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Abstract

Although hippocampal grid cells are thought to be crucial for spatial navigation,

their computational purpose remains disputed. Recently, they were proposed

to represent spatial transitions and to convey this knowledge downstream to

place cells. However, a single scale of transitions is insufficient to plan long

goal-directed sequences in behaviorally acceptable time.

Here, a scale-space data structure is suggested to optimally accelerate re-
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trievals from transition systems, called Transition Scale-Space (TSS). Remaining

exclusively on an algorithmic level, the scale increment is proved to be ideally

√
2

for biologically plausible receptive fields. It is then argued that temporal buffer-

ing is necessary to learn the scale-space online. Next, two modes for retrieval

of sequences from the TSS are presented, namely top-down and bottom-up.

The two modes are evaluated in symbolic simulations, i.e., without biologically

plausible spiking neurons. Additionally, a TSS is used for short-cut discovery

in a simulated Morris water maze. Finally, the presented results are discussed

in depth with respect to biological plausibility, and several testable predictions

derived. Moreover, relations to other grid cell models, multi-resolution path

planning, and scale-space theory are highlighted. Summarized, reward-free

transition encoding is shown here, in a theoretical model, to be compatible with

the observed discretization along the dorso-ventral axis of medial Entorhinal

Cortex (MEC).

Because the theoretical model generalizes beyond navigation, the TSS is

suggested to be a general-purpose cortical data structure for fast retrieval of

sequences and relational knowledge.

1 Introduction and Motivation

Spatial navigation and localization depend on a number of cells which represent

spatial modalities (Rowland et al., 2016). Place cells, for instance, selectively

respond to the location of an animal by firing only in distinct localized regions
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of an environment, called place fields (O’Keefe, 1979), and were found to be of

critical importance for localization and path planning (de Lavilléon et al., 2015;

Morris et al., 1982). The most perplexing cells are, however, grid cells of the

Entorhinal Cortex (EC) (Hafting et al., 2005). Their eponymous periodic spatial

firing patterns, called grid fields, regularly tessellate space. Embedded in an

inhibitory local recurrent circuit (Couey et al., 2013), they interact with several

other spatially modulated cells of the EC, for instance head direction (Ranck,

1984; Sargolini et al., 2006), border (Lever et al., 2009; Savelli et al., 2008), or speed

cells (Hinman et al., 2016; Kropff et al., 2015). Moreover, they are influenced by

the geometry of an animal’s surrounding (Krupic et al., 2014; Wernle et al., 2017),

and project to place cells (Fyhn et al., 2008; E. I. Moser and M.-B. Moser, 2008).

In turn, place cells recurrently project to the EC (Bonnevie et al., 2013).

Theoretical studies suggested early on that place fields can be generated

by converging grid activity of different sizes (Franzius et al., 2007; Fuhs and

Touretzky, 2006; Jeffery, 2007; McNaughton, Battaglia, et al., 2006; Solstad et al.,

2006). The idea is that, while a single periodic grid response leads to ambiguous

localization results, superimposed grid responses of several sizes cancel each

other out and lead to unambiguous localized activity that is similar to place fields

even in large environments. Afterwards it turned out that grid cells organize, in

fact, in distinct modules along the dorso-ventral axis of the EC (Stensola et al.,

2012): Cells within one grid module share the orientation of the hexagonal

pattern, show a relative phase shift to each other, and express the same size

with respect to their grid fields. Surprisingly though, the sizes of the grid fields
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increase from one module to the next in discrete steps with a scale factor that is

suspiciously close to

√
2.

Grid cells are considered a vehicle to understand higher cortical represen-

tations and functionality (E. I. Moser, Roudi, et al., 2014). This is not only due

to their remarkable properties, but also because they are situated at the apex

of the cortical processing hierarchy (Fellemann and Van Essen, 1991). They

are commonly believed to perform either of two functions. On the one hand,

hexagonal grid fields were shown to be suitable for path integration (Burak

and Fiete, 2009; Fuhs and Touretzky, 2006; McNaughton, Battaglia, et al., 2006).

On the other hand, they theoretically outperform place cells in localization

tasks (Mathis et al., 2012; Stemmler et al., 2015), and were recently shown to

emerge in recurrent models for vector-based navigation (Banino et al., 2018;

Cueva and X.-X. Wei, 2018). However, the difference between most existing

models lies primarily in the way that either of the two is achieved (see reviews

in Giocomo et al., 2011; Shipston-Sharman et al., 2016; Zilli, 2012).

There are concerns about both perspectives. First, many path integration

models quickly accumulate noise and require additional mechanisms to prevent

drift (Burak, 2006; Burak and Fiete, 2009), especially when deployed in real-

world scenarios (Mulas et al., 2016). It was also observed that place cell activity

of preweaning rats depends on traveled distance, even though the grid cell

system is still unstable during this stage of development (Bjerknes et al., 2018).

Second, there is accumulating evidence that is in conflict with the idea that the

grid code is a primary source for the formation of place cell activity and, thus,
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localization. For instance, grid cells emerge only after place cells during postnatal

development (Langston et al., 2010; Wills et al., 2010). In addition, removal

of projections from grid to place cells in lesion studies demonstrated that the

place code is only partially influenced by the elimination of grid inputs (Chen

et al., 2019; Hales et al., 2014). It also remains unclear how downstream neurons

should read out the ambiguous hexagonal representation (Bush et al., 2014).

Third, vector-based navigation models that use multiple scales of grid cells to

represent a target vector typically generalize only up to an area that depends on

the number of scales. That is, ambiguous target vectors will appear inevitably as

soon as the surrounding environment with which the model has to cope is too

large. Several grid coding strategies were proposed that are based on or related to

residue number systems to address the issue of ambiguous responses (Fiete et al.,

2008; Gorchetchnikov and Grossberg, 2007; Masson and Girard, 2010; Mathis

et al., 2012; Sreenivasan and Fiete, 2011; X.-x. Wei et al., 2015). Although they

significantly improve the issue, they still have a maximal distance after which the

grid patterns repeat and are thus also subject to the third concern. Conclusively,

the computational purpose of grid cells remains opaque and explanations of

their peculiarities, namely their hexagonal grid fields as well as discrete scale

increments, unsatisfying.

1.1 Contribution and organization

The main contribution of this paper is to analytically derive the optimal scale-

increment of an acceleration data structure for retrievals of sequences from
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transition systems. More precisely, the computational problem that is considered

is retrieval of goal-directed sequences from memory with behaviorally relevant

performance. The results are based on prior research, which treated grid

fields as individual elements of a larger structure (Waniek, 2018). Using the

same approach, it is shown how acceleration of retrievals connects to existing

discrete data structures and algorithms. Subsequently, this is extended to

biologically plausible receptive fields and the optimal scale increment of

√
2 for

this case proved analytically. In addition to the optimal scale increment, the

results presented in this paper therefore also demonstrate how to relate cortical

representations and computations to classical data structures and algorithms.

The paper is organized as follows. Subsection 1.2 introduces relevant nomen-

clature and concepts that will be used throughout this paper. For convenience,

the section contains a summary in tabular form. Then, Section 2 presents related

work. Subsequently, Section 3 presents the acceleration data structure and

optimality results, which is split into the following parts. First, the necessity for

acceleration is motivated using an example that considers neural dynamics. Sec-

ond, a multi-scale data structure, called Transition Scale-Space (TSS), is presented

that optimally accelerates retrievals given discrete representations of data. Third,

bottom-up construction is shown for a TSS with neurally plausible receptive

fields, which yields a scale-increment of

√
2 between consecutive scales of the

TSS. Fourth,

√
2 is proved analytically to be optimal for neurally plausible fields,

and evaluated numerically. Fifth, it is argued that, for bottom-up construction,

temporal buffering of data is required. In turn, this yields a relation between
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the theoretical model and Theta Phase Precession (TPP). Sixth, and closing

this section, two modes for retrieval of sequences from the data structure are

presented. After this, Section 4 presents simulations of the retrieval modes, as

well as short-cut discovery capabilities in a simulated Morris water maze. Note

that the experiments use symbolic simulations. Subsequently, Section 5 discusses

both the theoretical and experimental results, gives detailed comparisons to

related models, and highlights other related and influential research domains.

Finally, Section 6 closes the paper with a brief summary and an outlook to future

work.

This paper remains on an abstract algorithmic level, i.e., the second level

of Marr’s suggested analysis of neural computations (Marr, 1982). It does not

provide simulations of spiking neural networks that implement the algorithms

and data structure. In addition, it omits input-output relations from and to

other cortical areas when possible. Yet, this abstract perspective allows to derive

several testable predictions for neural realizations that will be discussed in depth.

1.2 Nomenclature and concepts of Multi-Transition Systems

This paper builds on terminology, concepts, andmathematical symbols that were

introduced in Waniek, 2018. For convenience, they are repeated here and the

most important aspects briefly discussed. Table 1 summarizes the nomenclature

and mathematical symbols that will be used throughout this paper. The table

also provides an overview how the concepts of Multi-Transition Systems (MTS)

are believed to relate to cells or networks of the Hippocampus. Further details
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about MTS, including formal proofs and an exhaustive discussion, can be found

in Waniek, 2018.

A transition bundle π � {τ1, . . . , τN} is a set of N transitions τk . Each

transition is a tuple τk � (σm , σn) between symbols σm , σn ∈ Σ of an alphabet

Σ. The domain of a transition contains the symbol from which a transition starts

(also called source symbol), and the image of a transition contains the symbols to

which it leads (also called target symbols). These terms are transitive to bundles,

i.e., the domain (image) of a bundle is the set of symbols in which transitions

of the bundle start (end). Note that, for instance in Reinforcement Learning

(RL), transitions τk are usually viewed as functions that map one symbol to

another (Sutton and Barto, 1998).

Transition bundling is restricted by certain constraints. In particular, only

those transitions with mutually exclusive source and target symbols can be

bundled. In spaces where arbitrary transitions between any two symbols are

possible, for instance in the case of temporal transitions between arbitrary

symbols, a bundle contains only transitions that start at one source symbol. In

complete metric spaces, bundling can be performed for all those transitions for

which the intersection of domains and images is empty. For the two-dimensional

case, Waniek, 2018 showed that bundling is maximized by a periodic hexagonal

grid. In this case, transition bundles can be understood to form a dense packing

of on-center and off-surround receptive fields, and the symmetry of this packing

depends on the structure of the input space.

These concepts are thought to correspond to cells of the Hippocampal
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formation as follows. Place cells represent symbols σi ∈ Σ in a neural associative

memory MΣ, and receive spatially modulated, contextual, and possibly other

cortical afferents. Of these, spatial inputs are believed to origin from a suitable

sensory representation, such as head and boundary vector cell activity, denoted

by ∆. Grid cells of a neural memory MΓ learn spatial transitions directly on

∆, and convey this knowledge to MΣ. To achieve optimal transition bundling,

each grid cell performs dense packing of on-center and off-surround receptive

fields on ∆ as part of its dendritic computation, depicted in Figure 1A. Each

on-center is denoted as a spatial symbol δ j ∈ ∆, and dense packing of spatial

symbols necessarily discretizes the input space due to a finite number of neurons

and dendrites. Moreover, each spatial transition bundle associates to symbolic

representations in MΣ via co-activation learning. Thereby, a grid cell learns all

feasible spatial transitions from place cells that are active at a certain spatial

location to all place cells in the surrounding area, illustrated in Figure 1B.

Summarized, the hippocampal-entorhinal loop is believed to form an MTS,

illustrated in Figure 1C, and neurons of MΣ can be understood to form nodes of

a topological map, while transitions are edges between these nodes. Note that

an MTS was proposed to store temporal transitions in a seprate memory MΠ.

However, this memory will be mostly omitted here and only mentioned when

relevant.

Explicitly decoupling symbols (place cells) from spatial transition knowledge

(grid cells) has several benefits. Most important, it renders place cells independent

of the structure that is underlying sensory inputs. Consider an animal that
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Figure 1: Conceptual overview of the hippocampal-entorhinal Multi-Transition

System proposed in (Waniek, 2018). (A) A spatial transition bundle (black

square) learns as many transitions as possible to maximize storage capacity of

its dendritic tree (dense packing of on-center and off-surround circles). The

input space on which this is performed is denoted ∆, and on-center areas are

called spatial symbols δi ∈ ∆. (B) A spatial transition bundle γ learns feasible

transitions in a suitable input space and conveys this information to place cells

δi , δ j (white circles). (C) Learning a dense coverage of ∆ requires multiple spatial

transition bundles (grid cells; colored squares) in memory MΓ. These bundles

convey spatial transition information to symbols σi (place cells; white circles)

of memory MΣ. Note that not all connections from transitions to bundles are

depicted to improve clarity of the illustration.
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Symbol Term Correspondence or interpretation

σi symbol A place cell of CA1

Σ symbolic space All representations of place cells in

CA1

Γ spatial transition space Representations formed by all grid

cells

γk spatial transition bundle Grid cell

γk ,l spatial transition Single grid response l of a grid cell k

δn spatial symbol Distributed representation of sensory

modalities that uniquely identifies a

location, e.g., via boundary vector cell

activity

∆ spatial input space Entirety of spatial symbols

MΣ Memory that implements Σ Place cells of CA1

MΓ Memory that implements Γ Grid cells of EC

Table 1: Nomenclature and neural interpretations. Note that indices will be

dropped if clear from context.
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wants to plan a path from its current location A to a remote target B, which

means it needs to search a viable trajectory from A to B. This operation is called

expansion of the path, denoted A { B, into a sequence A, σ1, σ2, . . . , B of N ≥ 0

intermediate locations σi . Because of the decoupling, an expansion needs to

iterate only through symbol and transition memories, without any access to

sensory representations. Also, a currently active representation of place cells

may change abruptly, for instance due to a contextual change that induces a

remapping event (Muller and Kubie, 1987). Relational spatial knowledge about

feasiblemovements remains intactwithin grid cells during such an event, because

grid cells are anchored to the sensory space independently from place cells as

part of their dendritic computation. Also others recently noted the functional

benefits of separating transitions that are recruited from sensory inputs from

spatial representations that live independently of the structure of the sensory

input (Whittington et al., 2018).

As a consequence of connectivity, place and grid cells were predicted to

have independent but related recruitment mechanisms. Moreover, it was

discussed that a network of such cells should express strong Winner-Take-All

(WTA) dynamics to reduce overlap of symbols and, thereby, ambiguities in the

representation. Couey et al., 2013 found that interactions between neurons in

MECare predominantly inhibitory, which is indicative of a strongWTAdynamics.

