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Abstract

Phenotypic heterogeneity in cancer is often caused by different patterns of genetic alterations. Under-
standing such phenotype-genotype relationships is fundamental for the advance of personalized medicine.
One of the important challenges in the area is to predict drug response on a personalized level. The
pathway-centric view of cancer significantly advanced the understanding of genotype-phenotype relation-
ships. However, most of network identification methods in cancer focus on identifying subnetworks that
include general cancer drivers or are associated with discrete features such as cancer subtypes, hence can-
not be applied directly for the analysis of continuous features like drug response. On the other hand,
existing genome wide association approaches do not fully utilize the complex proprieties of cancer mu-
tational landscape. To address these challenges, we propose a computational method, named NETPHIX
(NETwork-to-PHenotpe assocIation with eXlusivity), which aims to identify mutated subnetworks that are
associated with drug response (or any continuous cancer phenotype). Utilizing properties such as mutual
exclusivity and interactions among genes, we formulate the problem as an integer linear program and solve
it optimally to obtain a set of genes satisfying the constraints. NETPHIX identified gene modules signif-
icantly associated with many drugs, including interesting response modules to MEK1/2 inhibitors in both
directions (increased and decreased sensitivity to the drug) that the previous method, which does not uti-
lize network information, failed to identify. The genes in the modules belong to MAPK/ERK signaling
pathway, which is the targeted pathway of the drug.

1 Introduction
Genetic alterations in cancer are associated with diverse phenotypic properties such as drug response
or patient survival. However, the identification of mutations causing specific phenotypes and the in-
terpretation of the phenotype-genotype relationships remain challenging due to a large number of
passenger mutations and cancer heterogeneity. Indeed, the relationships between genotype and phe-
notype in most tumors are complex and different mutations in functionally related genes can lead to
the same phenotype. The pathway-centric view of cancer [1, 2, 3] suggests that cancer phenotypes
should be considered from the context of dysregulated pathways rather than from the perspective of
mutations in individual genes. Such pathway-centric view significantly advanced the understanding of
the mechanisms of tumorigenesis. Many computational methods to identify cancer driving mutations
have been developed based on pathway approaches [4, 5, 6, 7, 8, 9]. Network based approaches have
been further applied to find subnetworks associated with various disease phenotypes [4, 6, 10, 11, 12].
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Those methods have been developed aiming to find genes whose mutations are associated specifically
with given phenotypes rather than finding general cancer drivers.
Recent projects have characterized drug sensitivity for a large number of drugs in hundreds of cancer
cell lines [13], [14]. This data, together with information about the genetic alterations in these cells,
can be used to understand how genomic alterations impact drug sensitivity. While the success of
network based methods in other cancer domains suggests that such approaches should be also useful
in the studies of drug response, most of previous approaches focused on discrete phenotypic traits –
e.g., cancer vs. healthy, good or bad prognosis, or cancer subtypes – and therefore, cannot be directly
applied to the analysis of continuous features such as drug sensitivity.
Several algorithms for the identification of mutations associated with drug response have been previ-
ously developed [15, 16] but without considering functional relationships among genes. For example,
REVEALER used a re-scaled mutual information metric to iteratively identify a set of genes associ-
ated with the phenotype [16]. UNCOVER employs an integer linear programming formulation based
on the set cover problem, by designing the objective function to maximize the association with the
phenotype and preferentially select mutually exclusive gene sets [15]. However, without interaction
information, the genes identified by the algorithms may not belong to the same pathways, making
them more likely to include false positives and making it difficult to interpret the uncovered associa-
tion and the underlying mechanism.
To address these challenges, we introduce a computational tool named NETPHIX (NETwork-to-
PHenotype assocIation with eXlusivity). With the goal of identifying mutated subnetworks that are
associated with a continuous phenotype, we formulate the problem as an integer linear program and
solve it to optimality using CPLEX. For each drug, we attempt to identify both directions of associ-
ated subnetworks– a subnetwork whose alterations correlate with increased sensitivity to the drug (de-
creased cell survival) and a subnetwork that correlates with reduced sensitivity to the drug (increased
cell survival). Based on the fact that mutations in cancer drivers tend to be heterogeneous, our algo-
rithm builds on combinatorial optimization techniques involving set cover and network constraints.
In addition, NETPHIX preferentially selects mutually exclusive genes as the solution, utilizing an
observation that patient groups harboring different cancer driving mutations tend to be mutually ex-
clusive [17, 18, 19, 7, 20, 21]. This approach together with a carefully designed strategy for selecting
subnetwork size allows to leave out passenger mutations from the sensitivity networks.
There have been related studies combining GWAS analysis with network constraints [22, 23, 24, 25].
While these methods generally perform well at pointing broadly defined disease related functional
pathways, they do not consider complex properties of cancer mutations such as the aforementioned
mutual exclusivity of cancer drivers, and are not designed to zoom on subnetworks that are specific
enough to help understand drug action. As discussed later in this work, the genomic landscape related
to drug response can be complex and mutations in different genes in the same pathway can affect
the response differently. Pharmaceutical drugs are often developed to target specific genes, and the
response depends on the function and the mutation status of the gene as well as other genes in the
same pathway.
We evaluated NETPHIX and other related methods using simulations and showed that NETPHIX out-
performs competing methods. Applying NETPHIX to drug response data, we identified sensitivity-
associated (increasing or decreasing the sensitivity) subnetworks for a large set of drugs. These sub-
networks provided important insights into drug action. Effective computational methods to discover
these associations will improve our understanding of the molecular mechanism of drug sensitivity,
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(a) (b)

Figure 1: Method Overview. (a) NETPHIX finds a connected set of genes for which corresponding mutations are
associated with positive phenotype values (red colors in the drug response profile indicate positive values and blue colors
are for negative values). (b) The significance and the robustness of identified modules are assessed using two different
permutation tests and bootstrapping.

help to identify potential dug combinations, and have a profound impact on genome-driven, personal-
ized drug therapy. NETPHIX is available at https://www.ncbi.nlm.nih.gov/CBBresearch/
Przytycka/index.cgi#netphlix

