

tion of plants and pollinators. This analysis allows us to provide a comprehensive picture of54

the temporal dynamics of the internal structure of this mutualistic network.55

Material and methods56

Study site and data collection57

We used a dataset describing a plant–pollinator network from pollinator visits to flowers58

in a dryland ecosystem. Data were collected weekly during three months during the flow-59

ering season (Austral spring and early summer, September–December) between 2006 and60

2011 from the Monte Desert ecoregion at Villavicencio Nature Reserve, Mendoza, Argentina61

(32◦ 32’ S, 68◦ 57’ W, 1270 m above sea level). The data include 59 plant species, 19662

flower visitor species, and 28015 interaction events (flower visits) involving 1050 different63

pairs of interacting species. Plant abundance was estimated based on the density of flowers64

of each plant species, as flowers are the relevant plant structure for this interaction type.65

Flower abundance was estimated during the flowering season of all study years using fixed66

quadradts/transects. Several rare plant species were absent from our fixed quadrats and67
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transects but present elsewhere in our study site; for those species we assigned an abundance68

of one flower, the minimum we could have detected with our sampling method. A full account69

of the methodology can be found in Ref. (16; 22).70

Building plant–pollinator dependence networks71

We aggregated the data by pooling the number of visits of any pollinator to any plant in 372

subseasons by year (before November 1st, after November 30th and in between). Such level73

of aggregation allowed us to consider seasonal dynamics at a temporal grain that was not74

too fine nor too coarse to allow a reasonable representation of network structure.75

For any subseason, we built a plant-pollinator dependence network D, a directed weighted76

network representing the relative dependences among plant and pollinator species (10; 24).77

From the number of visits in a time interval Xij between any pair of species of plant and78

pollinator (i, j), we considered two directed and weighted edges in D: the dependence of plant79

i on pollinator j, Dij = Xij/
∑

j Xij, representing the number of visits of pollinator j to plant80

i divided by the total number of visits received by plant i; and the reciprocal dependence of81

pollinator j on plant i, Dji = Xij/
∑

iXij, representing the number of visits of pollinator j82

to plant i divided by the total number of visits done by j. Applying this approach to our83

raw data, we obtained a time series of 18 dependence networks. To represent graphically84

these networks, we showed the successive bi-adjacency matrices (plants in rows, pollinators85

in columns) using a color code accounting for the two values Dij and Dji for any species pair86

(i, j) (see an example in Figure 1).87

Inferring topology and species’ structural position in the dynamic88

network89

Recently in Ecology (26; 27; 28; 29; 30), some authors have suggested the use of statistical90

methods which jointly infer structural properties and species positions. Originally developed91

in the field of social sciences (31), Stochastic Block Models (SBM; 32; 33)—also called Group92
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Models in the seminal work by Allesina and Pascual (27)—aim at grouping nodes (species93

in our case) that are statistically equivalent, “acting” similarly in the network, i.e., having94

an equivalent “structural position”. These methods follow a particular paradigm: instead of95

searching for a particular pattern, we infer one from the data. SBM can handle weighted96

networks with appropriate statistical distributions; we chose them for their ability to decipher97

core–periphery structure in network data (as mentioned in Figure 1 in 34), as they can infer98

groups of core species and peripheral species.99

Furthermore, studying network dynamics requires a method that can handle and model100

the whole time series of network snapshots (i.e., in a dynamic network). Recently, Matias101

and Miele (25) proposed an extension of SBM for dynamic networks called dynSBM. Under102

this approach, the structural position of any species can vary over time. In other words,103

each structural group (for instance a core group) is inferred using the complete series, but104

the group membership can vary from any time step to another. Here we rely on a modified105

version of this approach dedicated to bipartite networks (see Supplementary information)106

implemented in the R package dynsbm available on CRAN at https://cran.r-project.107

org/web/packages/dynsbm/. Importantly, the number of groups is constant and selected108

with an appropriate heuristics (Supplementary Figure S1).109

Results110

A persistent core-periphery structure By applying the dynSBM algorithm, we found111

that the Villavicencio plant–pollinator network is organized as a core–periphery structure.112