Other recent evidence underpins the structure of network connectivity in an

MTS and the independent recruitment processes for place and grid cells (Chen

et al., 2019; Davoudi and Foster, 2019).
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2 Related work

Soon after their discovery, several models were suggested that use multiple

scales of grid cell responses to generate place cells (Fuhs and Touretzky, 2006;

Jeffery, 2007; McNaughton, Battaglia, et al., 2006; Solstad et al., 2006). Others

presented that multiple scales of grid like responses emerge when extracting

slowly varying features from a spatially modulated input space and, likewise,

used them downstream for localization purposes (Franzius et al., 2007; Wyss

et al., 2006). Commonly, these models converge grid responses onto a single

sheet of neurons, for instance using summation or multiplication. Models of

this kind can be shown to yield unambiguous singly peaked activity similar to

place codes even in environments that are significantly larger than the biggest

grid period (Mathis et al., 2012). Moreover, X.-x. Wei et al., 2015 reported

that – to reduce the number of required neurons for localization – grid fields

ideally increase in discrete steps by a factor of

√
e, or about 1.4 − 1.7 when

neurons fire stochastically. Others proposed that multiple scales of grid cells

form a population vector for localization that can be read out using Bayesian

inference (Stemmler et al., 2015), in which case the scale ratio was found to

be ideally 3/2, or to improve representational capabilities by residue number

systems (Fiete et al., 2008; Gorchetchnikov and Grossberg, 2007; Masson and

Girard, 2010; Sreenivasan and Fiete, 2011). Although these values are in the

range of measured scale increments, there exist doubts about the contribution

of grid cells to localization (Bush et al., 2014). For instance, Hales et al., 2014

showed that the place code is only partially influenced when grid inputs were
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severed in lesion studies. More recently, Chen et al., 2019 presented evidence

that self-motion and environmental cues have differential affects on place and

grid cells, which contradicts the assumption that place cells are formed based on

converging grid cell inputs. In contrast to these models, the work presented here

is not based on localization, but on the idea that grid cells encode transitions or

relational knowledge (Stachenfeld et al., 2016; Waniek, 2018). Moreover, while

thesemodels requiremultiple grid scales to solve ambiguities during localization,

this paper argues that a discretized multi-scale representation is required to

optimally accelerate retrievals from such transition knowledge.

The results presented here are conceptually related to vector-based navigation

models, and in particular to the hierarchical linear look-ahead model presented

in Erdem and Hasselmo, 2014 and Erdem, Milford, et al., 2015. It also shares

several ideas with the navigation model by Redish and Touretzky, 1998, which

predates the discovery of grid cells, and the linear look-aheadmodel byKubie and

Fenton, 2012. Brief summaries of these models, as well as detailed discussions of

similarities and differences between these and the TSS model can be found in

Subsection 5.3. Along the same lines of these models, Bush et al., 2014 argue

that grid cells could potentially be used to compute linear target vectors between

locations. They base their arguments on the observation that the entirety of grid

fields of a single grid cell, itself discussed to be the result of path integration,

might form a constant spatial metric. In turn, this could be used to compute

translational vectors. However, Bush et al., 2014 do not present a mathematical

or algorithmic model.
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The paper assumes that knowledge in the Hippocampus is represented in the

form of a relational graph or topological map, which was previously suggested

in Dabaghian, Memoli, et al., 2012 and Dabaghian, Brandt, et al., 2014. It is

also based on prior work that derived that a hexagonal distribution of fields is

optimal to encode transitions in such a topological map (Waniek, 2018). It goes

beyond this prior research by presenting how to optimally accelerate retrievals

from such data.

Transition encoding in the Hippocampus was previously suggested and

explored in a biologically plausible model (Cuperlier, Laroque, et al., 2004;

Cuperlier, Quoy, et al., 2006). The model uses visual processing to extract

landmarks, while transition cells support learning and planning of action

sequences given visual stimuli. Moreover, it contains detailed biologically

plausible hippocampal-prefrontal interactions. This model was evaluated on a

robotics platform, and later extended via RL for the selection of an ideal trajectory

to a target location (Hirel et al., 2010). Albeit influential for this paper, the authors

neither addressed grid cells nor multiple scales of representation.

This work is related to the idea that grid cells perform Principal Component

Analysis (Dordek et al., 2016), or that they compute a Successor Representa-

tion (Dayan, 1993; Momennejad et al., 2016; Stachenfeld et al., 2016). The

relationship and differences between these and the model presented in this paper

will be examined in detail in Subsection 5.3.

Gustafson and Daw, 2011 proposed a geodesic grid cell model. Their work

was motivated by the idea that an animal needs to learn similarity between
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locally adjacent places and not across global distances for navigational purposes.

In addition, the authors noted a similarity between spatial basis functions and

the multi-scale representation of grid cells. Albeit the basic motivation for the

geodesic grid cell model, MTS (Waniek, 2018), and the work presented here is

equivalent, there are significant differences. For instance, while Gustafson and

Daw, 2011 require a reward structure in the environment, both MTS and and the

results presented here are derived independently of rewards. Moreover, while

they chose predefined grid spacings, the optimal scale-increment for multi-scale

representations will be derived analytically in Section 3. Further details on the

relation between Gustafson and Daw, 2011 and Waniek, 2018 can be found in

Appendix E.

Recently, McNamee et al., 2016 argued that neural networks that have to

perform optimal planning operations should in general express discretized scales.

Specifically, they proved that discretization minimizes the description length of

a planning task and thereby achieves efficient encodings and optimal retrieval.

However, their theoretical investigation did not link to grid cells.

The results presented here connect spatial navigation in the rodent brain

with algorithms and data structures from robotics and computer science. For

instance, Behnke, 2004used representationswithvariable resolutions to accelerate

robot navigation. Also, the presented results are intimately connected to scale-

space theory, a formal mathematical framework that is widely used in the

computer vision and signal processing communities (Lindeberg, 1994; Lindeberg,

2010; Witkin, 1983). These connections will be discussed in further depth in
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Subsection 5.4.

3 Scale-spaces for optimal transition look-ahead

This section examines the computational complexity of transition encoding

during retrieval, and how this relates to behavioral necessities. Then, optimal ac-

celeration of such retrievals using a scale-space structure is presented. Although

provided in the context of spatial navigation, the results generalize to other tran-

sition systems. For instance, temporal transition systems for episodic memories

are expected to form scale-space structures along appropriate dimensions.

Note that retrieval of sequences from a memory MΣ requires activating a

specific source symbol, and monitoring when a target symbol activates. This

form of in- and output is expected to be the result of prefrontal-hippocampal

interactions, similar to the prefrontral cortex columns and their simplifications to

reward cells in the work by Erdem and Hasselmo, 2012 and, respectively, Erdem

and Hasselmo, 2014. However, details about such interactions are unimportant

for the scale-space structure and algorithms that are presented in this section,

and are therefore omitted.

3.1 Computational complexity of retrievals and pre-play

Consider an MTS M that is used for navigational purposes in an idealized

two-dimensional input space ∆. M consists of a finite number of symbols in

a memory MΣ, and finite numbers of spatial and temporal transitions. The
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modular organization ofM is depicted in Figure 1C, and Figure 2B emphasizes

the recurrent connectivity between the neural memories. Moreover,M is subject

to the following simplifications: (i) any uncertainty in the representation of the

input space is ignored and (ii) spatial transitions organize according to a WTA

mechanism. Then, spatial transitions perform a Voronoi tessellation that leads to

hexagonal fields, illustrated in Figure 2A. These simplifications will be relaxed

in Subsection 3.3. Finally, assume that the environment was explored sufficiently

long and symbols and transitions were learned and stored inM accordingly.

Determining the existence of a path between two symbols depends linearly

on the number of recursive computations. In terms of M, the path A { B

needs to be expanded into a sequence A, . . . , σi , . . . , B of intermediary symbols

σi , which can be achieved as follows. First, the start symbol is activated in

MΣ. Then, (indirect) recursive propagation of activity via transition memories

will eventually activate B, if an expanded path from A to B exists. This simple

algorithm can be depicted as a propagation algorithm on a graph because the

data stored in anMTS forms a topological space (see Figure 2D-G). Moreover, the

activity propagation is a flooding algorithm, which can be easily implemented in

distributed processing systems (Raynal, 2013). The worst case scenario for this

algorithm is when A and B are on the two ends of a linear track, in which case

recursive retrievals via temporal transition memory MΠ and spatial transition

memory MΓ coincide. The runtime complexity resides in O(N), where N is the

number of symbols on the shortest path between A and B.

The linear dependency on N is problematic especially when temporal dy-
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Figure 2: (A) Discrete Voronoi clustering on a suitable input space (indicated by

the x-y axes) with absolute WTA dynamics yields hexagonal fields. A spatial

transition (black hexagon) associates with all symbols that are co-active with

its domain (circle with blue arrow) during exploration, and learns transitions

(orange arrows) to symbols in its image (circles with gray dashed arrows). Dark

gray, periodically repeating hexagons indicate the bundle to which the spatial

transition belongs. (B) Memories of a MTS are recursively connected, shown only

for MΣ and MΓ. (C) Given activation of a starting symbol (indicated by blue color

of MΓ) on a linear track that was discretized into bins (black arrow with vertical

bars), mentally traveling to a target involves recursively activating MΣ and the

transition memories (only MΓ shown here) until the target symbol is active in

MΣ (indicated by a green box). (D-G) Propagating wave of activity (black circles)

in a graph when searching if a connected path exists between symbols A and B.

Each edge involves a spatial transition, indicated by a small black box.
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namics of real neural networks are respected. Consider an implementation of

M that consists of neural associative memories, each with temporal dynamics

that consume about 10 ms for spike generation, propagation, and axonal delays.

Furthermore, let A and B be on a linear track with distance D � 200 m and

grid field size dg � 20 cm. Hence, the expanded path from A to B consists of

1000 intermediate recursive evaluations of the MΣ −MΓ loop. This recursive

retrieval is illustrated in a simplified manner in Figure 2C. Overall, recursive

path expansion consumes 20 s to mentally travel from A to B. The runtime

is expected to increase further when the animal has to choose from a set of

candidate solutions, for instance with some reward propagation mechanism or

graph search, and especially with stochastic neural responses. Moreover, the

expansion must be repeated for each novel target. This behaviorally questionable

performance for model-based algorithms was previously noted in the context

of grid cells by Dordek et al., 2016 and Stachenfeld et al., 2016. Summarizing,

recursive retrieval in a single-scale transition system has a time complexity that

is impractical from a behavioral perspective.

Another problem is combinatorial complexity. Recall that transition systems

induce a graph, in which vertices correspond to states or symbols, and edges

to transitions between symbols. The number of vertices and edges in such a

graph grows exponentially with the number of dimensions of the input space.

Moreover, MTS assume constant cost to move from one symbol to another,

which means that the weights of all edges are constant. Thereby, the number of

feasible paths between two vertices, but also the actual runtime for shortest-path
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computations, grows similarly. In principle and given the assumption that

each vertex of the graph is an independent computational unit, such shortest

path computations can be parallelized easily using flooding algorithms (Lynch,

1996; Raynal, 2013). Then, shortest-path computation corresponds to a traveling

wave of messages from source to target. Although this reduces searching to the

linear case that was described above, it is still affected by the aforementioned

problematic runtime complexity.

3.2 Optimal retrievals in discrete transition systems

Consider a spatial transition γi of an MTS with discrete representations. Then,

γi informs about transitions jointly in spaces ∆ and Σ, depicted in Figure 3A. The

data represented by γi forms two conjoint linked-lists, illustrated in a simplified

manner in Figure 3B. Then, acceleration of retrievals can be performed optimally

by an interval skip list (see Appendix A for a brief introduction to this data

structure and how it relates to binary search).

The construction procedure for interval skip lists directly translates to an

optimal discrete Transition Scale-SpaceMS
d
. Let scale 0 be the lowest level of

MS
d
. On scale 0, the domain of a spatial transition γ0

i corresponds to a spatial

symbol δi . Its image is given by symbols surrounding δi , for instance δi−1 and

δi+1 in a one-dimensional setting, illustrated in Figure 3C. The domain of a

spatial transition γ(n)i on scale n > 0 corresponds to the integrated domains of 2

adjacent transitions of the previous scale along each dimension, where 2 follows

from constructing an optimal search data structure (de Berg et al., 1997; Knuth,
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1998; Pugh, 1990). Likewise, the image of γ(n)i grows by a factor of 2 along each

dimension with respect to scale n − 1 and encloses all symbols that surround

the domain of γ(n)i . Note that the construction process is independent for each

scale of the hierarchy. That is, each scale can be constructed without interactions

from other scales when random access to afferents from ∆ and Σ is provided.

Panel D of Figure 3 illustrates the on-center and off-surround properties of a

transition for the case of scale s > 0 in two-dimensions. Importantly, a transition

on this scale leads to all symbols in its image simultaneously. An illustration that

further simplifies the depiction of transitions is presented in Panel A of Figure 5.

The panel plots only on-centers of receptive fields of transitions γ, and omits all

arrows from transitions to symbol spaces.

3.3 Bottom up construction with biologically plausible repre-

sentations

The previous section presented optimal acceleration of sequence retrievals for

discrete data. Specifically, the set of spatial transitions in a discrete TSS forms

two conjoint interval-skip lists, one operating on elements of ∆, the other on

Σ (Figure 3C). In the discrete case, classical optimality results require that the

intervals in such data structures double in size from one level of the hierarchy

to the next. However, responses of neurons typically follow bell-shaped tuning

curves (Butts and Goldman, 2006; Jazayeri and Movshon, 2006). Hence, this

section will address biologically plausible representations and how to construct

the data structure bottom-up with them.
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Figure 3: Scale-space construction and co-activation learning in discrete spaces.

(A) Recall that a spatial transition represents transitions in ∆ and, simultaneously,

in Σ (cf. Figure 1). While spatial symbols δi ∈ ∆ need to be spatially neighboring

(consecutive indices), symbols σ j ∈ Σ need to be temporally adjacent. In a neural

realization, solid arrows are hypothesized to be axonal connections, dashed

arrows could be the result of on-center and on-surround dynamics. (B) Each

transition γk ∈ Γ can be depicted as an element of two conjoint interval skip

lists (cf. Figure 13). (C) The domains of transitions on scale 0 of a discrete

Transition Scale-SpaceMS
d
contain singular elements of the corresponding input

spaces (bottom row). For optimality, transitions on a scale s > 0 merge the

domains of two transitions of scale s − 1 (top row, shown for scale s � 1). (D)

Two dimensional example that emphasizes the on-center (entire gray shaded

area, bottom row) and off-surround (entire area enclosed by magenta border,

excluding gray shaded region, bottom row) receptive field of a transition (black

box) and co-activation learning symbols σ (top row: co-active symbols shaded

black, transition leads other symbols via blue arrows). The gray grid is depicted

for illustrative purposes only and to highlight the increase of the size of domain

and image (cf. interval skip list, Figure 13B).
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Recall that an MTS bundles transitions to minimize the number of required

neurons. To this end, spatial transition bundles densely pack on-center and

off-surround receptive fields, where each center-surround field corresponds

to a feasible spatial transition from one location to its surrounding region (see

Subsection 1.2 or Waniek, 2018). Of particular importance is that each center-

surround field is treated as an individual part of a bundle, depicted in Figure 4A.

Consequently, the following will examine a single receptive field in isolation.

Moreover, each receptive field is decomposed into separate center and

surround components. This is motivated from data and models for retinal

ganglion cells (Koenderink and van Doorn, 1990; Rodieck, 1965). In these

models, field components were integrated either linearly (Marr and Hildreth,

1980; Rodieck, 1965), or with other mechanisms (Furman, 1965; Grossberg, 1970),

all of which can be combined into one formal framework (Neumann et al., 1999).