2 Method

2.1 The NETPHIX method overview

Given gene alteration information of cancer samples and their drug sensitivity profiles (or any cancer-
related, continuous phenotypes), NETPHIX aims to identify genetic alterations underlying the pheno-
type of interest. Starting with the assumption that genes whose mutations lead to the same phenotype
must be functionally related, NETPHIX utilizes functional interaction information among genes and
enforces the identified genes to be highly connected in the network while, at the same time, making
sure that the aggregated alterations of these genes are significantly associated with the given phe-
notype (Figure 1a). In addition, to leverage the property of heterogeneity and mutual exclusivity,
NETPHIX utilizes a set cover approach and penalizes overlapping mutations. Specifically, it has
been observed that patient groups harboring different cancer driving mutations tend to be mutually
exclusive. This property may arise when mutations in two different genes lead to dysregulation of
the same cancer driving pathway and the role of the two genes for cancer progression is redundant.
In such cases, observing mutations in both genes in one patient is unlikely. Building on this obser-
vation, NETPHIX identifies a connected set of genes S such that the sum of phenotypic weights of
the patients with alterations in S (minus the penalties for overlapping alterations) is maximized. For
example, in Figure 1a, the combined alteration of gene set A,B,C would be identified by NETPHIX
as the module is functionally connected and has significant positive association with the phenotype
(even though individual gene associations may not be as significant). The patients with alterations in
genes A and B are completely mutually exclusive while there is only one patient with overlapping
mutations in B and C.
We formulated the problem as an integer linear program (ILP) and solved it to obtain the optimal
set of genes that satisfies the constraints using CPLEX (https://www.ibm.com/analytics/
cplex-optimizer). We provide the formal definition of the problem and the detailed ILP formu-
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lation in Section 2.2 and 2.3, respectively.
Once we obtain the optimal gene modules, we assess both the significance and robustness of the
identified modules by performing permutation tests and bootstrapping (Figure 1b and Section 4.2).
To assess the significance of the association between the phenotype and the identified subnetwork,
we performed permutation tests by permuting the phenotype profile of the patients. Note that our
algorithm is designed to identify the modules associated specifically with a given phenotype (e.g.,
drug sensitivity to each drug) rather than finding general cancer drivers, and the permutation test will
estimate the significance of the association of the given phenotype profile compared with randomly
generated phenotypes. In addition, we performed another permutation test based on permutations of
functional interactions (in a degree preserving way), which assess the importance of the interaction
information in the solution. Finally, we also examine the robustness of the gene selections by perform-
ing bootstrap sampling of the patients and solved the ILP with the phenotype and alterations profiles
for the sampled sets of patients. See Section 4.2 for the details of the permutation and bootstrapping
procedures.

2.2 Formal definition of the computational problem

We are given a graph G = (V,E), with vertices V = {1, . . . , n} representing genes and edges
E representing interactions among genes. Let P denote the set of m patients (samples). For each
sample j ∈ P , we are also given a phenotype profile value wj ∈ R which quantitatively measures a
phenotype (e.g., drug response, pathway activation, etc.). Let Pi ⊆ P be the set of samples in which
gene i ∈ V is altered. We say that a patient j ∈ P is covered by gene i ∈ V if j ∈ Pi i.e. if gene i is
mutated in sample j. We say that a sample j ∈ P is covered by a subset of vertices S ⊆ V , if there
exists at least one vertex v in S such that j ∈ Pv.
Our goal is to identify a connected subgraph S of G of at most k vertices such that the sum of the
weights of the samples covered by S is maximized. Since we are interested in functionally comple-
mentary mutations, we also penalize coverage overlap when an element is covered more than once by
S by assigning a penalty pj for each of the additional times sample j is covered by S. As penalty we
use the average of the positive phenotype values if the original value of the element was positive. If
the original value of the element was negative we assign a penalty equal to its value. Let cS(j) be the
number of times element j ∈ P is covered by S. For a set S of genes, we define its weight W (S) as:

W (S) =
∑

j∈∪s∈SPs

wj −
∑

j∈∪s∈SPs

(cS(j)− 1)pj

Thus, we define the optimization problem as follows:

The Phenotype Associated Connected Coverage problem: Given a graph G defined on a set of n

vertices V , a set P , a family of subsets P = {P1, . . . , Pn} where for each i, Pi ⊆ P is associated with
i ∈ V , weights wj and penalties pj ≥ 0 for each sample j ∈ P find the subset S ⊆ V of ≤ k vertices
maximizing W (S).
The Phenotype Associated Connected Coverage problem is NP-hard since for a complete graph the
problem is equivalent to the NP-hard Target Associated k-Set problem studied in [15]. Although
the problem is NP-hard, we formulated it as an integer linear programming as described in the next
subsection, and solved it to optimality using CPLEX, which can be run in a reasonable amount of
time (See Figure S3b for running times for different k’s).
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2.3 ILP formulation

An ILP formulation for Target Associated k-Set problem was considered in [15]. In NETPHIX we
include an additional set of constraints that ensures the genes selected in the solution are connected
in the network V . Let xi be a binary variable (denoted with xi ∈ B) equal to 1 if gene i ∈ V is
selected and xi = 0 otherwise. Let zj be a binary variable equal to 1 if sample j is covered and zj = 0
otherwise. Let yj denote the number of times sample j is covered in the solution. Finally, let wj be
the weight of sample j and pj be the penalty for sample j. Our ILP formulation is as follows:

z(q) = max
∑
j

(wj + pj)zj −
∑
j

pjyj (1)

s.t.
∑
i

xi ≤ k, (2)

yj =
∑
i:j∈Pi

xi, ∀j (3)

yj ≥ zj, ∀j (4)
zj ≥ yj/k, ∀j (5)∑
l:il∈E

xl ≥ D(k − 1)(xi − 1) +D

(∑
l∈V

xl − 1

)
∀i ∈ V (6)

xi, zj ∈ B, yj ∈ N ∀i, j (7)

Constraint (2) impose that the total number of sets in the solution is at most k. Constraints (3) define
how many times each sample has been covered. Constraints (4) ensure that for each element j ∈ P ,
if j is covered by the current solution then the number of times j is covered in the solution is at least
1. Constraints (5) impose that for each element j ∈ P , if j is covered by at least one element in the
current solution then j is covered.
Constraints (6) were used to ensure the high connectivity of selected module. Specifically, the con-
straints enforce that each selected gene is connected with at least D fraction of genes in the selected
module (other than the gene itself). Note that ifD ≥ 0.5, the module is a connected subgraph since for
any two non-adjacent vertices, they must have a common neighbor (D = 0.5 is used in our analysis).
In our study, we used a functional interaction network (from STRING database), which is relatively
dense. For sparse networks where highly connected components are rare, we may use an alterna-
tive approach based on a branch-and-cut algorithm to ensure the connectivity. See Supplementary
Section S1 for the description of an alternative algorithm.
To select an appropriate module size k, we computed modules of increasing sizes, stopping the process
if increasing module size does not satisfy the constraints on the objective value of the optimal solution
and p-values (See Section 4.2 for details).