This network structure comprises two components, each one composed of a group of plants113

and a group of pollinators. The first component consists of one group of plant species and114

one group of pollinator species forming a persistent cohesive module (the network core),115

while the second component was composed of a group of plants and a group of pollinators116

gravitating in the network periphery (Supplementary Fig. S1). The proportions of species117
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in these groups varied only modestly through time (χ2 = 64.92, d.f. = 51, P = 0.09) in spite118

of being unconstrained in dynSBM (Fig. 2); in contrast, these proportions varied widely in119

randomized networks (Supplementary Figure S3).120

Core and peripheral species differ markedly in terms of their linkage patterns. The core121

group of plants (top rows of matrices in Fig. 2) consisted of species visited by many pollinator122

species, especially species in the core group of pollinators (left columns of matrices in Fig. 2),123

which visited many plant species. Species in these core groups of plants and pollinators are124

weakly dependent on their interaction partners (Supplementary Fig. S2). Thus, the network125

core can be envisioned as a densely connected “module” of generalized plant and pollinator126

species with low mutual dependence among them (Fig. 3). In contrast, the peripheral127

group of plants (bottom rows of matrices in Fig. 2) includes species visited mostly by core128

pollinator species; dependence is highly asymmetric for these plants, in the sense that they129

are highly dependent on pollinators who are not reciprocally dependent on their host plants130

(Supplementary Fig. S2). Likewise, the peripheral group of pollinators (right columns of131

matrices in Fig. 2) includes species interacting mostly with core plants, also asymmetrically132

dependent on plants that are not reciprocally dependent on them (Fig. 3). In addition,133

there are only a few interactions between peripheral plant and pollinator species, with no134

particular trend regarding their reciprocal dependence (Supplementary Fig. S2).135

The core–periphery structure is robust to changes in species diversity and compo-136

sition The core–periphery structure persisted despite two sources of variation: the diversity137

of species and their identities. First, the diversity of plant and pollinator species varied over138

time, so that each year the number of plant species in bloom tended to decrease from the139

first to the third subseason, whereas the number of pollinator species species tended to peak140

in the second subseason (Supplementary Fig. S4); yet, the proportion of core plant species141

increased from the first to the third subseason each year (Fig. 2; plant core group in the142

upper part of each matrix). Thus, the size of the plant core group was independent of plant143

diversity. Second, the identity of interacting species and their activity (as measured by the144
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total number of floral visits received by a plant or performed by a pollinator) changed greatly145

from one time step to another, resulting in substantial temporal variation in the species as-146

sembly (Supplementary Fig. S5). Yet, despite these variations in the interactions at the147

species level, the core–periphery structure persisted over time.148

Species in the core are also sometimes peripheral Species structural positions were149

highly dynamic. Almost all species that were in the core in some seasons were also peripheral150

in other seasons (except one plant and one pollinator species); however, a large proportion151

of peripheral species never became part of the core (52% for plants, 72% for pollinators; see152

Fig. 4). Thus, only a subset of species were ever part of the core, and virtually no species153

occupied that position persistently through time.154

There was a positive correlation between overall species presence (i.e. the number of155

subseasons a species was recorded interacting) and their presence in the core: the more156

frequently a plant or a pollinator species was present in the community, the more frequently157

it was found in the core (see Fig. 4 and Supplementary Fig. S6). Furthermore, for plant158

species for which we have independent abundance data, we observed that their abundance159

tended to be higher when they are in the core than when they are peripheral (Supplementary160

Fig. S7).161

Discussion162

Our analysis using dynamic stochastic block models allowed us to delve into the topological163

dynamics of a plant-pollinator network. In a nutshell, we found that this network is charac-164

terized by a core–periphery structure persistent through seasons and years, while exhibiting165

high temporal switching of species structural positions. These results offer a unique temporal166

perspective into the dynamics of mutualistic networks.167

The core–periphery structure was maintained in spite of high temporal variation in species168

richness and composition. The distribution of dependences also persisted over time, with169
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highly asymmetric dependences for most peripheral species, which tended to interact with170

core species; in turn, interactions among core species tended to be more symmetric, albeit171

with weaker dependences. Yet, the network position occupied by plant and pollinator species172