Following thesepriormodels, each center-surround receptivefield ismodelled

as a Difference-of-Gaussians (DoG), illustrated in Figure 4A-B. Specifically, let

f (x; δ j) denote the response function of a receptive field, parametrized by its

preferred stimulus δ j , and given by

fδ j (x) � f (x; δ j) � f (c)(x; δ j) − f (s)(x; δ j) , (1)

where f (c) and f (s) are the center and surround, respectively. To simplify the

analysis, f (c) and f (s) are assumed to be isotropic Gaussians, e.g.

f (c)X (x) � f (c)(x; δ j) � N(x; µX , s
2

X) �
1√

2πsX
exp

(
−
(x − µX)2

2s2X

)
(2)

where X :� δ j denotes the preferred stimulus, s2X � s2
0
is the variance and thus
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width of the field, and the mean µX :� µ(δ j) depends on the preferred stimulus

δ j . Note that all transitions necessarily adhere to the Cramér-Rao bound, which

presents a lower bound with which a decoding scheme can extract information

from pre-synaptic inputs (Cover and Thomas, 2006; Pilarski and Pokora, 2015).

That is, f (c) of a spatial transition on the smallest scale s � 0 of transitions

determines a highest possible resolution with which elements δ ∈ ∆ can be

distinguished. It is therefore sufficient to consider the size of f (c) on scale 0 to

derive receptive field sizes on higher scales.

As described above, the constructive process to build an additional scale in

an interval segment tree integrates two intervals of the previous scale. Moreover,

this new interval is centered between the two smaller intervals by construction.

In terms of receptive fields, the on-center region on a scale s > 0 needs to merge

the representations of two receptive fields of the previous scale, which is clearly

described by a convolution (Seeger and Volle, 1995). Hence, f (c)Z (x) for a spatial

transition on scale s � 1 can be derived using the convolutional theorem as

follows.

Let F be the Fourier transform, and F −1
its inverse, and let f (c)X and f (c)Y be

the on-center components of two consecutive receptive fields on scale 0. That is,

they are given by

f (c)X (x) � N(x; µX , s
2

X) , f (c)Y (x) � N(x; µY , s
2

Y) , (3)

where sX � sY � s0. Then (see Appendix B),

f (c)Z (x) � ( f
(c)
X ∗ f (c)Y )(x) � N(x; µZ , s

2

Z) (4)
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Figure 4: (A) Each spatial transition bundle receives afferents from a spatially

modulated input space∆ and densely packs on-center and off-surround receptive

fields. (B) Each receptive field can be treated independently and is modelled as

Difference of Gaussians (DoG). (C) Bottom-up construction of the scale-space

structure doubles the variance s2s of the on-center Gaussian. This scales the width

by

√
2, marked here for the 2ss boundary (dashed and dotted lines). (D) Scaling

the standard-deviation of a DoG by

√
2 also scales the roots by

√
2, shown here for

the positive domain of a DoG with s0 � 1/2e (blue) and s1 �
√

2s0 (magenta). (E)

Convolution of two consecutive DoGs X and Y (blue, orange), parameterized by

s0 and µX � −µY , leads to a DoG that is parameterized by µZ � 0 and s1 �
√

2s0

(magenta). (F-I) Total, cut, difference, and derivative of entropy in binary search

for overlapping receptive fields (N � 1000 in panels G-H; see Subsection 3.4 for

more details).
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where

sZ �

√
s2X + s2Y �

√
2s2

0
� s0

√
2 . (5)

Furthermore, µZ � µX + µY . By construction, µX � −µY ⇒ µZ � 0.

The above results yield the following characteristic properties of receptive

fields on higher scales, and of transition bundles to which they belong.

First, assume that the receptive field response is determined only by the

on-center region of fields that are modelled as DoG. Then, the response is

characterized by a Probability Density Function (pdf) in the form of a Gaussian.

On the smallest scale s � 0 of the data structure, this pdf is parameterized by

variance s2
0
and the mean follows from the preferred stimulus. According to

Equation 5, the variance on scale s � 1 is s2
1
� (s0
√

2)2. Recursively applied for

higher scales, this yields

ss � ss−1

√
2 � s0(

√
2)s . (6)

Because the Gaussians were assumed to be isotropic, this result generalizes

directly to higher dimensions. That is, the covariance matrixS0 of the multi-

variate Gaussian is a diagonal matrix of the formS0 � diag(s2
0
) and higher scales

follow according to Equation 6. Intuitively, the result means that the integration

area of the receptive field, determined by the variance of the representation,

doubles. Finally, assume that there is only a response if the input stimulus falls

within lss , l > 0, l ∈ R, for instance for l � 2→ 2ss . By Equation 6, the width

(or radius) of the receptive field also increases by

√
2 from one scale to the next.

This property is illustrated in Figure 4B.
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Now, assume that the response on scale s is determined jointly by on-

center and off-surround dynamics of a DoG. Then, the field is defined by

fδ j (x) � f (x; δ j) � f (c)(x; δ j , s
(c)
s ) − f (s)(x; δ j , s

(s)
s ). Because both f (c) and f (s) are

Gaussians, they relate to each other by s
(s)
s � Ks(c)s with K > 1. To improve

terseness, the super-script
(c)

will be dropped in the following, i.e., ss :� s
(s)
s . It is

straightforward to analytically derive that a (one-dimensional) DoG has roots at

z0,1 � ± 2K2s2s

(1 − K2)

√
−4 log (K)(1 − K2)

2K2s2s
. (7)

From this, it follows immediately that rss ⇒ rz0,1. That is, scaling the standard

deviation ss by a factor r ∈ R+ scales the roots also by r, irrespective of the value

of K. An example of this is depicted in Figure 4D. Note that this result also

generalizes to higher dimensions, again because of the assumed isotropy of the

Gaussians. To conclude, thewidth (or radius) of the response increases according

to the scaling factor r. Following the results from above, constructing the data

structure bottom-up by convolution yields r �
√

2, and thus the on-center region

of receptive fields increase by

√
2, illustrated in Figure 4E.

Figure 5B and C depict simplified illustrations of discrete and a probabilistic

scale-spaces that are constructed by this process.

Finally, these properties are expected to also increase the grid period by

√
2. One reason is that in an optimal interval skip list, a transition leads to

neighboring intervals that have the same size (cf. Figure 13B). Another reason

is that in an MTS, each (spatial) bundle densely packs transitions to maximize

dendritic capacity (cf. Subsection 1.2). Given the off-surround area that is

required to avoid violation of logical considerations of transition bundling,
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Figure 5: (A) Simplified illustration of learning transitions in a scale-space.

Inputs to the Transition Scale-SpaceMS
d
are indicated as gray dashed arrows.

Transitions of a memory MΓ learn their domains on the input space according to

their scale (blue boxes), and relay this structural information to symbols σ ∈ Σ

of memory MΣ (black dots). In this example, a transition that is defined for σ2

leads to σ1 and σ3 on the lowest scale (orange arrows), whereas it leads to σ3

and σ4 on scale 1 (magenta arrows). (B) In the discrete case, the optimal scale

increment of the domain (receptive field) of transitions is 2 along each dimension.

In two-dimensions, illustrated here, this leads to the well known quad-tree data

structure. (C) In stochastic input spaces that can be described with normally

distributed pdfs, the scale increment from one scale to the next is

√
2.
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dense coverage of an entire input space requires multiple bundles. Following

arguments in Waniek, 2018, an entire network of bundles is expected to reduce

overlap of on-center regions by competition to avoid ambiguities. Hence, these

competitive interactions of transition bundles are conjectured to generate a

push-pull mechanism that leads to grid periods that depend on s
(c)
s and increases

the grid period consecutively by

√
2. Intuitively, while a single transition bundle

tries to densely pack receptive fields, competing transition bundles push them

apart to insert their own receptive fields. Conclusively, this generates a dense

coverage of the spatial input space ∆ with on-center receptive fields of the same

size, and a grid period that also follows from the size of on-center areas.

3.4 On the optimality of the
√

2 scale increment

The previous section presented that bottom-up construction of a Transition Scale-

Space (TSS) with biologically plausible receptive fields yields a scale increment

of

√
2. This will now be shown to be optimal using tools from information theory.

Recall the duality between interval skip lists and binary search (see Ap-

pendix A). Following results fromWaniek, 2018, suppose that an MTS optimally

covers a spatial input space with a finite number of spatial transitions. That

is, they are uniformly distributed on and discretize the input space into spatial

symbols δi , i � 1, . . . ,N. Conclusively, the necessary conditions for duality

are met and it is sufficient to demonstrate optimality of the representation for

one-dimensional binary search. As above, receptive fields are assumed to follow

isotropic Gaussian tuning curves and can be treated in isolation.
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Let x ∈ X be an input stimulus of a spatially modulated input space X.

Moreover, let f (x; δi) denote the on-center region of a receptive field of a single

transition. Then, the indicator function

1i(x ∈ X) �


1 ifN(x; µi , s2) > N(x; µ j , s2), ∀ j , i

0 otherwise

. (8)

models WTA dynamics. That is, the function is 1 when an input stimulus x is

closest to δi .

In general, the probability for f (x; δi) to win is thus

p(δi) :� p( f (x; δi)) � Ex∈X[1i(x)] ≈
1

N
+ ε , (9)

with 0 ≤ ε < 1

N ≤ 1. Here, ε accounts for overlapping receptive fields and to

model stochasticity in WTA dynamics, in the following called called overlap for

brevity. Note that ε �
1

2N means a 50% overlap of two neighboring receptive

fields.

The Shannon entropy HN(X) of a system of N such receptive fields is then

HN :� HN(X) � −
N∑

i�1

p(δi) log p(δi) � −N( 1

N
+ ε) log ( 1

N
+ ε) (10)

� −(1 + Nε)[log (1 + Nε) − log (N)] (11)

� log (N) + Nε log (N) − (1 + Nε) log (1 + Nε)︸                                        ︷︷                                        ︸
�:Hε(N)

(12)

≥ log (N) . (13)

The entropy is lower-bounded by log (N) because Hε(N) > 0 for ε > 0 and

limε→0 Hε(N) � 0. Panel F of Figure 4 illustrates how the entropy increases with
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increasing ε in a system of N � 1000 receptive fields. Also note that

d
dk

Hε(k) � ε(log (k) + 1) − ε(log (1 + kε) + 1) (14)

� ε(log (k) − log (1 + kε)) , (15)

and that limε→0

d
dk Hε(k) � 0.

Binary search splits the representational space at the k-th element, with k

receptive fields to the left of the split, and N − k to the right. The entropy Hc(k)

of a split (or cut) of N receptive fields at the k-th item is

Hc(k) �
k
N

Hk +
N − k

N
HN−k (16)

�
k
N

(
log (k) + Hε(k)

)
+

N − k
N

(
log (N − k) + Hε(N − k)

)
. (17)

Panel G of Figure 4 depicts Hc(k) for different overlaps ε.

The optimal split can be found by maximizing HN − Hc(k). Specifically,

0

!

�
d

dk
(
HN − Hc(k)

)
(18)

� 0 − d
dk

( k
N

(
log k + Hε(k)

)
+

N − k
N

(
log (N − k) + Hε(N − k)

) )
(19)

�
1

N
(log k + 1) − 1

N
(log (N − k) + 1) + d

dk
( k
N

Hε(k) +
N − k

N
Hε(N − k)

)
(20)

�
1

N
(log k − log (N − k)) + 1

N
d

dk
(
kHε(k) + (N − k)Hε(N − k)

)
. (21)

Numerical computations of HN − Hc(k) are illustrated in panel H of Figure 4.

First consider ε � 0. In this case, Equation 21 reduces to the standard result

for binary search, i.e.

0

!

�
1

N
(log k − log (N − k)) ⇒ log k � log (N − k) ⇒ k �

N
2

. (22)

Now, assume that ε , 0. Then, Equation 21 also holds for k �
N
2
. This is

because Hε(k) is monotonically increasing and because of the symmetry of
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kHε(k) + (N − k)Hε(N − k) around zero. Panel I of Figure 4 shows numerical

computations of Equation 21 for ε > 0. Thus

HN(X) � 2Hc(N/2) ⇔
1

2

HN(X) � Hc(N/2) ∀ε ≥ 0 . (23)

In other words, the uncertainty that is modelled by ε does not shift the optimality

result for binary search and, therefore, consecutive steps of binary search ideally

bisect the remaining entropy.

Now, consider the (differential) entropy Hs
G of a Gaussian function G with

variance s2 at step s of the binary search, or in other words on level s of the TSS.

Using Equation 23 it follows immediately that

Hs+1

G � 2Hs
G � 2

1

2

log (2πes2) � 1

2

log (2πe(
√

2s)2) (24)

is optimal for level s + 1.

Conclusively, scaling the standard deviation by

√
2 is optimal when building

a TSS with Gaussian tuning curves. In addition, the results reveal that, on each

scale, overlap of receptive fields and uncertainty in WTA dynamics, modelled by

ε, should be minimized. Note that the results presented in this section hold for

any data structure with Gaussian tuning curves that is dual to binary search.

3.5 Temporal integration, buffering, and bottom-up learning

The previous sections introduced the Transition Scale-Space (TSS) and derived

the increment of the spatial receptive field analytically. Given random access

to symbols σi ∈ Σ, the data structure can be computed offline. It is, however,

unlikely that an animal has this random access and must learn the data structure
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bottom up. Hence, this section examines how the temporal integration window

changes between scales, and how on-line learning can be implemented.

Any γ ∈ Γ represents transitions in the spatial input space ∆ and the symbolic

space Σ simultaneously. Figure 3 illustrates this as two conjoint interval skip

lists. That means that each γ ∈ Γ has a spatial domain dom∆ and image im∆ in ∆,

but also a domain domΣ and image imΣ in Σ. The previous sections showed that,

to learn a transition γ(s) on a scale s > 0, γ(s) needs to ingrate multiple spatial

symbols of ∆. Certainly, this also applies to afferents from Σ.

Learning a transition γ(s) on scale s > 0 requires to integrate multiple symbols

from Σ. However, recall that symbols σi ∈ Σwere hypothesized to be recruited

independently from the same spatial afferents as spatial symbols δk ∈ ∆. In turn,

this means that they might not be temporally co-active with γ(s). Therefore, the

temporal integration window for domΣ of γ(s) needs to increase. Moreover, the

symbols need to be presented in temporal order to preserve their spatio-temporal

relationship. That is, suppose there exists a path of N symbols σ1, . . . , σN . This

means that symbols σi and σi+1 are not only spatially related, but also temporally

adjacent.

Activating symbols σi ∈ Σof apath in their temporal order induces a linked list

in time, depicted in Figure 6A. Then, increasing the temporal integration window

from one scale to the next follows immediately according to Subsection 3.2 and

Subsection 3.3.

Specifically, for the discrete case, the receptive field for the temporal integra-

tion can be modelled as a Haar wavelet, illustrated in the top row of Figure 6B.
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Figure 6: On-line learning of the Transition Scale-Space with temporal buffering.