3 Results

3.1 Evaluation on simulated data

We generated a set of simulated instances where we planted phenotype associated modules with vary-
ing parameters onto the background of real cancer cell mutation data (Section 4.1). We then compared
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Figure 2: Method comparison on simulated data. The number of false positives in the modules identified by (a)
NETPHIX, (b) UNCOVER, and (c) SigMOD. The solid lines and dots show the average number of false positives over
all different parameters for each k and the shaded areas indicate the distribution over different instances.

the performance of and two related methods – UNCOVER and SigMOD. UNCOVER [15] was pro-
posed previously as a method to identify a set of phenotype-associated genes by considering a simi-
lar objective function but without utilizing interaction information. SigMOD is a recently proposed
module identification algorithm combining GWAS and network based approach, and it was found to
outperform other related methods [25]. SigMOD requires individual association scores of genes to a
phenotype as an input, for which we used the p-value of the association of each gene to a phenotype
by performing t-tests on the coefficients of univariate linear regression.
We planted modules of size 3, 4, and 5 and we evaluated the accuracy of the three methods in identify-
ing the planted modules (Figure 2). For NETPHIX and UNCOVER, we ran the algorithm for different
k’s, while SigMOD automatically adjust all its parameters to find the best module. All the algorithms
uncovered the planted modules in almost all instances (Figure S1). However, only NETPHIX shows
very low rate of false positives, i.e., falsely identified genes (Figure 2). NETPHIX usually does not
extend the best module with spurious genes even if we searched for modules bigger than planted
while UNCOVER tends to add more genes when increasing k. SigMOD identified a large number
of spurious genes along the planted modules (approx. 100-180 genes) that are not associated with
phenotypes.

3.2 Comparison of NETPHIX and UNCOVER on drug response dataset

We applied NETPHIX and UNCOVER to analyze a dataset of 736 cancer cell lines for which somatic
alterations and drug sensitivity data for 265 drug sensitivity experiments are available (Section 4.1)
and we compared the identified modules (Figure 3a). For each drug, we ran both algorithms to
identify modules with decreased or increased sensitivity (530 instances in total). For comparison,
we considered here modules of size k = 3 and the p-value from the phenotype permutation test
pph ≤ 0.05.
NETPHIX reports 182 modules (out of 530 instances) while UNCOVER finds 156 modules. Although
our goal is not to identify cancer drivers but to find the genes associated with sensitivity to each
drug, cancer drivers are expected to be most relevant to drug response. The modules reported by
included a much higher fraction of cancer genes among the genes in the modules as a whole than
the UNCOVER modules, and have a much more significant p-value for the enrichment of cancer
driving genes (p < 10−24, cancer driver genes reported in [3]). While the UNCOVER modules are
also enriched for cancer genes, the enrichment (p < 10−10 by Fisher exact test) is lower than for
NETPHIX modules. These results show that NETPHIX reports modules that contain many cancer
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Figure 3: Comparison of the modules identified by UNCOVER and NETPHIX. (a) The table shows the number
of genes/modules that are significant with phenotype and network permutations (pph ≤ 0.05 and pnet ≤ 0.05) and their
cancer driver enrichment. The network permutation test cannot be performed for UNCOVER because it is a network
agnostic method. (b) The bar chart illustrates similarities and differences between the modules identified by NETPHIX
and UNCOVER.

relevant genes with a higher degree of functional coherence with the drug targets than the UNCOVER
modules (Figure 3a).
In addition to the phenotype permutation test, we performed the network permutation test for NET-
PHIX and considered the modules with both p-values pph ≤ 0.05 and pnet ≤ 0.05. NETPHIX identi-
fies 15 modules with decreased sensitivity to drug response (increased cell survival) and 18 modules
with increased sensitivity to drug response (decreased cell survival). The genes in the NETPHIX
modules as a whole are significantly enriched in well-known cancer genes (p < 10−16 by Fisher exact
test; 27 fold enrichment), showing that NETPHIX identifies modules of genes relevant to the disease
(Figure 3a). Of the 33 instances (phenotype and increased/decreased sensitivity association) for which
NETPHIX identifies a module, 15 have no module identified by UNCOVER (pph ≤ 0.05). Of the
remaining 18 instances, in 7 cases the same module is identified by NETPHIX and by UNCOVER,
while in 11 cases NETPHIX and UNCOVER report completely or partially different modules (Figure
3b). For the latter, to compare the quality of the modules we checked whether the genes in the module
and the drug target (that is unknown to the methods) are part of the same pathway, since one can
expect that alterations in different members of the molecular mechanism targeted by the drug have a
similar effect on drug response. In 10 cases out of 11, the NETPHIX solution has more members in
a pathway (by KEGG or Reactome) that includes the drug target than UNCOVER solutions, while in
the remaining case the solutions from the two algorithms have the same number of members in such
pathways.
Note that since NETPHIX has additional network constraints compared to UNCOVER, the values of
the objective function for NETPHIX’s modules cannot be greater than those of UNCOVER for the
same instances. Nonetheless, we found that the objective values of NETPHIX’s modules are close
to the ones of UNCOVER (i.e., at least 75% of UNCOVER’s values for most instances, Figure S3)
while obtaining more functionally coherent modules.