was highly dynamic: virtually all species that played a core role in some seasons were also173

peripheral in other seasons, while many other species remained always peripheral. Further-174

more, presence in the network core was related to overall species presence: species present175

in many subseasons tended to be more consistently at the core than species present only in176

few subseasons. Previous studies had documented that nestedness (which can be viewed as177

a particular type of core–periphery structure, 35) characterizes many plant–animal mutual-178

istic networks (7) and that such structure is persistent over the years (14; 16) in spite of179

an enormous temporal variation in the occurrence of interactions (14; 15; 16). Our findings180

extend those results, indicating that species structural position in the network is also highly181

dynamic. Thus, while the core–periphery structure persists over time, the taxonomic identity182

of the core changes drastically through seasons and years, and no species can be identified183

as playing permanently a core role.184

The latter finding has far-reaching practical implications, as the idea of focusing man-185

agement and conservation efforts on a small subset of species at the network core (19; 20;186

21; 22; 23; 36; 37) may be difficult to achieve, given that virtually no species plays that role187

consistently over time in the long run. Our findings do indicate that a small subset of species188

is likely to be found playing a key role as part of the network core in many seasons and years,189

which brings them close to the notion of “core” species and would make them adequate tar-190

gets for conservation efforts. Plant species in this group include Condalia microphilla, Larrea191

divaricata, Prosopis flexuosa and Zuccagnia punctata whereas flower visitors in this group in-192

clude Apis mellifera, Augchloropsis sp., Bombus opiphex, Centris brethesi, Copestylum aricia,193

and Xylocopa atamisquensis.194

Yet, a majority of core species was core in a substantially smaller fraction of subseasons195

(see Fig. 4). These species could be viewed as quasi-core species, in the sense that they are196
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present in the core only intermittently. Thus, the identification of core species based on one or197

a few years of sampling—as done in most studies published so far—could be misleading, and a198

single static characterization of an ecological network will fail to reveal its true core–periphery199

structure. In this sense, the idea of species “coreness” (35; 38) is not just a black-or-white200

property determined only by the position of a species in a static or aggregated network,201

but a relative concept determined by the temporal consistency of the position occupied by202

a species. Therefore, identifying core species as candidates for management actions requires203

allocating a greater sampling effort into capturing the temporal dynamics of ecosystems, even204

if this practice implies relaxing efforts to capture some details of community structure and205

the detection of very rare species, which are unlikely to be part of the network core and to206

contribute significantly to community robustness to environmental perturbations.207

To conclude, we believe these results illuminate our understanding of the dynamics of208

ecological networks, indicating the persistence of a core–periphery structure in spite of sub-209

stantial changes in species richness, composition, interactions and structural position in the210

network. Yet, we believe we have only scratched the surface of the temporal dynamics of211

ecological networks. One possible avenue for future research would be to apply the methods212

used here to analyze other datasets, to assess the generality of our findings.213
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Figure 1: Representation of a dependence network between 5 plant species (rows) and 6
pollinator species (columns). Each cell is colored according to the legend and filled with the
number of visits (top value in larger font), the plant and pollinator dependence values Dij

(middle) and Dji (bottom). The legend shows the color code accounting for the two depen-
dence values for any species pair (i, j) (darker green represents higher the plant dependence;
stronger red represents higher the pollinator dependence). This example shows the advan-
tage of studying dependence values instead of raw data. The number of visits in cells (3,1),
(2,4) and (4,5) are all equal to 25. Meanwhile, these number of visits do not characterize
the same kind of interaction, as shown by the dependence values. Indeed, plant 3 is highly
dependent on pollinator 1 (the reverse is not true), pollinator 4 is highly dependent on plant
2 (the reverse is not true) whereas plant 4 and pollinator 5 are mutually dependent and have
a quasi-exclusive relationship. Lastly, the number of visits in cell (5,6) is twice the number
in cell (4,5) but the dependence values are comparable (dependence is scale invariant).
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Figure 2: Temporal dynamics of Villavicencio plant–pollinator network. For each matrix, cells
represent the plant and pollinator dependence values between a plant (rows) and pollinator
(columns) species, with a color computed as a mixture of the two dependence values according
to the legend. Rows and columns were reorganized according to the dynSBM group mem-
bership: dark lines separating each matrix delineate the group boundaries (core/peripheral
group of plants above/below the horizontal line; core/peripheral group of pollinators on the
left/right of the vertical line).
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Figure 3: Graphical representation of the core–periphery structure found in our dynamic
plant–pollinator network. Arrows depict dependences of one species (arrow origin) on another
(arrow tip). Arrow widths are proportional to typical dependence values between groups.
Pollinators/plants of the network periphery are strongly dependent on plants/pollinators that
belong to the network core.
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Figure 4: Temporal shifts in species structural positions. Each stacked bar (one by species)
represents the number of subseasons any species was found in the core (light color) or in the
periphery (dark color). Bars were ranked according to the number of subseasons any species
was observed and present in the network. For plants (left) and pollinators (right).
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Details of the dynamic stocastic block model analysis