(A) Consecutive activation of symbols σi ∈ Σ induces a linked list in time

(green box). This preserves temporal (small green arrows) and spatial structure

(indicated as arrows to discrete spatial areas). (B) Receptive fields of transitions

for temporal integration as Haar wavelet (discrete case, top row) and Difference

of mean-shifted Gaussians (biologically plausible representations, bottom row)

on scale 0. Temporal transition start and end indicated as black arrows. (C) A

transition on scale s > 1 (left) needs to associate its on-center (black solid box)

with multiple symbols of Σ (middle). To keep their spatio-temporal structure,

they are activated in sequence (green box) by iterating scale s � 0 of the scale-

space (right). Black dashed box indicates spatial off-center (partial area only

for visual purposes). (D) Simplified depiction of (C) for three scales. (E) The

temporal buffer can be implemented as circular buffer. (F) Multi-scale illustration

for biologically plausible receptive afferents. For further explanations for each

panel, see Subsection 3.5.
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The positive part of the wavelet corresponds to the start of the transition between

symbols of Σ, and the negative part its end. To remain consistent with the size

increment of the spatial receptive field from one scale to the next, the temporal

integration window thus has to increase by a factor 2.

Now consider biologically plausible representations. Likewise spatial affer-

ents in Subsection 3.3, the activity of a symbol σ ∈ Σ is assumed to be Gaussian.

Then, the temporal receptive field of a transition γ ∈ Γ can also be modelled as

Gaussians, for instance as the first derivative of a Gaussian, or as a difference

of mean-shifted Gaussians (see bottom row of Figure 6B for an illustration of

the latter). The scaling of the temporal receptive field can thus be derived

analytically according to Equation 4. Conclusively, the variance of the temporal

integration window doubles, which means, following the same arguments as

in Subsection 3.3, that its width increases according to

√
2 from one scale to the

next.

It remains to understand how symbols σi ∈ Σ can be presented to transitions

γ(s) ∈ Γ on scale s > 0 in temporal order and in a suitable temporal window. It is

unlikely that spatial inputs activate symbols σi in the correct manner. The reason

is that symbols σi ∈ Σwere hypothesized to be recruited on spatial afferents ∆

and that only one (or a few) symbols σi ∈ Σ are active at any single place (Waniek,

2018). That is, spatial input will activate only singular symbols. However,

observe that scale s � 0 of the TSS learns transitions on singular elements of

both ∆ and Σ. Then, iterating the smallest scale of the TSS will induce a suitable

temporal buffer.
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More precisely, suppose that spatial inputs from ∆ arrive at a given frequency

at Σ and Γ. This frequency determines a time window T∆ between consecutive

inputs from ∆. Further assume that T∆ is longer than the time it takes to iterate

the transition system on the smallest scale. Then, it is possible to nest multiple

such iterations in T∆. This creates a spatio-temporally ordered list of symbols

σi ∈ Σ, or in other words, a temporal buffer. In turn, the temporal buffer can

be used to associate higher scales. This process is depicted in Figure 6C with

interactions between Σ and the two spatial transition scales Γ0 and Γ1. Figure 6D

shows a simplified illustration for three scales. Changing the illustration such

that the ends of the temporal buffer are connected reveals that this form of

temporal buffering induces an oscillation around spatial input from ∆, depicted

in Figure 6E. In other words, it can be implemented as a ring buffer that gets

updated by novel inputs arriving from ∆. Figure 6F illustrates the interaction

between temporally adjacent symbols and the spatial scale-space.

3.6 Sequence planning and shortcut discovery with Transition

Scale-Spaces

This section answers howan animal can produce sequences between two arbitrary

symbols σs and σt using a scale-space representationMS
. The presented multi-

resolution approaches are similar to a method that was previously described by

Behnke, 2004 in the domain of robotic navigation, and related to the hierarchical

look-ahead model presented in Erdem and Hasselmo, 2014; Erdem, Milford,

et al., 2015. Moreover, the described methods are graph search algorithms

37

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2019. ; https://doi.org/10.1101/543801doi: bioRxiv preprint 

https://doi.org/10.1101/543801
http://creativecommons.org/licenses/by/4.0/


and based on well-known techniques such as Dĳkstra’s algorithm (W. Dĳkstra,

1959) or flooding algorithms (Fishkin and Barsky, 1985; Lynch, 1996; Silvela and

Portillo, 2001).

As in the previous sections, transitions are treated irrespective of the transition

bundle to which they belong. This simplifies the description without violation of

the logical considerations of MTS and, thus, improves clarity of the presentation.

Likewise, the temporal transition memory MΠ will be omitted. Finally, assume

that the memories already formed, i.e., the scale-space was already built and

corresponding symbols assigned to transition images and domains on each scale.

Consider anMS
with only a single scale. Finding a sequence from a symbol

σs to σt requires only few operations. First, σs must be activated in MΣ. Then,

a corresponding transition γi that is defined for σs will be activated in MΓ. In

turn, γi activates a set {σ j} of subsequent symbols σ j to which γi leads to. The

combination of these two steps is called expansion. If there exists at least one path

from σs to σt , recursively repeating this process will eventually activate σt in MΣ.

Obviously, this is a flooding algorithm applied on a graph (Lynch, 1996; Silvela

and Portillo, 2001), where nodes correspond to symbols σi , and transitions are

made explicit by transition encoders γj

During the expansion step, any expanded symbol needs to remember its

parent symbols. For instance, if symbol σ6 activated transition encoder γ0, which

in turn activated σ7, then σ7 needs to remember σ6 as its parent symbol. Then,

after successful activation of the target symbol σt , a viable sequence from σs to σt

can be found by backtracking from σt via any of the parent symbols. This is the
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backtracking step of Dĳkstra’s algorithm, modified to select an arbitrary parent

from the set of feasible parents. Note that by following the symbolic sequence

σs { σt , the spatial sequence can be inferred because transition encoders γi

learned transitions in the symbolic space Σ and in the spatial input space ∆

jointly.

The animal can use multiple scales in several ways. One possibility is to apply

the expansion and backtracking algorithms only on a behaviorally necessary

level. For instance, if the animal needs to find an exact sequence, then it

should use the lowest level of MΓ because it contains the highest resolution. If,

however, the animal needs only an approximate direction towards a goal or

when computational time is limited, it can operate on the highest available level.

Intuitively speaking, the highest level represents approximate knowledge and,

thus, can be used to find coarse estimates. Another possibility is to use all scales

during sequence planning, which can be implemented in different ways.

One variant is descending mode, in which the sequence is first approximated

on the highest available scale. After finding the target symbol σt on the highest

scale, backtracking to the starting symbol σs yields sub-goals. These sub-goals

are defined as all those symbols that are reachable via only one transition on

this scale. Then, the sub-goals are used on the next smaller scale to refine

the trajectory, illustrated in Figure 7. In both panels of the figure, the start

symbol is σ3 (blue color) and the target is σ6 (green color). Panel A shows

two scales in a one dimensional example and includes all details about the

transition encoders γ(n)i , where n is the scale. That is, a transition encoder γ(n)i
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Figure 7: Retrieval of sequences with a scale-space in descending mode. (A) γ(n)i

learn transitions in two spaces simultaneously (cf. Figure 3). During retrieval,

one space is sufficient (dashed lines) and expansion starts on the highest level

from start (blue circle) to goal (green circle). After an approximate solution was

found on a level, sub-goals are generated (magenta circle). Then, the next lower

scale computes expansions to these sub-goals. (B) Simplified depiction of (A)

that omits details about the input spaces of transitions. (C) An animal wants to

compute a path from its current location to a target using a Transition Scale-Space.

(D) It can first compute an estimate on the highest scale, prune unnecessary

symbols (gray circles), and generate sub-goals (magenta stars). (E) The trajectory

is subsequently refined by planning on a finer scale to these sub-goals. Note that,

in the discrete case, diagonal movements violate constant cost assumptions of

MTS (see Waniek, 2018). In case of multiple viable trajectories, the algorithm

chooses one arbitrarily.
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(black box) learns transitions simultaneously in the symbolic space Σ as well as

the spatial input space Γ, indicated by white boxes containing corresponding

symbols. The expansion and backtracking steps on scale 1 yield intermediate

symbols, shown demonstratively only for σ0 (pink color). Then, the sequence is

refined via scale 0 that computes only the trajectory from σ3 to the sub-goal σ0.

Note that during retrieval, transition encoders γ(n)i don’t need access to spatial

symbols δ j . However, these spatial symbol can be inferred due to activation of

the transition encoders. Panel B introduces a reduced graphical depiction of this

process, in which details about transition encoders are omitted. The panel also

illustrates that the integration areas of higher scales don’t need to perfectly align

at the borders with smaller scales. Figure 7C-E present an illustration of this

process for a two-dimensional example in a grid-world. An animal that wants to

compute a trajectory from its current location to a target (cheese) first retrieves a

coarse estimate that activates multiple symbols in a coarse target region (panel

D, purple small squares) and intermediate sub-goals (pink stars). Backtracking

effectively reduces the search space for the refinement process. That is, symbols

that are not on the coarse path (panel D, gray circles) don’t need to be expanded

on the next finer scale (panel E).

Another variant is ascending mode, in which the search for σt starts on the

lowest scale. After a number of failed attempts to discover σt on this level, the

search continues on a larger scale. This is repeated until the target is found,

which may eventually, but not necessarily, involve the highest scale. In other

words, this automatically adapts the scale to the real distance to the target. In
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contrast to descending mode, this variant requires the backtracking operation only

once the target is found.

In both modes, the animal has access to the first steps of a detailed sequence

after only a brief computational time, and can refine this sequence while already

moving. Note that there might be multiple feasible ways to expand a path

on each scale in either mode. In this case, the algorithms used in Section 4

and presented in Appendix C randomly select one possible solution during

backtracking. Finally, both modes have the same amortized runtime complexity.

Specifically, assume a planning operation with a TSS to a remote location, and

that this location is significantly further away than size of domains of the largest

scale. Then, the runtime will be dominated by the number of retrievals on the

highest level of the TSS in either retrieval mode, and the cost of expansions on

lower scales are negligible. Pseudo-code and further details of the algorithms

and sub-routines can be found in Appendix C.

Conclusively, the runtime issue that was motivated in Subsection 3.1 can be

solved by an appropriate number of levels in a TSS.

4 Experiments

The scale-space data structure and algorithms were examined using simulations

of a virtual agent on a plane surface. In particular, theMS
that was simulated

consists of a memory MΣ that stores symbols σk , k ∈ NΣ and a memory MΓ of

spatial transitions.
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If not stated otherwise, symbols and domains and images of transitions were

computed in an offline manner. That is, transition centers were distributed

hexagonally at the beginning of a simulation because of results presented in

Waniek, 2018. Then, symbols were distributed randomly in the environment.

Subsequently, images and domains of transitions were computed from the

relative locations between symbols and transitions. Specifically, each transition

pooled all symbols according to a nearest neighbor search, and lead to all symbols

in its image simultaneously (see Figure 2 for reference). Thereby, transitions

discretize the input space and perform Voronoi clustering.

The source code to reproduce all data for the figures and results presented in

this section are available online under an Open Source License1.

4.1 Worst case timings on a linear track

Segment trees or interval skip lists are widely used and their characteristics

well known. The objective of this experiment was thus to simply show the

acceleration capabilities of the data structure to find an element in the worst-case

scenario.

A simulated agent was put on a linear track of length 10 m to compute the

number of recursive retrievals that are required to find a specific element. Spatial

symbols were distributed on the track quasi-randomly using the Hammersley

point set, a low-discrepancy sequence. Then, a Transition Scale-Space (TSS)

consisting of 7 scales with periods 0.2,
√

2 · 0.2, 0.4,
√

2 · 0.4, 0.8,
√

2 · 0.8 and 1.6

1https://github.com/rochus/transitionscalespace
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Grid Period 0.2
√

2 · 0.2 0.4
√

2 · 0.4 0.8
√

2 · 0.8 1.6

Recursions 50 35 25 18 12 9 6

Table 2: Number of required recursive expansions until a target symbol σt is

found on a linear track.

m between transition encoders was computed offline by associating symbols to

transition encoders using a nearest-neighbor search. The starting symbol closest

to the start of the track was designated as σs , and the symbol closest to the end

as σt . The numbers of necessary recursive retrievals from σs until σt was found

are presented for each scale numerically in Table 2.

4.2 Wave propagation dynamics in two dimensions

In two dimensional settings, the expansion procedure is expected to resemble a

propagating wave of activity when no additional restrictions on the expansion

are imposed. To examine and illustrate this behavior, expansion was computed

according to Algorithm 2 in a square environment of size 1 × 1 m. A total of 400

spatial symbols were distributed either randomly with a minimal distance of

0.02 m or according to the Hammersley point set. The objective of the latter was

to observe any difference in behavior with more regularly placed symbols. Then,

transitions were computed for a period of 0.2 m between transition encoders

offline. The expansion was started at symbol σs , which was defined to be the

closest symbol to position (0.2, 0.2), and stopped at the target symbol σt , closest to

position (0.8, 0.8). After expanding and localizing σt , 300 Monte Carlo samples of
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Figure 8: Propagating wave during expansion from start to target in a square

environment. Top row shows results for randomly distributed symbols (gray

dots), bottom row for symbol coordinates according to the Hammersley point

set. Transition encoders were placed regularly on a hexagonal lattice (not shown)

due to results presented in Waniek, 2018. Final panels include the solution space

(gray area) and 300 Monte Carlo samples (blue lines). The solution space are all

those images of transition encoders which contain symbols that are on a shortest

path from goal to target. See Appendix E for results in a non-Euclidean space.

symbolic sequences were computed using backtracking and randomly selecting

a parent during each backtracking step.

Figure 8 shows the results of the expansion and the emerging propagating

wave from σs to σt . Black dots indicate symbols which are currently active during

the expansion. The final expansion panel of each row shows a solution space

as gray hexagons and Monte Carlo samples as blue lines. The solution space is

given by the sequence of spatial domains of subsequently activated transitions

on a solution sequence and forms a channel from start to target.

The only distinctive qualitative difference between randomly and more
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regularly placed symbols is the form of the propagating wave. When the

symbols are regularly placed, then the wavefront is hexadirectional during later

expansion steps due to the perfectly regular placement of transition centers. For

randomly placed symbols, the wavefront is more tattered, but still resembles the

hexadirectional characteristic of the regular case. The difference in the solution

space and the number of expansions is due to the selection of the start and target

symbols and, thus, negligible.

Note that more than just one solution space may exist due to the underlying

assumption of MTS. Specifically, MTS assume a constant-cost operation to move

from the domain of a transition to its image. However, only one solution space

is illustrated for each example in Figure 8. Also note the active symbols close

to the start symbol σs during the second expansion. This behavior is because

these symbols were not co-activated during start even though they are in close

vicinity to σs , and because the implemented transition system does not include

any knowledge about spatial directivity of the expansion.

4.3 Scale-space planning with sub-goal generation in descend-

ing mode

The descending mode of trajectory refinement was analyzed using a rectangular

area of 2 × 5 m
2
. In this area, 250 symbols were distributed randomly, keeping

a minimal distance of 0.05 m between each pair of symbols A TSS consisting

of 5 scales with periods 0.2,
√

2 · 0.2, 0.4,
√

2 · 0.4 and 0.8 m between transition

encoders was then computed offline.
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Figure 9: Searching a viable sequence from start (lower left) to target (upper

right) using descending mode in a space with randomly sampled symbols (gray

dots). The search from start (blue symbol) to target (green symbol) starts on the

highest available scale (left panel) and generates sub-goals (magenta symbols).