3.3 Biological implications of drug sensitivity modules identified by NETPHIX

Application of NETPHIX to 530 instances of drug response profiles (increased and decreased sen-
sitivity for 265 drug experiments) with different module sizes k’s resulted in 166 modules that are
significantly associated with drug sensitivity (Table S2). See Section 4.2 for detailed description on
how significant modules are selected.
Many of the modules identified by NETPHIX provide interesting insights related to drug action. In
particular, we analyzed the response to drugs targeting the RAS/MAPK pathway (Table S1 and Fig-
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Figure 4: Subnetworks identified by NETPHIX for selected drugs. Each panel shows the values of the phenotype
(top row) for all samples (columns), with blue being decreased sensitivity values and red being increased sensitivity
values. For each gene in the subnetworks, alterations in each sample are shown in red, while samples not altered are in
grey. The last row shows the alteration profile of the entire solution in blue. (a) and (b) Subnetworks with decreased
and increased sensitivity to Selumetinib, respectively. (c) and (d) Subnetworks with decreased and increased sensitivity
to Afatinib, respectively. (e) Schematic diagram of MAPK/ERK and AKT signaling pathways with drugs and their drug
targets annotated.

ure 4e). This pathway regulates the growth, proliferation and apoptosis and is often dysregulated in
various cancers. Among the most common mutations of this pathway are mutations of BRAF. Interest-
ingly, NETPHIX identified the same module (BRAF, KRAS, and NRAS) as associated with increased
sensitivity to several of those drugs (CI-1040, PD032590, and Refametinib). All these three drugs act
by blocking MEK1 and MEK2 genes that are immediately downstream of BRAF/KRAS/NRAS and
thus increased sensitivity of this subnetwork is consistent with the action of these drugs. Moreover,
NETPHIX identified the module of genes ERBB2 (amplification), MYC, and RB1 (mutations) as
associated with decreased sensitivity to these three drugs.
Selumetinib (another drug targeting MEK 1/2) and VX-11e (which blocks ERK2 gene that is down-
stream of MEK 1/2) have similar response (Figures 4a,b and S4, and Tables S1 and S2). All the genes
in the modules are related to the MAPK/ERK signaling pathway; BRAF, KRAS, NRAS are three core
members, ERBB2 is a receptor protein that, in particular, signals through this pathway, while MYC
and RB1 are downstream of the MAPK/ERK signaling pathway. These findings indicate that the al-
terations in different components of the same pathway can contribute to drug sensitivity in different
ways.
In contrast to the response to MEK1/2 and ERK2 inhibitors, the drugs directly targeting BRAF are
associated with more heterogeneous subnetworks (Table S1), which suggests that patient specific
mutational profile can provide important clues in predicting drug response.
The drugs associated with similar modules but with opposite response can be candidates for combi-
nation drug therapy. For example, we identified Afatinib as having a subnetwork of EGFR, ERBB2,
FOXP3 with increased sensitivity. This suggest that it might be beneficial to use Afatinib in combina-
tion with MEK 1/2 and ERK2 targeting drugs. Indeed, clinical trails for the Afatinib and Selumetinib
combinations are currently underway (https://clinicaltrials.gov/ct2/show/NCT02450656).
There are several MYC-related modules identified by NETPHIX. An interesting example is the mod-
ule for PHA-793887 (Figure S2a), comprising genes KIT, MYC, and NRAS (phenotype permutation
pph ≤ 10−2; network permutation pnet ≤ 10−2), all known cancer genes. PHA-793887 targets the
cell cycle through the inhibition of members of the cyclin dependent kinase (CDK) family, including
CDK2. KIT, MYC, and NRAS are all related to the PI3K-AKT signaling pathway (involved in cell

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/543876doi: bioRxiv preprint 

https://doi.org/10.1101/543876
http://creativecommons.org/licenses/by-nc-nd/4.0/


cycle progression) that is upstream of CDK2. Another notable MYC-related module reported by NET-
PHIX comprises CDKN1B, EGFR, and MYC and is associated (phenotype permutation pph ≤ 10−2;
network permutation pnet ≤ 4 × 10−2) with increased sensitivity to Pelitinib (Figure S2b). Pelitinib
targets epidermal growth factor receptor (EGFR) and all three genes in the module are related to the
ErbB signaling pathway: EGFR is a member of the pathway, while both CDKN1B and MYC are
downstream of the pathway (Figure S2b).
In summary,the modules identified by NETPHIX are in good correspondence with the action of the
respective drugs, suggesting that NETPHIX can correctly identify relevant modules and the modules
can thus be used to predict potential patient-specific drug combinations and to provide guidance to
personalized treatment.

4 Materials and method details

4.1 Datasets

Drug sensitivity dataset: The Genomics of Drug Sensitivity in Cancer Project( https://www.
cancerrxgene.org/) consists of drug sensitivity data generated from high-throughput screening
using fluorescence-based cell viability assays following 72 hours of drug treatment. In particular,
we considered the area under the curve for each experiment as a phenotype. These scores are pro-
vided in the file portal-GDSC AUC-201806-21.txt available through the DepMap data por-
tal (https://depmap.org) for 265 compounds and 743 cell lines, with 736 having alteration data
available through the DepMap portal. For the DepMap experiments [26, 27], we used the alteration
provided at https://depmap.org/portal/download/all/. We downloaded the data on
July 6th 2018. In particular we used mutation data from the file portal-mutation-2018-
06-21.csv that includes binary entries for 18,652 gene-level mutations. Additionally we con-
sidered 22,746 amplifications and 22,746 deletions computed from the gene copy number data in
portal-copy number relative-2018-06-21.csv, with an amplification defined by a copy
number above 2 and a deletion defined by a copy number below -1.

Interaction network For functional interactions among genes, we used the data downloaded from
STRING database version 10.0 (https://string-db.org). We only included the edges with
high confidence scores (≥ 900) as an input to Ṫhe resulting interaction network includes 9,215 nodes
and 160,249 edges.

Preprocessing drug sensitivity data: For every drug response profile, we excluded samples with
missing values for that phenotype, which results in a different number of samples for each pheno-
type. The number of samples varied between 240 and 705. To generate drug sensitivity values for
the patients, we took the negatives of cell viability (i.e., increased cell survival indicates decreased
sensitivity to the drug and vice versa) and then normalized the phenotype values before running the
algorithm, by using standard z-scores (subtracting the average value

∑
j∈J wj/m from each weight

wj and dividing the result by the standard deviation of the (original) wj’s), in order to have both
positive and negative phenotype values. Following previously established practice [16], we discarded
features with low or high frequency, that correspond to noisy features and to features whose frequency
is too high to show a significant association with drug response in combination with other features,
respectively. In particular, features present in less than 1% samples or more than 25% samples were
excluded from our analyses.
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Generating simulated data: For the background of simulation data, we use the same gene alter-
ation table and interactions from drug sensitivity dataset described previously in this section. The
phenotype values for individual samples are randomly drawn from normal distribution N(0, 1). We
then planted randomly generated phenotypes and associated modules to the background as follows.
Phenotypes: α fraction of patients P (α) (α = 0.1, 0.2, and 0.3) were randomly selected and assigned
phenotype values drawn randomly from N(z, 0.5) where z is a z-score corresponding to a cumulative
p-value p (p = 0.005, 0.1, 0.99, and 0.995).
Associated gene modules: we randomly selected a gene set S(k) of size k (k = 3, 4, and 5) and
added random alterations in S(k) for patients P (α) so that each patient in P (α) has an alteration in
exactly one gene in S(k). Therefore, the added alterations among the patients P (α) are mutually
exclusive although there may be overlapping mutations due to the background alterations. We also
added random edges among the genes S(k) so that they satisfy the density constraints.
We generated 10 random instances for each combination of parameters (k, α, z) and ran the module
identification algorithms.