Under the dynamic stochastic block model (dynSBM) approach (which is presented in details

in (1) and (2)), structural position assignment is defined not only by a SBM (one per time

step) but also by a Markov chain that models the switches at each time interval. Here, we rely
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on a modified version of this approach for bipartite networks where each SBM has the same

parameters values at each time step. Each SBM is parametrized by an appropriate statistical

distribution. Here we used dynSBM with multinomial distributions to model edge weights

(dependence values) that were categorized into three levels corresponding to low, medium

and high dependence (lower than 0.2, in between and larger than 0.8, respectively). The

number of groups is constant and selected with an appropriate heuristics (Supplementary

Figure S1). Structural position assignment (i.e., SBM group membership) can change over

time, but there is no constraint for the found structure to be present at each time step (see

Supplementary Figure S3). This approach can be reproduced with the R package dynsbm

available on CRAN at https://cran.r-project.org/web/packages/dynsbm/.
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Choice of the number of groups in dynSBM
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Figure S1: Selecting a dynSBM with 4 groups. The slope of the log-likelihood highly decreases
for ≥ 4 groups (“elbow” method, see 2).
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Figure S2: Plant dependence versus pollinator dependence for all the interactions observed
in the 18 dependence networks, represented for the four inter-group categories: between
plant and pollinator species from the core (top left), from the plant core and the pollinator
periphery (top right), from the plant periphery and the pollinator core (bottom left) and
from the periphery only (bottom right). The connectance (C) is indicative and corresponds
to the fraction of realized interactions.
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Figure S3: Core/periphery structure does not persist when networks are randomly perturbed.
Same as Figure ?? but networks where randomized a) in each third subseasons or b) second
and third subseasons. The dynSBM model was re-estimated with a fixed number of 4 groups.
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Variation of the number of species
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Figure S4: Number of species for the three successive subseasons for each year. The six lines
are numbered according to the index of the year of study (from 1 to 6 for 2006 to 2011). The
line 1 (2006) is in dashed line to highlight the much lower overall number of species in this
particular year. For plants (left) and pollinators (right).
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Temporal variation of species activity
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Figure S5: Species activity classification. The activity, measured by the total number of floral
visits received by a plant or performed by a pollinator, is represented in a heatmap (red to
yellow color scale for null to maximum activity; log-scale). Subseasons in rows (denoted by
the year and the index of the subseason in the year) and species in columns are reordered
with a hierarchical clustering based on the similarity in activity (log scale, euclidian distance).
For plants (left) and pollinators (right). First/second/third subseasons of different years are
clearly packed in clumps (i.e. subparts of the dendrogram) showing similar plant activity,
whereas this pattern is less clear in the case of pollinators (still, the third subseasons are
packed together).
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Species turnover and role switch over time
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Figure S6: Species turnover and role switch over time. Matrix representation shows when
any species (rows) is in the core (light color), in periphery (dark color) or absent (white) over
time (columns; 18 subseasons). For plants (left) and pollinators (right).
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Plant role is correlated with abundance
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Figure S7: Plant role is correlated with abundance. Each marker shows the median abun-
dance (number of flowers) of a given species when it is in the core compared to its median
abundance when it is peripheral. Dashed lines represent the line with slope 1.
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