Gray area displays the solution space, which consists of all images of spatial

symbols that were expanded and contain trajectories with equal distance. The

solution is then refined using finer scales, which compute only partial solutions

to the sub-goals from the next higher scale (remaining panels). Distributions

of transition encoders are shown in the small inlays in each panel, and were

precomputed based on results presented in Waniek, 2018.
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The symbol closest to coordinate (0.4, 0.1) was selected as start symbol σs ,

and the symbol closest to coordinate (1.8, 4.8) as target symbol σt . Qualitative

results are illustrated in Figure 9. The search starts on the highest available scale,

which computes an entire approximate solution from start to target. The solution

space of this scale is indicated by gray hexagons in the leftmost panel of the

figure. Also, this generates sub-goals, indicated by magenta circles.

After defining sub-goals, the procedure drops down to the next scale and

computes trajectories only to the previously determined sub-goals. This limits

the search space on smaller scales. The process repeats until the smallest scale is

found, which is illustrated in the other panels of the figure.

4.4 Scale-space planning in ascending mode

The qualitative behavior of the ascending mode was examined likewise the

descending variant. That is, 250 symbols were placed randomly in an environ-

ment of 2 × 5 m
2
, with a minimal distance of 0.05 m between symbols. Then, a

TSS consisting of 5 scales with periods 0.2,
√

2 · 0.2, 0.4,
√

2 · 0.4 and 0.8 m was

computed offline.

The initial symbol was determined by finding the closest symbol to coordinate

0.4, 0.1, and the target by the symbol closest to coordinate 1.8, 4.8. During search,

3 expansions were computed on each scale before ascending the search to the

next scale.

An example of the ascending mode is depicted in Figure 10. Each column

shows the expansion on one scale. The first scale searches locally in the area
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Figure 10: Searching a viable sequence from start (lower left) to target (upper

right) using ascending mode. Each scale is expanded at most 3 times before

ascending to the next scale (panels from left to right), until the highest scale

is reached. Note that, in contrast to Figure 9, here the gray area depicts all

images of spatial transitions that were expanded during search, and not the

solution space. Black dots indicate the last symbols that were active on a scale

before ascending to the next scale or when the target was encountered. The

rightmost panel includes Monte Carlo samples (blue lines), generated using the

backtracking algorithm. Distribution of transition encoders is shown in the small

inlays in each panel, and was precomputed according to prior theoretical results

presented in Waniek, 2018. Symbols (gray dots) were distributed randomly on

the input space.
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that is indicated by the gray hexagons. Subsequent scales expand the respective

search radius, and propagate the search outward until the target is found on the

highest scale. For each scale, black dots indicate the symbols that were active at

the end of the search on this scale. After finding the target symbol, 100 Monte

Carlo trajectory samples were drawn by backtracking from the target symbol

to the start symbol, and selecting a random parent during each backtracking

step. Note that this results in small trajectory segments and low variability close

to the start of the trajectory, but larger segments and higher variability close to

the target. In the figure, these samples are illustrated as blue lines on top of the

search of the largest scale.

4.5 Shortcut discovery in the Morris water maze experiment

A simulated version of the Morris water maze experiment was used to examine

the capability to find shortcuts in spatial information using a TSS. Qualitative

results are presented in Figure 11 for three independent simulations. In each

simulation, an agent started from the initial location (blue square) and traveled

the environment with a radius of 2 m until the target platform (green circle) was

found using movement statistics similar to real rodents. Symbols (or place cells;

gray dots) were distributed along the recorded trajectory (black line) as follows,

inspired by Growing Neural Gas (GNG)(Fritzke, 1995). As soon as the agent

was further away than mdist � 0.05 m from the closest symbol, a new symbol

was recruited. To introduce stochastic symbol placement, this novel symbol was

associated with a coordinate that was drawn from a unit circle centered at the
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Figure 11: Results for three simulated Morris water maze experiment. Initially,

the agent performed a random walk from Start (blue square), until it found the

target platform (green circle). Meanwhile, novel symbols σi ∈ Σ (gray small

points) were spawned based on distance to previous symbols. The original

random trajectory that the agent followed is shown in all plots as black line.

Subsequently, possible solutions were computed for each scale individually (one

scale per column). Each row represents one experiment, each column using one

specific scale to compute the solution space (gray hexagons) and 100 candidate

solutions (blue lines). The legend shows the distributions of transition encoders

for each scale, which were precomputed according to prior results and assumed

constant over the course of the simulation. See Subsection 4.5 for further details.
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current position of the agent and normally distributed with a standard deviation

of
m

dist

20.0 , where the denominator was chosen arbitrarily. Subsequently, a TSS with

5 scales was computed offline for grid periods of 0.2,
√

2 · 0.2, 0.4,
√

2 · 0.4 and 0.8

m (distribution of centers shown in the legend of the figure). Specifically, each

symbol was associated with the domain of the closest transition encoder, and to

the image of the surrounding encoders.

For each scale individually, the solution space was computed according to

Algorithm 2. That is, starting from the initial symbol, a sequence of viable

transitions and symbols was computed until activation of the target symbol,

which was defined as the symbol closest to the target platform. Figure 11 shows

the solution space as gray hexagons. For each scale, 100 Monte Carlo samples

(blue lines) were computed by backtracking from the target symbol to the initial

symbol and selecting a parent symbol randomly during each backtracking step.

The figure shows that, on the smallest scale, reproduced sequences and the

solution space remain close to a shortest path on the original trajectory. On higher

scales, sample sequences and the solution space exhibit shortcut characteristic,

essentially crossing parts of the environment that were not explored previously

by the agent.

5 Discussion

Motivated by the runtime complexity of sequence retrievals in transition systems,

this paper introduced the Transition Scale-Space (TSS). The TSS is an abstract data
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structure that contains knowledge about transitions between symbols onmultiple

scales, shares several properties with the rodent Hippocampal formation, and

in particular MEC. Most important, Subsection 3.3 and Subsection 3.5 showed

that, given the assumption that they follow a Gaussian tuning curve, the

optimal scale increment for both spatial and temporal receptive fields between

consecutive scales of a TSS is

√
2. Consequently, it is hypothesized that the

entorhinal-hippocampal loop forms a TSS, and that individual grid fields are

spatio-temporal kernels that learn transitions both in spatial inputs, as well as

a symbolic space. While the first is presumably given by spatially modulated

input such as boundary-vector-cells, head direction cells, or speed cells, the latter

is represented by place cells. Moreover, bottom-up learning of a TSS needs a

mechanism to temporally buffer the symbolic input space. In total, this yields

the TSS model for grid cells, depicted in Figure 12.

Although the results were presented in the context of spatial navigation due

to the involvement of grid and place cells in navigational tasks, the results apply

to arbitrary transition systems that operate on topological data. Now, these

results will be discussed concerning their plausibility, predictions, and relation

to other work.

This section is organized as follows. First, the data structure, algorithms,

and results of the previous sections will be critically discussed with respect to

biological plausibility, and testable predictions derived from TSS. Subsequently,

temporal buffering and its potential relationship to Theta and TPP will be

examined. This is followed by a detailed discussions about similarities and
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Figure 12: Transition scale-space model for grid cells with memories MΓ (dashed

box, middle), MΣ (gray box, right), and spatial afferents ∆ (gray box, left). It

is hypothesized that each grid field of a grid cell is a space-time-kernel (gray

small boxes within MΓ) that represents spatial transitions. The spatial part of

the receptive field learns transitions on input space ∆ (blue arrows), which is

presumably given by boundary-vector-, head direction, speed cells and other

spatially modulated inputs. The temporal part integrates temporally ordered

activity in a symbolic space Σ, itself hypothesized to be represented by place

cell activity. For accelerated searches and retrievals of sequences, MΓ consists

of N different scales Γi (multiple scales depicted as horizontally arranged small

gray boxes). For biologically plausible representations, the space-time kernels

increase optimally by

√
2 from one scale to the next (dashed arrow between small

gray boxes). Learning multiple scales requires temporally buffered access to

symbols σi ∈ Σ (ring buffer within MΣ), which allows to relate the model to

Theta phase precession (see Subsection 5.2).

54

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2019. ; https://doi.org/10.1101/543801doi: bioRxiv preprint 

https://doi.org/10.1101/543801
http://creativecommons.org/licenses/by/4.0/


differences to other models for grid cells. Finally, TSS will be related to other

areas of research, in particular to results from signal processing, mobile robotics,

and computer science.

Note that, throughout the section, the terms symbol and neuron may be used

interchangeably. Moreover, and if not stated otherwise, the term TSS will be

used inclusively to mean both Multi-Transition System (MTS) and the extension

to multiple scales presented in this paper.

5.1 Scale-space computations and biological plausibility

The properties and dynamics of TSS are compatible with observations from the

Hippocampal formation. For instance, the activity of symbols in a TSS forms a

traveling wave during expansion from start to target, depicted in Figure 8. Also,

the Hippocampal formation shows traveling waves of activity (Lubenov and

Siapas, 2009; Patel et al., 2012). However, TSS was not presented as a spiking

neural network but in mathematical and algorithmic form. Thus, aspects of TSS

will now be examined with respect to their biological plausibility. This will also

be used to derive testable predictions from the mathematical model.

Figure 8 shows that, during expansion, TSS activates all intermediate symbols

in form of a traveling wave until the target is reached. This is unlikely to

occur in a biological neural network, as this could lead to saturation of activity

in the network. A solution to this shortcoming of the model is to activate

only a sparse subset of symbols in the image of each transition during path

expansion. However, this then involves the danger to miss the target symbol.
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To avert the latter problem, the target should be overrepresented by several

symbols. Essentially, this increases the chance to activate one of those symbols

that corresponds to the target. It is expected that the number of symbols that are

used for such an over-representation is inversely proportional to the probability

of a symbol to activate during transition evaluation and to the importance of the

goal. However, future work is required to examine if this conjecture holds or not.

Note that the idea to over-represent targets is consistent with evidence that – in

rodents – place cells accumulate near goal locations (Boccara et al., 2019; Dupret

et al., 2010; Hollup et al., 2001; Lee et al., 2006; Mamad et al., 2017).

Table 2 shows the decrease in computational time to find a certain symbol.

Moreover, Figure 9 and Figure 10 show that a TSS can be used to quickly compute

approximate sequences. Importantly, the first steps of the retrieved sequences

are valid according to the definition given inWaniek, 2018, which means that they

are consecutive and connected and thus allow deterministic movement. Valid

sequences might be of importance during tasks that require precise movement

along previously acquired places. On the other hand, approximate solutions

could also be used directly. This appears to be of utmost interest in other

behavioral tasks. For instance, consider the Morris water maze experiment, in

which a rodent has to establish a route to reach the target platform. Waiting

for an accurate computation to finish is not an option for a rodent, given the

perilous situation in which it is during this experiment. Rather, the animal

requires an algorithm that quickly yields an estimate of the solution so that it can

start moving, and refine the trajectory online. The qualitative results shown in
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Figure 11 demonstrate that a TSS provides such an algorithm. Using a large scale

quickly narrows the search space, or is even able to present a direction directly

towards the goal. Note that a large scale comes at the cost of an increased variance

of the solution, indicated by the large gray areas in the figures. Conclusively,

it is expected that rodents operate not only on the highest available scale, but

either in ascending mode to retrieve sequences that are initially valid, or on all

scales in parallel.

The TSS and the simulation results were not presented in form of spiking

neural networks. However, a neural network implementation of a TSS is

conjectured to require only a comparatively simple neural micro-circuit. Recall

Subsection 3.2 and Subsection 3.3 which explain that each spatial transition of a

TSS represents transitions as intervals. Moreover, each level of the hierarchy is

conceptually identical to other levels and differs only by the size of the interval.

Then, learning that a symbol falls into the domain of a spatial transition on a

higher scale follows exactly the same rules as lower scales and, thus, generalizes

well 2. Moreover, representing associativity between transitions and symbols

requires only simple binary logic elements, as discussed previously in Waniek,

2018. Thus, a neural network implementation of a TSS needs to only differ in

the size of the spatial and temporal sampling process on each scale. Finally, the

expansion algorithms that were used during the simulations can be parallelized

for a distributed message passed system, and thus appear to be suited for spiking

2This is well reflected in the implementation that was used to simulate the TSS. It uses a

single method, parameterized only by scale, for data construction. Source code available online

at https://github.com/rochus/transitionscalespace.
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neural networks.

Both expansion methods, descending and ascending, as described in Subsec-

tion 3.6, lead to two different waves of activity. The first, already discussed above

and presented in Figure 8, is a wave of activity from start to target. The second is

a wave of activity that propagates along the hierarchy of TSS. Figure 9 shows

that, during descending mode, the second wave starts on the highest (or coarsest)

level of TSS and, after determining sub-goals, activity moves successively to

lower scales. In contrast, the second wave starts on the lowest level and moves

to higher scales, as depicted in Figure 10. In particular the latter is compati-

ble with evidence from the Hippocampal formation. Not only increase grid

fields systematically along the dorsal to ventral axis (Brun et al., 2008; Stensola

et al., 2012), also activity propagates in the form of a traveling wave along the

axis (Lubenov and Siapas, 2009; Patel et al., 2012). This is also compatible with

the observation that increased temporal integration windows of transitions on

higher scales necessarily lead to temporal lag, as will be discussed further below.

Both modes were used to quickly retrieve approximate solutions with detail

only for the next steps. The modes correspond to usage of multi-resolution

data structures that found widespread adoption in other areas of computer

science (Behnke, 2004; Finkel and Bentley, 1974; Kambhampati and Davis, 1986;

Lu et al., 2011; Orenstein, 1982). In particular the computer graphics community

characterized the performance benefit that comes with multi-resolution represen-

tations and relies heavily on acceleration data structures of this form (MacDonald

and Booth, 1990; Wald et al., 2009). Intuitively, large scales of such representa-
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tions can be used to quickly prune data and select only a subset of the original

data. Successive use of finer scales then refines the data to yield only singular

elements of interest. This also applies to TSS in the sense that higher scales help

to quickly retrieve feasible trajectories, and leads to the following prediction.

Disruption of all larger scales of a TSS will lead to decreased performance during

retrieval. Specifically, if there is just a single scale, then the TSS will suffer from

the computational times that motivated the development of TSS, presented in

Subsection 3.1. This could be shown in an experiment in which animals have to

navigate to very remote targets. Targeted lesion or inhibition of grid cells with

large grid fields should lead to increased computational time during planning,

measurable as an increase of the temporal delay between onset of pre-play and

movement. Moreover, the number of failed navigation attempts should increase.

The latter is because the activity of the traveling wave from start to target might

diffuse due to noise of neural activity. In addition, increased navigation failure

is also likely due to reward diffusion during sequence selection, an issue that

was addressed previously in the model by Erdem and Hasselmo, 2014.

Sequence selection was computed using classical backtracking in the results

presented in Section 4. In this form, the presented algorithm is biologically

implausible as it would require reverse information propagation. However,

there are likely candidates for alternative implementations. First, recall that the

data within a TSS represents a connected graph with constant edge weights,

and searching a trajectory corresponds to finding a shortest path in a weighted

graph. In turn, this edge weight can be interpreted as a temporal delay for
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spike propagation between vertices of the graph. Then, computing a winning

trajectory could be achieved by reducing the temporal delay between vertices

that activate the goal location. Iterating this is expected to successively compress

expansion of a path in time. The outlined process describes the computation

of an eligibility trace, known from RL, and is also related to reward diffusion

that was used in Erdem and Hasselmo, 2012 and Erdem and Hasselmo, 2014.