4.2 Method details

Selecting module size k: To identify significant modules for each of 530 instances of drug response
data (increase or decreased sensitivity of each drug experiment), we ran NETPHIX with different k’s
and choose the best k for each instance as follows: start with k = 1 and increase k by one until the
improvement is not sufficient (up to k = 5). We chose 5% improvement cutoff over the previous k for
stop condition ((OPT(k+1)-OPT(k))/OPT(k) < 0.05). Our simulation results show that the improve-
ment of the optimal objective value decreases significantly once the algorithm reaches the size of a
correct solution (Fig. S3a). In addition, the algorithm performs phenotype permutation test and stops
if p-values starts increasing (i.e., less significant than the previous run). Once the algorithm stops, we
define the identified module to be significant if the FDR adjusted p-value (Benjamini/Hochberg) is
less than 0.1.

Phenotype permutation test: In the phenotype permutation, the dependencies among alterations
in genes are maintained, while the association between alterations and the phenotype is removed. In
particular, a permuted dataset under the null distribution is obtained as follows: the graph G = (V,E)
and the sets Pi, i ∈ V are the same as observed in the data; the values of the phenotype are randomly
permuted across the samples. To estimate the p-value for the solutions obtained by our methods we
used the following standard procedure: 1) we run an algorithm on the real dataD, obtaining a solution
with objective function oD; 2) we generate N permuted datasets as described above; 3) we run the
same algorithm on each permuted dataset; 4) the p-value is then given by (e + 1)/(N + 1), where e
is the number of permuted datasets in which our algorithm found a solution with objective function
≥ oD.

Network permutation test: In the second permutation test, a permuted dataset under the null distri-
bution is obtained by generating permuted networks (swapping edges to preserve the degree of nodes)
while maintaining the same phenotype profile and gene alteration table. To generate each permuted
network, we performed edge swapping 100 ∗ |E| times. This permutation measures how likely a ran-
dom network would have a module with the objective value at least the optimal. The test statistics
used to compute p-values is again the value of the objective function of the solution and the p-value
is calculated with same procedure described above for phenotype permutation test.
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Robustness test: To test the robustness of gene selection in modules, we use the bootstrapping
method. More specifically, we sampled patients with replacement to generate random instances of
the same number of samples. Let Bi be a random set of patients generated with bootstrapping in the
i-th iteration. The phenotype and alteration profiles of the patients Bi were used as inputs to and
the optimal solution Oi was computed with the random instances. We repeated bootstrapping 100
times to obtain { B1, B2, ... B100}, for which optimal solutions { O1, O2, ... O100} were computed,
respectively. The robustness of a gene (or an edge, resp.) in the optimal solution is obtained by
counting the number of time the gene (pair of genes, resp.) appears in { O1, O2, ... O100}.

5 Conclusions
We developed a new computational method, NETPHIX (NETwork-to-PHenotpe mapping LeveragIng
eXlusivity), for the identification of mutated subnetworks that are associated with a continuous phe-
notype. Using simulations and analyzing experimental data, we showed that NETPHIX can uncover
the subnetworks associated with response to cancer drugs with high precision. Using NETPHIX to
study drug response in cancer, we found many statistically significant and biologically relevant mod-
ules including two distinct MAPK/ERK signaling related modules associated with opposite response
to drugs targeting MEK1/2 and ERK2 genes. We also demonstrated that subnetworks identified by
NETPHIX can suggest combination drug therapy and guide personalized medicine.
The applicability of NETPHIX can go far beyond the drug response discussed in this paper, to any
continuous cancer phenotypes. We expect that NETPHIX will find broad applications in many types
of network-to-phenotype association studies.
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Supplementary Materials
S1 Algorithm for Sparse networks
The approach described in the main text works well for dense networks, see Section 2 for results on
cancer data. For sparse networks imposing high density for the selected subnetwork might not be the
best approach. Therefore we also propose a variation of the formulation presented in section 2.2 to
handle sparse networks.
Given a graph G = (V,E) and two distinct nodes h and l from V , a subset of nodes N ⊆ V \{h, l}
is an (h, l) node separator if and only if after removing N from V there is no path between h and l in
G. Let N (h, l) denote the family of all (h, l) node separators. A separator N ∈ N (h, l) is minimal if
N\{i} is not an (h, l) separator for any i ∈ N .
As an alternative to constraint (6) in the formulation above one could impose the following connec-
tivity constraint: ∑

i∈N

xi ≥ xh + xl − 1, ∀h, l ∈ V, h 6= l,∀N ∈ N (h, l) (8)