Also, this mechanism could explain why rats appear to pre-play multiple similar

trajectories during homing tasks, observed by Pfeiffer and Foster, 2013. More

specifically, repeated pre-play of similar sequences is expected to reduce the

interspike interval between consecutive neurons that are on a sequence from

goal to target. Analyzing temporal compression during pre-play will require

significant amounts of data, and in particular simultaneous recordings of a large

number of place and grid cells from a single animal.

5.2 Spatial pooling, temporal buffering, and Theta Phase Pre-

cession

Subsection 3.5 deduced that online-learning of a TSS requires temporally buffered

symbols for spatial pooling. While a general requirement for buffering in

scale-spaces was previously noted in the context of modeling visual receptive

fields (Lindeberg, 2013), Subsection 3.5 suggests that this can be achieved bottom-

upusing iterations of the lowest scale of a TSS that are nestedwithin a slower input

cycle, illustrated in Figure 6E, as follows. Consider to learn spatial transitions

between symbols on a larger scale, which means that symbols activate in a
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smaller portion of space than the sizes of the domain or image of a transition

(see Figure 6C). To associate the correct symbols with the domain and image,

Subsection 3.5 suggests to iterate the lowest scale of a TSS. More precisely, a

recursive loop between MΓ and MΣ that evaluates transitions on the lowest scale

effectively expands a path around a certain symbol, depicted in Figure 6E. Due

to directionality of transitions, these symbols activate in a spatially coherent

pattern. That is, this re- and pre-plays symbols in order that corresponds to

their relative location to the current symbol similar to how place cells activate

during Theta Phase Precession (TPP) (Schmidt et al., 2009; Skaggs et al., 1996).

Then, all those symbols which temporally activate before the current symbol

as well as the current symbol can be considered to be part of the domain of a

transition and associated with it, while all those that follow can be considered

to fall into the image and learned as transition targets (see Figure 6D and F for

illustrations). Several predictions follow immediately from this description of

temporal buffering. First, the temporal integration window of Spike-Timing

Dependent Plasticity (STDP) of grid cells on larger scales must match their spatial

receptive field for association learning with place cells and spatial afferents that

fall into their receptive fields. Following Subsection 3.5, the temporal window

ideally scales by

√
2 from one scale to the next. Second, targeted lesion of smaller

grid scales should disturb subsequent larger scales. The reason is that such

lesioning prevents the recursive loop between MΓ and MΣ on the affected scales.

Consequently, the spatial coherence of the sequence of symbols is not guaranteed.

Note, however, that temporal coherence between symbols is unaffected by such a
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lesion because, in anMTS, temporal transitions are learned in a separate memory

MΠ (Waniek, 2018). Thus, to fully disrupt grid scales, it is expected that silencing

of MΠ is also required. Third, there will be only a single scale in the absence of a

temporal buffer or multi-scale representations of the input and symbol space.

The reason is that if transitions of a larger scale project to symbols of smaller

scales, or if symbols are only available in scales smaller than the transition scale,

they need to be temporally available for learning with STDP as outlined above.

If symbols are, however, available in larger scales, then transitions can be learned

directly between symbols of corresponding higher scales. In either case, large

scale transitions must not project to and activate smaller scale symbols during

exploration, because this might activate all target symbols of the smaller scale

simultaneously. In turn, this would disarray transition learning on that smaller

scale and consequently lead to temporal and spatial incoherence.

As mentioned above, nested iterations of lower scales expand a path around

a certain symbol, as depicted in Figure 6E. That means that starting nested

iterations at a given symbol, for instance due to activation from ∆, will predict

immediate next symbols. On the other hand, converging nested iterations

from past symbols towards the given symbol repeats existing knowledge. To

preserve linearity of spatio-temporal sequences, these nested iterations should

have directional tuning and ideally only expand (or retract) symbols that are in

the heading direction of the animal. Linearity of activation is well supported by

data from rodent experiments (Jeewajee et al., 2013; O’Keefe and Recce, 1993).

More precisely, experiments showed that, when an animal is running, place and
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grid cells that are along the animal’s heading direction perform TPP, which

means that their firing activity progresses relative to Theta. It was previously

noted that the phase reference that is provided by TPP is required to encode

temporal order (Lisman, 2005). In addition, Theta modulation was previously

used to recall episodic sequences of states in models of regions CA1 and Cornu

Ammonis 3 (CA3) (Hasselmo, Bodelón, et al., 2002; Hasselmo and Eichenbaum,

2005). However, these models predate the discovery of grid cells and, thus, do

not consider them. Note that conjunctive representations that have directional

tuning, and which are supposed to be required for heading dependent linear

temporal buffering, are not yet included in the TSS model. In addition, it is

currently unclear how the inputs from the spatial input space ∆ are optimally

aligned with a temporal buffer.

TPP suggests that the alignment is ideally centered around the symbol that

corresponds to the animal’s current location during constant running speed.

Note that during TPP, cells in the heading direction of an animal spike in order of

their temporal succession (Jeewajee et al., 2013; Schmidt et al., 2009). Setting this

observation in context of TSS, it is hypothesized that Theta and TPP in particular

are the observable effects of temporal buffering to learn and retrieve data from

multiple scales. Moreover, it is conjectured that, assuming constant running

speed, the optimal alignment is such that afferents from ∆ arrive precisely in the

middle of the buffer, indicated in all panels of Figure 6 as blue circle. Then, there

is
1/2T∆ time for consolidation, and

1/2T∆ time for prediction of immediate next

place cells. Note that two distinct phases of retrieval and consolidation relative to
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Theta were previously described in the model by Hasselmo, Bodelón, et al., 2002,

and was also suggested by Dragoi and Buzsáki, 2006 and Lubenov and Siapas,

2009. In particular, Hasselmo, Bodelón, et al., 2002 found that memory retrieval

and consolidation was best when entorhinal inputs to CA1 were in phase with

Theta.

The rate of TPP of place cells depends on thewidth of their place fields (Dragoi

and Buzsáki, 2006; Skaggs et al., 1996). That is, place cells with larger place fields

spike later relative to Theta than cells with smaller place fields. A recent study

modelled this effect mathematically and found that consistency with respect

to distance between place fields is only preserved when TPP depends on the

firing field width (Leibold and Monsalve-Mercado, 2017). The increase of the

temporal integrationwindow of spatial transitions, presented in Subsection 3.5, is

complementary to these findings andmodel. Specifically, the size of the temporal

integration window increases from one scale to the next by

√
2. Essentially, this

implies that the activation of a transition on a larger scale is slower than the

activation on a smaller scale. Hence, this predicts that phase precession of a

grid cell will be later with respect to Theta along the dorso-ventral axis due

the scaling of the temporal integration window. More precisely, the temporal

distance between spikes of individual grid cells during precession is expected to

scale by

√
2 from one scale to the next.

In addition to a temporal (ring) buffer, the brain might rely on other mecha-

nisms to support the formation of large scale transition knowledge, for instance

Sharp Waves and Ripples (SPW-R) (see O’Keefe and Nadel, 1978 and review
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of rhythms related to Theta in Colgin, 2016). During SPW-R, actually traveled

trajectories are replayed in a temporally compressed manner, which was found

to support the consolidation of spatial memories (Jadhav et al., 2012). It is exactly

this form of temporal compression that is necessary to form large scale transition

knowledge that would otherwise not fit into the temporal integration window of

STDP.

As of now, this interpretation of Theta and TPP leaves several questions with

respect to TSS unanswered. For instance, it is unclear how the discontinuity

between symbols in the temporal ring buffer is achieved. Possible candidates

are distinct input streams arriving at opposing ends of Theta (Brankačk et al.,

1993; Buzsáki et al., 1983). In addition, it was discovered that grid cells are

differentially phase locked (Newman and Hasselmo, 2014). That is, there are

distinct functional groups of grid cells which spike predominantly either at

the trough or the peak of Theta. Conclusively, future work will address and

incorporate these findings into the temporal buffer mechanism of TSS.

5.3 Relationship to other vector-based navigation models and

successor representations

The Transition Scale-Space (TSS) is related to several other models of grid cells,

and in particular to models of vector-based navigation in the rodent brain. In

these models, multiple scales of grid cells are commonly used to encode a single

spatial location, or a vector to a location.

For instance, the hierarchical goal directed navigation model presented
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in Erdem and Hasselmo, 2014 and also used in Erdem, Milford, et al., 2015

plans trajectories by first computing approximate locations using the highest

scale of its representation, and narrows down on the exact position using finer

scales. Their model, itself an extension of their previous work (Erdem and

Hasselmo, 2012), consists of head direction, persistent spiking, grid and place

cells, as well as theoretical reward cells. Because, in their model, grid cells

receive head direction modulated inputs from persistent spiking cells, the model

falls into the category of oscillatory interference models for grid cell formation.

Moreover, it uses grid cells for localization because the activity of any place

cell is defined by integrating the activity of multiple grid cells. In turn, each

place cell is bi-directionally connected to a reward cell. The functional role of

these theoretical cells is to provide in- and output connectivity, and represent

rewards. They are a simplification of prefrontal cortical columns that were used

in their previous work Erdem and Hasselmo, 2012. Their model operates in

two different phases. During exploration, the first phase, an animat randomly

explores an environment and recruits place cells. The recruitment is either

triggered when there is currently no active place cell, or by a Poisson process that

is parameterized on the inter-recruitment-interval. During the second phase, the

animat first activates the reward cell that is associatedwith its goal location. Then,

it sends linear look-ahead probes with different heading directions that start at

the animat’s current location through the network of head direction, persistent

spiking, grid, and place cells. When one such probe activates the representation

of the goal location, the animat can navigate along the linear path towards the
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goal. Using just a single scale, this model has several issues. Most important,

linear look-ahead probes are prone tomiss the target especially when the distance

between current location and target is large. The reason is that, although the

angle between probes remains constant, the absolute distance between probes

increases with distance from the animal. Thus, chance for missing the goal

location increases. Another is that, given a neural implementation, it is to be

expected that noise accumulates over time and reduces the accuracy of the

probes. Finally, the authors note that reward activity might diffuse over time.

Their extension of this model to multi-scale representations addresses these

issues as follows (Erdem and Hasselmo, 2014). Instead of having a single scale of

place cells, the recruitment process creates place cells of several scales. The scale

increment is motivated to be inversely proportional to the firing field radius of

place cells. Then, during the second phase, linear look-ahead probes are more

likely to activate a goal place cell due to the increased firing field radius of the

cell. Upon activation of a goal reward cell, the reward cell then also activates all

reward cells on levels with smaller firing field radii. Intuitively, the model thus

first coarsely localizes the target, and then narrows down on the exact goal.

MTS, introduced in Waniek, 2018, and TSS, have several similarities to

the model presented by Erdem and Hasselmo, 2014. For instance, TSS also

operate in two phases: exploration during which symbols σi ∈ MΣ (place cells)

are recruited and associated with spatial transitions σ j ∈ MΣ (grid cells) and

temporal transitions πk ∈ MΠ, and retrieval, during which the system is iterated

recursively and computing potential trajectories that are outbound from an
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agent’s location. Likewise Erdem and Hasselmo, 2014, TSS recruit symbols

either randomly or by distance to previous symbols. Note that in Section 4, the

exploration phasewasmostly replaced by random sampling from the input space.

The descending mode of trajectory computation, presented in Subsection 4.3,

is particularly similar to the approach described in Erdem and Hasselmo, 2014.

Both models first locate a target location in the coarsest representation. However,

whereas the model by Erdem and Hasselmo, 2014 then narrows down at the

target location, the TSS model generates sub-goals in the vicinity of the agent

and re-plans to these sub-goals. This is due to the basic idea of TSS to expand a

path from start to target into a coherent and connected sequence of intermediate

symbols (Waniek, 2018). This is fundamentally different from computing a linear

target vector and, thus, from Erdem and Hasselmo, 2014 or other navigation

models that are based on global vectors. Specifically, and in contrast to Erdem

and Hasselmo, 2014, the information that is stored within a TSS is not a sparse

representation of locations, but a connected graph in which symbols (i.e. vertices

of the graph) are connected explicitly via spatial and temporal transitions (edges

of the graph). In addition, TSS only require iteration through grid and place

cells during retrieval. Thereby, TSS are independent of the heading direction

during exploration. This is exemplified in Appendix E, which demonstrates

that TSS compute the geodesic between points and not a linear vector if the

input space is a non-Euclidean manifold. Note that path expansion via traversal

of a connected graph also means that an TSS can compute trajectories that

would require the agent to first walk into an opposing direction. For example,
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assume an environment with a large U-shaped barrier and in which the goal

is to navigate from the center of the environment to a location behind the

barrier. Then, linear look-ahead probes fail to accomplish the task, whereas TSS

successfully compute trajectories. One drawback of this is that the necessary

connectivity of the represented graphmeans that TSS cannot compute trajectories

to locations that were not previously explored. However, this is in line with

evidence from rodent experiments in which rats were unable to take novel

shortcuts (Grieves and Dudchenko, 2013). There are several other significant

differences, as for instance that grid cells are not assumed to form on the basis

of oscillatory interference but because of dense packing of receptive fields that

represent transitional information (Waniek, 2018). In addition, place cells were

hypothesized to be recruited from spatial afferents independently from grid cells.

Recent evidence from rodent experiments supports this idea (Chen et al., 2019).

Note also that, although this paper uses multi-scale grid cells, it does not recruit

multi-scale place cells. Another difference is the form of activity during retrieval.

Whereas linear look ahead probes lead to targeted and directional activity, the

search strategy of TSS resembles a propagating wave of activity from the goal

to the target (see Figure 8). The latter is consistent with evidence that shows

that activity in the Hippocampal formation propagates in waves (Lubenov and

Siapas, 2009; Patel et al., 2012). Unlike the model by Erdem and Hasselmo, 2014,

multiple scales of representation were motivated in Subsection 3.1 not by linear

probes missing the goal location or by reward diffusion, but by examining the

abstract runtime complexity of sequence retrievals in transition systems and,
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thus, wave propagation. Finally, Erdem and Hasselmo, 2014 did not provide a

mathematical justification for the scale increment in their model. In contrast, the

scale increment between consecutive levels of the TSS was derived analytically

for biologically plausible receptive fields and with the goal to optimally construct

a data structure that stores look-ahead transitions in Subsection 3.3.

Another linear look-ahead model was presented by Kubie and Fenton, 2012.

First, the authors highlight the difference between navigation with a place cell

map, in which a path can be computed as a trajectory that minimizes the place

fields that are crossed between goal and target, and vector navigation using

grid cells. The authors note that the regularity of the grid pattern should

contain sufficient information to compute linear vectors from start to a goal

location even across previously uncharted territory. Based on evidence from

rodent experiments, the authors then introduce the concept of a rigid module.

Such a module contains only grid cells with the same scale and orientation.

Moreover, the authors define a tile: a region of space with only one grid bump

or, in other words, the induced Voronoi cluster of each bump of a grid cell. In

total, tiles of a rigid module densely cover the input space. Then, the authors

proceed to define a shortest inter-bump vector, which is the shortest vector or

shortest relative shift between any two bumps that could appear within one

tile. The authors continue by asking if it is possible to learn predictions about

subsequent bump locations within a tile during navigation. In simulations of

a virtual agent, they find that grid cells in a single rigid module cannot learn

predictive codes for subsequent grid bumps using Hebbian plasticity. However,
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they then show that rigid modules of conjunctive cells, i.e. grid cells that are

modulated by head direction, in fact express strong connectivity between cells

with different bump locations within one tile and thus represent the inter-bump

vector. Based on these results, the authors finally speculate that learning such

predictions could be used for linear vector based navigation. The model by Kubie

and Fenton, 2012 is similar to TSS only to a limited extent. For instance, both

models assume that grid cells compute or represent a local relationship structure.

However, Kubie and Fenton, 2012 take the grid pattern as given, whereas the

hexagonal arrangement of grid fields was derived mathematically as the result

of optimality considerations in Waniek, 2018. Moreover, TSS do not use grid cells

for localization. Although an inherent part of detecting the start of a transition is

to determine a specific input space configuration, this information is not used for

downstream localization in the form of place cells, but to learn a neighborhood

relationship and, thus, the adjacency between place cells and not between grid

cells. Most important, however, is that the model by Kubie and Fenton, 2012

learns to predict succeeding grid representations, whereas TSS learn transitions

to (or predictions of) subsequent place cells. Finally, and similar to the model

by Erdem and Hasselmo, 2014, the authors note that their model has limited

capabilities in complex navigation tasks. To stress this point, linear vector based

navigation models cannot compute non-linear solutions such as required in the

U-barrier environment that was mentioned above, or in environments or input

spaces where the geodesic is the desired solution.

Prior to the discovery of grid cells, a vector based navigation model of the
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Hippocampus was presented by Redish, Touretzky, et al., 1996. In their model,

vectors are computed due to visual landmarks and the relative positions of a start

and target with respect to these. Subsequent work of the authors then introduced

the idea that the Hippocampus works in different two different modes (Redish

and Touretzky, 1998). During exploration, the animal acquaints itself with the

environment and learns spatial representations in place cells of CA3. Then, when

the animal re-enters an environment, the authors suggest that it learns routes

along the previously acquired representations. That is, when an animal moves

from a location a to a location b, theirmodel increases the strength of the recurrent

collaterals between these two representations given the direction a → b, but not

the strength of b → a. Although these asymmetric connections are conceptually

identical to transitions, TSS explicitly represent temporal transitions in a memory

MΠ, as briefly reviewed in Subsection 1.2. The benefit of separation is that a

currently active representation in place cells is not prone to be immediately

overwritten or changed due to asymmetric recurrent connectivity. That is, place

cells can be stored in an auto-associative memory MΣ in which place cell activity

is a local attractor and, thus, performs pattern completion, and in contrast,

transitions can be stored in a hetero-associative memory to toggle switching

of local attractors in the auto-associative memory (Palm, 1980; Wennekers and

Palm, 2009; Willshaw et al., 1969). Pattern completion appears to be an import

concept for place recognition, and it is thus unsurprising that, based on evidence

for local connectivity, associative memories were previously used to model the

Hippocampal formation (Graham et al., 2010; Marr, 1971; McNaughton and
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Morris, 1987; Treves and Rolls, 1994). However, TSS predicted a specific strong

recurrent connectivity between memories MΣ and MΠ, which was recently

supported by evidence from rodent experiments (Davoudi and Foster, 2019).

Another difference between the work presented in this paper and the work by

Redish and Touretzky, 1998 is that TSS store spatial transitions within grid cells

of memory MΓ, and this paper extends the spatial transition memory to multiple

scales. Multiple scales of representation were not considered in Redish and

Touretzky, 1998. The authors note, however, that SPW-R should consolidate

knowledge about sequences of places. They then suggest that phase precession

is a result of these asymmetric connectivities during retrieval of such sequences.

Also the work presented in this paper presents phase precession as a result of

asymmetric information which re- or pre-plays previously acquired sequences.

In contrast to Redish and Touretzky, 1998, phase precession is speculated to

be a necessary mechanism that allows the formation of multi-scale grid cell

representations. Additionally, SPW-Rs are believed to allow learning very large

scales that would otherwise not fit into the temporal integration window of

STDP learning rules. That is, because SPW-Rs contain temporally compressed

sequences, a neuron is hypothesized to be able to associate with a larger number

of temporally ordered elements than would normally fit into the temporal STDP

integration window during uncompressed sequences. Due to the numerous

similarities between and complementary elements of the TSS presented in this

paper, and the model presented in Redish and Touretzky, 1998, it appears highly

likely that both models can be combined.
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Cueva and X.-X. Wei, 2018 and, independently, Banino et al., 2018 observed

that training deep neural networks on spatial navigation tasks leads to the

formation of place and grid representations. The latter in particular argue

that their system learns vector-based navigation and spatial codes. However,

a closer examination of their model architecture reveals that the cells which

exhibit grid codes learn predictive codes for downstream spatial representations.

More precisely, the recurrent network in which the grid representations emerged

receives spatially modulated input and forwards information to a planning

module. Hence, grid representations appear to be, in fact, an optimality result

when learning from navigational tasks in recurrent networks. Moreover, their

model learns to navigate to locations at which the agent was presented with

a reward. Thus, the computation that is performed by their model closely

resembles prior work on Successor Representation (Momennejad et al., 2016;

Stachenfeld et al., 2016).

The TSS model of grid cells is also related to other transition models of

grid cells, and in particular models that assume grid cells perform Principal

Component Analysis (PCA) or compute a Successor Representation (SR) (Dordek

et al., 2016; Momennejad et al., 2016; Stachenfeld et al., 2016). These models

compute grid like responses based on place cell inputs and represent correlate

information between grid cell and place cell activity in multiple scales. For

instance, higher scales of SR models represent transitions to remote locations and

learn this information exclusively on place cell afferents. In contrast, grid cells of

the scale-space TSS model learn their representation on a suitable input space
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and link to place cells only due to co-activation learning. Thereby, they relay

structural information from the input space to higher cortical representations,

which can then be used independently of the input space during retrieval (see

Waniek, 2018 for a discussion thereof). In addition, SR models propose that grid

cells learn to represent the weighted sum of rewards of distant future states.

That is, these models require a certain policy by which the animal navigates

the environment and also that an environment and its intermediate states are

sampled sufficiently often for the representation to converge. Moreover, the

animal needs to learn a distinct SR representations for each specific goal. Given

recent evidence that place cells are insensitive to reward information (Duvelle et

al., 2019), it remains to determine if grid cells support reward storage, or in which

way reward information could be available to support learning of an SR. Other

recent experiments showed that the hexagonal grid representation is, in fact,

locally distorted upon changes to the reward structure of an environment Boccara

et al., 2019; Butler et al., 2019. In these experiments, grid fields moved closer to a

certain location if this location corresponded to a singly peaked reward. On a

first glance, these findings appear to be in favor of SR models. Yet, it is unclear

in which way exactly this fits into these models, and, more importantly, what

exactly drives the grid distortion. In contrast to PCA and SR models, TSS are

independent of any policy or reward and can be recomputed easily for arbitrary

targets. Thus, TSS can be used more flexibly in different environments and in

particular when the observed reward modulation is not intrinsic to grid cells, but,

for instance, attached to the spatial input space. Also, TSS require only limited
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information about traversed states and do not need dense or repeated coverage

of the input, as demonstrated in the Morris water maze experiment presented

in Section 4. Nevertheless, SR models have the benefit that they can compute

trajectories to target locations without any additional reward mechanism, which

is currently lacking from TSS. Possible future work therefore includes to merge

these models.

5.4 Relationship to scale-spaces, data structures, graph algo-

rithms, and robotics

The constructive procedure presented in Section 3 generates a data structure that

contains transitions in multiple resolutions. Specifically, it forms a scale-space of

transitions in the form of a Gaussian or a Laplacian-of-Gaussian pyramid. This

kind of data structure is well known in the computer vision and signal processing

communities (Lindeberg, 1994; Lindeberg, 2010; Witkin, 1983). Among other

application areas, Gaussian pyramidswere used to describe biologically plausible

retinal and visuocortical receptive fields (Behnke andRojas, 1998; Georgeson et al.,

2007; Young, 1987). In addition, it was shown previously that a scale increment

of

√
2 is optimal for normally distributed inputs in vision tasks (Lindeberg,

2010). In image processing, application of a Gaussian pyramid corresponds to

consecutively smoothing an image, i.e. an input gets low-pass filtered by which

fine-scale information is removed. Consequently, this allows to detect features

in a scale-invariant way, which is commonly used in classical computer vision

algorithms (Lindeberg, 2015; Lowe, 2004).
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The same intuitive idea is certainly true for spatial navigation. To plan

sequences to remote locations, it appears behaviorally unnecessary to factor fine

details close to the target into the solution. Rather, it seems more important to

quickly establish an approximate solution, which can be refined during execution.

In other cases, fine details may not be relevant at all, and approximate solutions

entirely sufficient. Gaussian pyramids provide a principled solution to compute

these approximations, as demonstrated in the examples presented in this paper.

More specifically, Figure 9 and Figure 10 show how a TSS can compute trajectories

with details near the agent and approximate steps at the target, and Figure 11

show the level of approximation that each scale provides.

The computational benefits of spatial approximations with and clustering

into multiple scales of representation is also well known in other areas. For

instance, the computer graphics community has widely adopted data structures

that are based on or extensions of quad-trees (Finkel and Bentley, 1974; Samet,

1984), or higher dimensional variants such as octrees (Orenstein, 1982), to

achieve real-time graphics. Also the robotics and path planning communities

have adopted multi-scale data structures (Behnke, 2004; Hwang et al., 2003;

Kambhampati and Davis, 1986; Lu et al., 2011). These algorithms usually

represent an environment topologically or with an imposed grid and use some

variant of Dĳkstra’s algorithm (W. Dĳkstra, 1959) or A* (Hart et al., 1968) to

determine an optimal path from start to target.

The method presented in this paper is related to these classical graph

algorithms, and in particular A* (Hart et al., 1968). A* generates optimal
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solutions during graph searches, but its runtime crucially depends on a suitable

heuristic. The basic idea of A* is the same as in Dĳkstra’s algorithm, meaning

that the algorithm sequentially expands nodes and tests if they are on a path to

the target. In contrast to Dĳkstra’s algorithm, A* uses a heuristic that guides the

expansion of nodes and thereby limits the search space significantly. Still, A*

requires that the heuristic is admissible, which means that the heuristic always

has to underestimate the real distance to the target. The scale-space approach

presented in this paper adheres to this condition, and is thus a suitable heuristic

for A*.

6 Conclusion and outlook

In this paper, transition encoding was examined from the perspective of behav-

ioral requirements for path planning. An example showed that a single scale of

transition encoders is insufficient to provide run-times that lie in a meaningful

range when neuronal axonal delays are respected. However, transition encoding

allows interpretation in form of linked lists of data, for which asymptotically

optimal search strategies are well known from computer science. In particular,

interval skip lists introduce hierarchies to accelerate searches exponentially.

It was then derived that the optimal scale increment for a data structure

with biologically plausible spatial receptive fields is

√
2. Following this, it was

argued that also the temporal integration window needs to increase accordingly,

and that temporal buffering of data is mandatory.j The resulting hierarchical
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representation, called TSS, can accelerate path planning by transition look-ahead

forms a scale-space that provides approximate path planning solutions. This

was shown in simulated navigation experiments using two different modes for

sequence retrieval. In addition, a simulated Morris water maze experiment

highlighted computation of approximate solutions on higher scales.

Given that scale-spaces are well known from other cortical regions, primarily

the visual cortex, this allowed to discuss the results in terms of a general

principle that underlies cortical processing. Furthermore, the TSS was related to

techniques for multi-resolution path planning that are well-established in the

robotics community. Conclusively, the discretized EC could be explained as

an effective, yet general purpose, data structure that achieves optimal run-time

behavior during goal-directed sequence planning.

Futureworkwill include abiologicallyplausiblemodel for the self-organization

of the dendritic tree of grid cells and, thus, the formation of hexagonal grid

fields in a dynamical model. Moreover, the TSS will be extended with reward

propagation mechanisms and a probabilistic model of computation.
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A A brief introduction to interval skip lists

This section briefly reviews those data structures that are of particular interest in

the context of MTS.

Skip lists are a data structure that can be used to accelerate searching an

element in linked lists of data. The acceleration is achieved by a hierarchy of

fast lanes that jump over elements of the original list (Pugh, 1990). Searching an

element in a skip list starts on the highest (or coarsest) level of the hierarchy and

proceeds until an element is found that is larger than the target. Subsequently,

the search drops down to the next finer level of the hierarchy until the element

is recovered. Given uniformly sampled data, skip lists are dual to binary

search (Dean and Jones, 2007) and thus become asymptotically optimal (Knuth,

1998). Specifically, the hierarchy of fast-lanes improves operations on equidistant

data exponentially and retrievals, insertions, and deletions can be performed

in O(log N) time with high probability. Due to their favorable properties, they

found widespread application in various applications and are still actively

researched (see for instance Bender et al., 2017 and references therein). Moreover,
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skip lists generalize to higher dimensions (Eppstein et al., 2005). Searching in a

skip list is illustrated in Figure 13A.

Skip lists apply to MTS as follows. Observe that the information that is stored

in an MTS forms linked lists of temporally and spatially ordered elements (see

Figure 2D-G). Hence, searching specific elements in an MTS can be accelerated

with a skip list. Moreover, transitions of an MTS densely and uniformly cover the

input space, which is required for asymptotic optimality. However, only finding

a certain element in accumulated knowledge is insufficient for most meaningful

behavior, in particular during spatial navigation. In such a case, a path A { B

needs to be expanded into all intermediary symbols.

Retrieval of all intermediary items between two elements can be computed

with interval queries. Given a suitable data structure D, for instance an array

of elements, an interval query iq(D , qs , qe) returns all intervals in D that are

between query start qs and query end qe . Like binary search, interval queries can

be performed in logarithmic time with suitable data structures, such as segment

trees (de Berg et al., 1997), or interval skip lists (Hanson, 1991). Figure 13B

depicts searching an element using an interval skip list. Answering iq(D , qs , qe)

is performed by first locating the interval that contains qs . Then, intermediate

intervals are retrieved until the interval that contains qe is found. This is typically

performed on the highest available level for performance reasons. Intermediate

low-level values can be extracted by traversing the lower levels of the data

structure on the chain of higher-level intervals. Thus, reporting all intermediate

K values between qs and qe can be performed in O(log N + K) time. Moreover,
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Figure 13: (A) A skip list is a multi-layer linked list data structure (Pugh, 1990).

Elements of the list must be ordered. Higher layers have fast lanes to skip over

elements. Given a start (blue), searching an element (green) in a skip list starts in

the highest layer. Skip links are followed until an element on the corresponding

layer is found which is larger than the target. Then, the search is continued

on a lower level (see gray boxes). (B) In contrast to skip lists, interval skip

lists (Hanson, 1991) store intervals in higher layers. Searching an element is

similar to skip lists, but tests if the target element is in an interval (indicated by

larger boxes), and subsequently drops down in the hierarchy. Interval skip lists

are related to segment trees (see de Berg et al., 1997).
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segment trees or interval skip lists can be built bottom up in O(N) time (de Berg

et al., 1997). Each additional layer in the tree or list contains nodes with intervals

that enclose the nodes of the lower level, illustrated in Figure 13B. Likewise binary

trees, segment trees and interval skip lists generalize to higher dimensions.