Constraint (8) ensure that for any pair of selected nodes h, l there is a path between them in the graph.
An analogous constraint was used in [28, 29] and [30] shows that constraints (8) are facet defining
for the connected subgraph polytope if N is a minimal (h, l) node separator. The NETPHIX package
includes the implementation of this ILP as well. Constraints (8) are treated as lazy constraints and are
only introduced when an integer solution that violates these inequalities is found. The branch and cut
algorithm used is analogous to the one used in [28] and [29] and it involves finding a minimal node
separator for nodes in the disjoint connected components of the found infeasible solution.
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Figure S1: Method comparison on simulated data. The number of true positives in the modules identified
by (a) NETPHIX, (b) UNCOVER, and (c) SigMOD. he solid lines and dots show the average number of false
positives over all different parameters for each k and the shaded areas indicate the distribution over different
instances.
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Figure S2: Subnetworks identified by for selected drugs. Each panel shows the values of the phenotype (top row)for
all samples (columns), with blue being decreased sensitivity values and red being increased sensitivity values. For each
gene in the subnetworks, alterations in each sample are shown in red, while samples not altered are in grey. The last
row shows the alteration profile of the entire solution in blue. (a) and (b) Subnetworks with increased sensitivity to
PHA793887 and Pelitinib, respectively.
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Figure S3: Performance of NETPHIX. (a) The improvement of objective values over different k’s in sim-
ulation. (b) The average running times of NETPHIX over different k’s. (c) Comparison of the values of the
objective function for NETPHIX’s modules and UNCOVER’s modules. Since NETPHIX includes additional
constraints w.r.t. UNCOVER, the values of the objective function for its optimal solutions cannot be larger
than the values of the objective function for UNCOVER’s solutions. We display the distribution of the objec-
tive values for NETPHIX’s modules as respective fractions of the UNCOVER objective values for the same
instance.
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Figure S4: Network view of modules discussed in Section 3.3 and Figures 4 and S2. The size of the
modules indicates the robustness of the genes in bootstrapping while the darkness of color represents their
individual association scores. The thickness of edges shows the number of times the pair of genes appear in the
same run of bootstrapping, i.e., how likely they appear together.
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Table S1: Sensitivity subnetworks for drugs in MAPK/ERK signaling pathway. Analysis of false positives
in simulation studies indicatedthat false positive modules are often composed of an olfactory receptors’ subnet-
work. Human genome contains hundreds of olfactory receptor genes which are functionally related forming a
giant densely connected subnetwork and since they are also subject to frequent mutations, olfactory receptors’
subnetworks are expected to be false positives.

drug id increased sensitivity module decreased sensitivity module drug target targeted pathway
PLX-4720 175 BRAF mut KRAS mut, NRAS mut, ERBB2 amp, IL2 del, RHOA del BRAF ERK MAPK signaling
SB590885 199 BRAF mut none BRAF ERK MAPK signaling
AZ628 20 BRAF mut, NRAS mut, PTPN11 mut, TCF7L2 mut, SMARCA4 mut, E2F5 mut, RB1 mut, CCND1 amp BRAF ERK MAPK signaling

KRAS amp, PIK3CD del
PLX-4720 176 BRAF mut KRAS mut, NRAS mut, PIK3CD mut, ERBB2 amp, RHOA del BRAF ERK MAPK signaling
Dabrafenib 64 BRAF mut, PPARA mut, RB1 mut, JUN mut, DACH1 del, SMAD4 del BRAF ERK MAPK signaling
Selumetinib 203 BRAF mut, KRAS mut MYC mut, RB1 mut, ERBB2 amp MEK1, MEK2 ERK MAPK signaling
VX-11e 244 BRAF mut, KRAS mut, NRAS mut RB1 mut, ERBB2 amp, CCND1 amp ERK2 ERK MAPK signaling
Trametinib 231 BRAF mut, KRAS mut, NRAS mut LAMA3 mut, COL7A1 del MEK1, MEK2 ERK MAPK signaling
CI-1040 54 BRAF mut, KRAS mut, NRAS mut MYC mut, RB1 mut, ERBB2 amp MEK1, MEK2 ERK MAPK signaling
PD0325901 160 BRAF mut, KRAS mut, NRAS mut MYC mut, RB1 mut, ERBB2 amp MEK1, MEK2 ERK MAPK signaling
Refametinib 187 BRAF mut, KRAS mut, NRAS mut MYC mut, RB1 mut, ERBB2 amp MEK1, MEK2 ERK MAPK signaling
AS605240 15 BRAF mut, KRAS mut, NRAS mut Olifactory Receptors PI3Kgamma PI3K/MTOR signaling
(5Z)-7-Oxozeaenol 1 BRAF mut, NRAS mut MYC mut, RB1 mut, ERBB2 amp, CDKN1B del, RHOA dell TAK1 Other kinases
Afatinib 6 EGFR amp, ERBB2 amp, FOXP3 del BRAF mut, KRAS mut, NRAS mut ERBB2, EGFR EGFR signalling
Pelitinib 162 MYC mut, EGFR mut, CDKN1B del BRAF mut, RB1 mut, MAPK1 del EGFR EGFR signalling
PHA-793887 168 MYC mut, NRAS mut, KIT mut none CDK2, CDK7, CDK5 cell cycle
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Table S2: All sensitivity subnetworks found by NETPHIX. List of 166 modules selected as significant (out
of all 530 instances) and their statistics. Analysis of false positives in simulation studies indicated that false
positive modules are often composed of an olfactory receptors’ subnetwork. Human genome contains hundreds
of olfactory receptor genes which are functionally related forming a giant densely connected subnetwork and
since they are also subject to frequent mutations, olfactory receptors’ subnetworks are expected to be false
positives.

drug id sensitivity k optimal objective selected module pph adj pph (BH) pnet

(5Z)-7-Oxozeaenol 1 decreased 5 57.6 MYC mut, RB1 mut, ERBB2 amp, CDKN1B del, RHOA del 0.0099 0.0557 0.7273
(5Z)-7-Oxozeaenol 1 increased 2 64.2 BRAF mut, NRAS mut 0.0099 0.0557 0.0198
Afatinib 6 decreased 2 33.9 KRAS mut, NRAS mut 0.0099 0.0557 0.0198
Afatinib 6 increased 3 78.3 EGFR amp, ERBB2 amp, FOXP3 del 0.0099 0.0557 0.0891
Afatinib 7 decreased 3 48.9 BRAF mut, KRAS mut, NRAS mut 0.0099 0.0557 0.0099
Afatinib 7 increased 3 68.4 MAPK8 mut, ERBB2 amp, NFATC1 del 0.0099 0.0557 0.9091
AICA Ribonucleotide 8 decreased 5 51.6 OR8H2 mut, OR4K13 mut, OR1M1 mut, OR10G8 del, OR4C15 del 0.0099 0.0557 0.4158
AKT inhibitor VIII 9 increased 3 59.4 PIK3CA mut, ITGA1 mut, ERBB2 amp 0.0099 0.0557 0.9091
AKT inhibitor VIII 10 decreased 1 34.0 MXD1 amp 0.0198 0.0872 1
AR-42 13 decreased 3 44.7 FYN mut, CTTN amp, TEK del 0.0198 0.0872 1
AR-42 13 increased 3 54.5 MYC mut, NRAS mut, IL2RB mut 0.0099 0.0557 0.5455
AS605240 15 increased 3 66.6 BRAF mut, KRAS mut, NRAS mut 0.0099 0.0557 0.0099
AT-7519 16 increased 3 56.1 MYC mut, NRAS mut, KIT mut 0.0099 0.0557 0.1584
Axitinib 19 decreased 3 38.5 SPHKAP mut, SPHK1 mut, KDSR del 0.0099 0.0557 0.5455
AZ628 20 decreased 5 35.8 TCF7L2 mut, SMARCA4 mut, E2F5 mut, RB1 mut, CCND1 amp 0.0099 0.0557 0.1089
AZ628 20 increased 5 45.5 BRAF mut, NRAS mut, PTPN11 mut, KRAS amp, PIK3CD del 0.0099 0.0557 0.0099
AZD8055 24 decreased 5 54.4 OR4C46 mut, OR4K13 mut, OR5K1 mut, OR4N4 del, OR4C15 del 0.0099 0.0557 1
Belinostat 26 increased 3 49.9 MYC mut, NRAS mut, KIT mut 0.0099 0.0557 0.3465
BIX02189 31 decreased 5 49.3 TCF7L2 mut, HDAC3 mut, RB1 mut, CCND1 amp, SMAD4 del 0.0099 0.0557 0.1287
Bleomycin (50 uM) 33 decreased 2 46.1 LAMA2 mut, AGRN del 0.0099 0.0557 0.6364
BMS-536924 37 decreased 3 47.6 PTEN mut, GRB7 amp, CAV1 amp 0.0099 0.0557 0.2178
BMS-754807 38 increased 1 38.5 KRAS mut 0.0099 0.0557 1
Bosutinib 40 decreased 2 34.7 RB1 mut, TFDP1 del 0.0198 0.0872 0.1683
Bryostatin 1 41 decreased 5 45.0 DNMT1 mut, RB1 mut, JUN mut, HDAC2 del, SMAD2 del 0.0099 0.0557 0.7273
BX-912 42 decreased 5 51.6 PLG mut, HRG mut, PROS1 mut, CLU del, SERPINA1 del 0.0099 0.0557 1
BX-912 42 increased 3 52.7 MYC mut, NRAS mut, KIT mut 0.0099 0.0557 0.0594
BX796 43 decreased 5 53.1 OR1S2 mut, OR6N2 mut, OR5K1 mut, OR5C1 mut, OR4C11 del 0.0099 0.0557 1
Camptothecin 45 decreased 2 39.7 OR4C15 mut, OR4C11 del 0.0099 0.0557 0.8182
Camptothecin 45 increased 3 53.9 CREBBP mut, HIST1H1E mut, KAT2B del 0.0099 0.0557 0.0099
CAY10603 46 increased 3 57.1 MYC mut, NRAS mut, KIT mut 0.0099 0.0557 0.2178
CCT-018159 47 decreased 4 46.6 ARHGEF17 mut, RHOBTB2 del, ARHGAP10 del, ARHGAP18 del 0.0198 0.0872 0.0099
CCT007093 48 increased 5 66.7 PLCG1 mut, VHL mut, UBC mut, USP33 mut, JAK2 del 0.0099 0.0557 0.0792
CGP-082996 50 increased 4 40.0 TAF1 mut, MYC mut, TAF4B del, TBP del 0.0099 0.0557 0.0099
CHIR-99021 53 decreased 3 48.4 ASXL1 mut, RB1 mut, RBBP7 del 0.0099 0.0557 0.7273
CI-1040 54 decreased 3 49.9 MYC mut, RB1 mut, ERBB2 amp 0.0099 0.0557 0.4653
CI-1040 54 increased 3 101.4 BRAF mut, KRAS mut, NRAS mut 0.0099 0.0557 0.0099
Cisplatin 55 decreased 5 50.5 OR56A3 mut, OR8H2 mut, OR6N2 mut, OR4E2 del, OR4C15 del 0.0099 0.0557 0.9091
CP466722 57 increased 3 53.3 MYC mut, NRAS mut, KIT mut 0.0099 0.0557 0.1287
CP724714 58 decreased 5 35.7 EPHA3 mut, TIAM1 mut, NRAS mut, LYN mut, RHOA del 0.0198 0.0872 0.1176
CP724714 58 increased 3 74.3 EIF2AK2 mut, ERBB2 amp, STAT3 del 0.0099 0.0557 0.8182
CUDC-101 60 increased 3 53.0 MYC mut, NRAS mut, KIT mut 0.0099 0.0557 0.4356
CX-5461 61 decreased 2 37.3 KDR mut, PTK2B del 0.0198 0.0872 0.0891
Dabrafenib 64 decreased 5 51.7 PPARA mut, RB1 mut, JUN mut, DACH1 del, SMAD4 del 0.0099 0.0557 0.8182
Dabrafenib 64 increased 1 111.9 BRAF mut 0.0099 0.0557 1
Dacinostat 65 decreased 5 62.9 OR4C6 mut, OR5F1 mut, OR2T34 del, OR4C11 del, OR10G2 del 0.0099 0.0557 0.0495
Dactolisib 66 decreased 5 56.9 SIRT1 mut, RB1 mut, CITED2 mut, LPL del, PPARA del 0.0099 0.0557 1
Daporinad 67 decreased 2 41.0 SMG1 mut, PPP2R2A del 0.0099 0.0557 0.5172
Docetaxel 70 decreased 3 47.1 SREBF2 mut, LSS mut, HSD17B7 amp 0.0099 0.0557 0.9091
Doramapimod 71 decreased 1 31.1 SACS mut 0.0198 0.0872 1