B Convolution of Gaussian receptive fields

Following Subsection 3.3, let

f (c)X (x) � N(x; µX , s
2

X) , f (c)Y (x) � N(x; µY , s
2

Y) , (25)

be the on-center regions of two neighboring receptive fields with preferred

stimulus µX and µY , respectively.

In addition, note that

F
{

f (c)X

}
� FX(ω) � exp (−iωµX) exp (−s

2ω2

2

) . (26)

Using the convolution theorem, the on-center f (c)Z , which combines f (c)X and

f (c)Y , is given by

f (c)Z (x) � ( f
(c)
X ∗ f (c)Y )(x) (27)

� F −1

{
F

{
f (c)X

}
· F

{
f (c)Y

}}
(x) (28)

� F −1

{
exp (−iωµX) exp (−

s2Xω
2

2

) exp (−iωµY) exp (−
s2Yω

2

2

)
}
(x) (29)

� F −1

{
exp (−iω(µX + µY)) exp (−

(s2X + s2Y)ω
2

2

)
}
(x) (30)

�
1√

2πsZ
exp

(
−
(x − µZ)2

2s2Z

)
(31)

� N(x; µZ , s
2

Z) . (32)
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C Algorithms

The following pseudo-code uses member-notation similar to common program-

ming languages in the form σ.parents, where parents is a member of symbol

σ. Also, multiple assignment instructions may be stated in a single line (e.g.,

Algorithm 4, line 2). An implementation in python of the algorithms and

additional code for visualization can be found at https://github.com/rochus/

transitionscalespace.

Algorithm 1 computes the expansion of a set of symbols. That is, given a set of

transitions Γ and currently active symbols St at time t it computes all subsequent

symbols of Σ that can be reached and have not been expanded previously. The

algorithm also updates the parents of all such newly activated symbols. A

transition γ has members image and domain, which are sets containing the

symbols in the image and domain of the transition.

Given a set of transitions Γ, a set of symbols Σ, a set of starting symbols Σstart,

and a set of target symbols Σtarget, Algorithm 2 computes a sequence from any of

the start symbols to any of the target symbols on one scale of transitions. The

algorithm does so by calling Algorithm 1 repeatedly until the target symbol is in

the set of currently active symbols.

Backtracking a solution sequence from target to start is computed as specified

in Algorithm 3. That is, given a set of symbols Σ, a set of starting symbols Σstart

and a set of target symbols Σtarget, a path is computed by repeatedly randomly

selecting a parent node until one starting symbol is found. Note that this requires

that Algorithm 1 was applied to the symbols, whereby the parent field of each
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Algorithm 1 Expanding a graph to all subsequent symbols

1: procedure Expand(Γ, St , t)

2: E← ∅

3: for all γ ∈ Γ do

4: Dactive← St ∩ γ.domain

5: if Dactive , ∅ then

6: E← E ∪ γ.image

7: for all σ ∈ γ.image do

8: if σ.parents � ∅ or σ.tparents � t then

9: σ.parents← σ.parents ∪ Dactive

10: σ.tparents← t

11: end if

12: end for

13: end if

14: end for

15: return E

16: end procedure
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Algorithm 2 Find a sequence on one scale of transitions with flood fill

1: procedure FindSequenceOnScale(Γ,Σ,Σstart,Σtarget)

2: t ← 0

3: St , T ← Σstart,Σtarget

4: while St ∩ T � ∅ do

5: for all σ ∈ Sactive do

6: σ.tretrieval← t

7: end for

8: N ← Expand(M .Γ[s], St , t)

9: St+1← {σ |σ ∈ N, σ < St , σ.tretrieval < 0}

10: t ← t + 1

11: end while

12: return St ∩ T

13: end procedure
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symbol is set accordingly.

Algorithm 3 Backtrack from target to start

1: procedure Backtrack(Σ,Σstart,Σtarget)

2: S← Σtarget

3: P ← {σp |σp ∈ σs .parents, σs ∈ S}

4: while Σstart ∩ P � ∅ do

5: S, P ← P, {σp |σp ∈ σs .parents, σs ∈ S}

6: end while

7: return S, P

8: end procedure

Algorithm 4 takes a scale-space MTSM, a set of symbols Σ, a set of start

symbolsΣstart, a set of target symbolsΣtarget, and a number ofmaximal expansions

per scale. It then computes at most imax expansion according to Algorithm 1 per

scale. If this maximum number is reached, the algorithm escalates to the next

scale. M .Γ[s] denotes transition scale s ofM. Afterwards, Algorithm 3 can be

used to compute a Monte Carlo solution sample.

Algorithm 5 takes the same arguments as Algorithm 4 except the maximal

number of scales. The algorithm starts on the highest available transition scale

and finds a sequence with it. After finding a solution, it backtracks to the starting

symbols and generates sub-goals. Subsequently, it drops down one scale to

refine the trajectory to the sub-goals. In its current form, this requires to reset

the parent information in each symbol (line 6).
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Algorithm 4 Find a sequence of symbols by ascending the scale-space

1: procedure FindSequenceAscending(M ,Σ,Σstart,Σtarget, imax)

2: i , t , s ← 0, 0, 0

3: St , T ← σstart, σtarget

4: while St ∩ T � ∅ do

5: for all σ ∈ Sactive do

6: σ.tretrieval← t

7: end for

8: N ← Expand(M .Γ[s], St , t)

9: St+1← {σ |σ ∈ N, σ < St , σ.tretrieval < 0}

10: if i ≥ imax then

11: s , i ← min{s + 1,Nscales}, 0

12: end if

13: t , i ← t + 1, i + 1

14: end while

15: end procedure
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Algorithm 5 Find a sequence of symbols by descending the scale-space

1: procedure FindSequenceDescending(M ,Σ,Σstart,Σtarget)

2: s ← Nscales − 1

3: T ← Σtarget

4: while s ≥ 0 do

5: for all σ ∈ Σ do

6: σ.tretrieval, σ.tparents, σ.parents← −1,−1, ∅

7: end for

8: H ← FindSequenceOnScale(M .Γ[s],Σ,Σstart, T)

9: T, P ← Backtrack(Σ,Σstart,H)

10: s ← s − 1

11: end while

12: end procedure
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D Relationship to category theory

Multi-Transition System (MTS) as proposed in Waniek, 2018 and extended to a

scale-space representation in this paper have a relationship to category theory

(see Adamek et al., 2009 for an introductory text). Changing the terms that were

used throughout this paper makes this connection more pronounced. Let any

transition between two symbols of the same alphabet be amorphism that operates

on some objects. For instance, spatial transitions are morphisms g : x → y

that operate on objects x , y of the category I of spatial symbols. Learning

spatial transitions, part of the proposed dendritic computation of grid cells,

is thus learning of morphisms in the category I. In MTS however, grid cells

simultaneously also learn transitions in the representation that is created by place

cells, i.e., morphisms f : p → q that operate on the category of place symbols

P. Observe that, according to scale-space MTS – but also in the context of

Successor Representations – grid cells learn to preserve the structure of the input

space and convey this knowledge to place cell representations. Consequently,

grid cells can be interpreted as functors F that transport objects x ∈ I to objects

Fx ∈ P and morphisms from the category of spatial symbols I to morphisms

in the category of place cells P. Namely, they transport transitions between

symbols from one category to the other, that is F g : F x → F y, while preserving

structure. Also, for every functor F, there exists an inverse functor F−1
, i.e.

F−1 f : F−1 p → F−1 q. Note that these observations apply across different scales

of transition representations, regardless of the size of the grid field, and thus

expose a fundamental cortical operation. Figure 14 illustrates the relationship
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Figure 14: Transitions, grid cells, and category theory. (A) Visualization of grid

cells according to scale-space MTS that learn transitions from symbols δx to

δy , while also learning transitions from σp to σq . (B) Commutative diagram of

category theory, in which a morphism g maps objects x to y in a category I, a

morphism f maps objects p to q in a category P. The morphisms and objects are

linked by a functor F that preserves structure of the categories.

betweenMTS and category theory. During spatial navigation, the existence of the

inverse functor allows to perform inference on the sensory inputs δi ∈ ∆ given a

sequence of symbols σk ∈ Σ. This is demonstrated by computing the solution

space in the examples of Section 4. Certainly, also other cortical areas have to learn

relationships between objects of different categories while preserving structure,

for instance to link the visual representation of an “apple” with the word “apple”.

Conclusively, it appears reasonable to investigate if cortical computations, and in

particular those that learn to represent relational information, can be understood

and expressed compactly in terms of category theory.
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E Relationship to differential geometry

Multi-Transition Systems (MTS) hypothesize that grid cells learn spatial transi-

tions (Waniek, 2018). Specifically, grid cells are believed to densely pack on-center

and off-surround receptive fields, their grid fields, on a suitable input space. For

analytical treatment, the input space was assumed to be the Euclidean. However,

MTS generalize to Riemannian manifolds and are thus related to the work by

Gustafson and Daw, 2011.

Gustafson and Daw, 2011 proposed that grid and place cells are modulated

by geodesic distance. Their work was motivated by the idea that similarity

between places should be defined locally along a path and along obstacles, and

not globally due to coordinates. Using a virtual RL agent, they showed that

Euclidean distance measures can have detrimental effects on learning a value

function. More precisely, their model learns approximate values of locations by

linearly combining a set of basis functions. In their model, these basis functions

were pre-determined according to an oscillatory interference model of grid

cells, i.e. as the sum of three cosine waves. The authors concluded that spatial

representations in the brain should followgeodesic distances instead of Euclidean.

In addition, they modelled how value functions should deform under geodesic

considerations and made several testable predictions about the deformations of

the grid code. Recently, experiments by two different labs showed that the grid

response indeed deforms due to environmental influences (Boccara et al., 2019;

Butler et al., 2019).

Likewise the model by Gustafson and Daw, 2011, MTS were motivated with
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the idea that navigation needs to learn similarity or relations between locally

adjacent places and not across global distances. In contrast to the work by

Gustafson and Daw, 2011, triangulation of the input space (i.e. hexagonal

placement of grid cells) was not predefined but derived as an optimality result

in Waniek, 2018. Moreover, Waniek, 2018 hypothesized that this should emerge

due to local interactions of receptive fields, and showed this using simulations of

a particle system with local push-pull dynamics in an Euclidean input space.

Suppose now that the input space is not Euclidean, but a Riemannian

manifold. Still, assume that grid cells densely pack on-center and off-surround

receptive fields on this manifold. Due to their limited extent, receptive fields

and, consequently the cells to which they belong, interact only locally. Then, it

appears that receptive fields capture a locally Euclidean region of the manifold,

and that the crossover from one receptive field to the next is smooth. In other

words, the on-center component of a single receptive field forms a chart (or

coordinate system) on the manifold, and the entirety of on-centers of all receptive

fields form an atlas of the manifold.

Having an atlas of a manifold allows to compute geodesics between arbitrary

points. That is, it is possible to compute the shortest path between two points on

a curved surface. Intuitively, this can be related to grid cells as follows. Densely

packing grid fields onto the manifold leads to a surface triangulation of the

manifold. Computing shortest paths on such a mesh is a well studied problem.

It can be solved approximately for instance with Dĳkstra’s algorithm, the Fast

Marching Method (Sethian, 1996), or the Heat Method (Crane et al., 2013). The
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latter two techniques have in common that they directly solve a wave propagation

problem, and also Dĳkstra’s algorithm propagates a wave from source to target

(see experiments in Section 4).

The following simulation of a virtual agent and an MTS was used to explicitly

demonstrate this relationship.

The agent moved at constant speed, and its heading direction was drawn

from a Laplacian distribution at each time-step of the simulation. The input

space, i.e. the space on which the animal moved, was the outside of an upper

hemisphere. Note that, due to symmetry, the presented results are identical to

an agent walking on the inside of a lower hemisphere.

First, receptive fields and their interactions were simulated as a particle

system with push-pull dynamics similar to the method described in Waniek,

2018. That is, only particles close to the agent were updated. Specifically, the

closest particle to the agent was pulled closer to the agent. All other particles in

the surrounding of the agent exerted relative forces on each other. The update

rate with which these forces acted slowly decayed over time. The agent and

particle system was simulated for an arbitrary time until the particles converged

to an approximately stable solution (see 3D view in Figure 15). The figure shows

that the placement of receptive fields forms a blue noise distribution on the input

manifold, or a low-discrepancy sequence. Holes in the arrangement are probably

due to non-uniform sampling of the input space, and because of the simplicity

of the particle system. However, visual inspection (without computing gridness

scores) shows that fields form a dense packing. The particle locations defined
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the centers of spatial transitions.

Then, 5000 points on the hemisphere were randomly sampled to be used

as symbols. Subsequently, each symbol was associated with the closest spatial

transition, which in turn was associated to point to all surrounding symbols.

This forms the MTS.

Finally, the shortest path between two arbitrarily chosen points was computed

by expansion of the MTS and backtracking 50 Monte Carlo samples (see Section 4

or Appendix C for details). The results are presented in Figure 15. Although the

simulation did not yield the perfect solution, the samples and, in particular, the

samplemean are close to the geodesic between the twopoints. The deviation from

the geodesic is primarily due to the placement of the particles and distribution

of symbols, and the expansion from the start symbol towards the goal symbol.

That is, the MTS is not aware of real physical distance between locations, and

treats all transitions with equal cost. Moreover, the search from start towards

the to goal propagates in discrete steps in this simulation and thus has multiple

solutions with equal cost, especially in the beginning.

Note that the presented simulation results do not imply that grid fields

necessarily arrange in the depicted way when a rodent moves on a small

hemisphere. Rather, the purpose of the simulation is to demonstrate that MTS

can compute (approximately) shortest paths even when the input space is non-

Euclidean. This appears to be particularly important given recent evidence

that shows grid field deformations due to changes in the environmental reward

structure (Boccara et al., 2019; Butler et al., 2019).
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Figure 15: MTS on hemisphere. A virtual agent equipped with a push-pull

particle system was simulated for an arbitrary time until the particle system

converged. The particle locations were then used as transition centers (gray

hexagonally arranged dots in 3D view). Subsequently 5000 symbols were

randomly placed on the hemisphere (data not shown), and transitions and

symbols associated. This formed the data contained in the MTS Then, the MTS

was queried to expand a path from start (green dot) to target (blue dot). Finally,

50 Monte Carlo samples were drawn from the solution space (thin blue lines).

The figures display the ground truth geodesic between start and target (thin

black line), as well as the average of all Monte Carlo samples (dashed thick

line). See Waniek, 2018 for description of the particle system, and Section 4 and

Appendix C for details about the algorithms.

96

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2019. ; https://doi.org/10.1101/543801doi: bioRxiv preprint 

https://doi.org/10.1101/543801
http://creativecommons.org/licenses/by/4.0/


Source code for all simulations presented in this paper can be found at

https://github.com/rochus/transitionscalespace.
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