Doxorubicin 72 decreased 5 50.9 OR52H1 mut, OR5F1 mut, OR2T10 del, OR10G2 del, OR2A4 del 0.0198 0.0872 0.9091
Epothilone B 78 increased 3 45.8 ERCC6 mut, SMAD4 del, KAT2B del 0.0198 0.0872 0.9091
Fedratinib 81 decreased 3 48.7 TIAM1 mut, SMAD4 del, CDH1 del 0.0099 0.0557 0.9091
Fedratinib 81 increased 3 50.5 MYC mut, NRAS mut, KIT mut 0.0198 0.0872 0.0297
FR-180204 84 decreased 3 39.5 PTEN mut, CCND1 amp, SPRY2 del 0.0099 0.0557 0.0297
Gefitinib 86 decreased 4 41.8 BRAF mut, KRAS mut, SPRY2 del, PTEN del 0.0099 0.0557 0.0099
Genentech Cpd 10 88 decreased 3 47.9 BRAF mut, MBP del, MAPK1 del 0.0099 0.0557 0.5455
Genentech Cpd 10 88 increased 2 44.7 MAP3K5 mut, MINK1 del 0.0099 0.0557 0.0099
GSK269962A 93 decreased 3 43.6 STAT6 mut, SMAD4 del, PIAS4 del 0.0198 0.0872 0.8182
GSK429286A 95 decreased 3 40.5 KRAS mut, CDKN2A mut, CCND1 amp 0.0099 0.0557 0.1584
GSK650394 96 increased 3 51.5 CTNNB1 mut, PTPRB mut, MYC amp 0.0099 0.0557 0.3762
GSK690693 97 decreased 3 45.5 BRAF mut, MBP del, MAPK1 del 0.0099 0.0557 0.7273
GSK690693 97 increased 3 64.4 PTEN mut, PSMD3 amp, CDKN1B del 0.0099 0.0557 0.198
HG-5-88-01 102 decreased 5 37.3 PTEN mut, MAPK8 mut, ERBB2 amp, CTNNB1 del, TP53 del 0.0099 0.0557 0.2079
I-BET-762 104 decreased 5 57.8 MTA3 mut, ERCC6 mut, CCND1 amp, SMAD4 del, KAT2B del 0.0099 0.0557 1
I-BET-762 104 increased 3 63.7 MYC mut, NRAS mut, KIT mut 0.0099 0.0557 0.1287
Idelalisib 105 decreased 3 37.1 AGAP2 mut, RB1 mut, CCND1 amp 0.0099 0.0557 0.0594
Idelalisib 105 increased 3 57.2 MYC mut, CDC16 mut, CDKN1B del 0.0099 0.0557 0.2277
Imatinib 106 decreased 3 19.0 APOB mut, NRAS mut, UBC mut 0.0198 0.0872 0.3465
IPA-3 108 increased 5 66.5 MYC mut, NRAS mut, RAC1 mut, CCND1 mut, CDC42 mut 0.0099 0.0557 0.0198
Ispinesib Mesylate 109 increased 3 47.6 MAP3K5 mut, MINK1 del, USP9X del 0.0198 0.0872 0.2376
JNK Inhibitor VIII 110 decreased 3 43.0 LAMA2 mut, MYC mut, RAC1 mut 0.0099 0.0557 0.0198
JQ1 113 decreased 2 33.9 MDN1 mut, GTPBP4 del 0.0198 0.0872 0.0891
JW-7-24-1 115 decreased 3 52.7 STK11 mut, PARP1 mut, SMAD4 del 0.0099 0.0557 1
KIN001-244 118 decreased 5 50.7 OR2M2 mut, OR10R2 mut, OR13G1 mut, OR51B5 mut, OR4C15 del 0.0099 0.0557 0.7273
KIN001-260 119 decreased 3 44.7 PIK3CA mut, CTNNB1 del, SMAD4 del 0.0099 0.0557 0.5455
KIN001-270 121 decreased 2 35.3 KRAS mut, TEK del 0.0198 0.0872 0.1386
KIN001-270 121 increased 2 47.9 MYC mut, SMARCA2 mut 0.0099 0.0557 0.1287
Lapatinib 123 increased 3 37.9 NUP153 mut, CPSF3 mut, SMAD4 del 0.0099 0.0557 0.0594
Lenalidomide 124 decreased 1 30.4 DNAH8 mut 0.0099 0.0557 1
Lestauritinib 125 decreased 5 64.2 SMAD3 mut, LEF1 mut, WWTR1 mut, SMAD4 del, TFDP1 del 0.0099 0.0557 1
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Linsitinib 128 decreased 5 49.6 PTEN mut, PLCB1 mut, MAPK8 mut, GNAI1 mut, PTEN del 0.0099 0.0557 0.1188
Linsitinib 128 increased 2 42.0 KRAS mut, LYN del 0.0198 0.0872 1
Methotrexate 131 decreased 2 34.1 PPP2R2A del, RPL17 del 0.0198 0.0872 1
Midostaurin 133 decreased 3 43.3 KRAS mut, RB1 mut, CCND1 amp 0.0099 0.0557 0.1089
Mitomycin-C 134 decreased 5 55.9 OR51D1 mut, OR10Q1 mut, OR4C11 del, OR10G2 del, OR14I1 del 0.0099 0.0557 0.0693
Navitoclax 138 decreased 3 43.5 BRAF mut, AKT1 mut, SMAD4 del 0.0198 0.0872 1
NG-25 139 decreased 3 47.2 APC mut, DACH1 del, SMAD4 del 0.0099 0.0557 0.0099
NSC-207895 142 decreased 5 60.1 KRAS mut, ERBB2 amp, CCND1 amp, PSMB1 del, PSMD11 del 0.0099 0.0557 0.0297
Nutlin-3a (-) 145 decreased 5 71.0 MET mut, RB1 mut, SMAD4 del, FOXP3 del, TP53 del 0.0099 0.0557 0.0099
NVP-BHG712 146 decreased 5 55.4 RB1 mut, JUN mut, CCND1 amp, DACH1 del, SMAD4 del 0.0099 0.0557 0.0792
Olaparib 149 decreased 5 47.1 NCOA1 mut, POLR2A mut, SMAD4 del, TP53 del, CCNK del 0.0099 0.0557 0.1188
OSI-027 152 decreased 3 50.9 STK11 mut, TGIF1 mut, SMAD4 del 0.0099 0.0557 1
OSU-03012 154 increased 2 42.6 NOTCH1 mut, SEL1L mut 0.0099 0.0557 0.1584
PAC-1 155 increased 5 61.7 MYC mut, EGFR mut, MAX mut, ERBB2 amp, ERBB4 del 0.0099 0.0557 0.0198
Palbociclib 157 decreased 3 62.3 RB1 mut, KDM1A mut, RB1 del 0.0099 0.0557 0.8182
Palbociclib 157 increased 1 63.3 MTAP del 0.0099 0.0557 1
Pazopanib 159 decreased 3 42.8 PIK3CG mut, KRAS mut, RAF1 del 0.0099 0.0557 0.8182
PD0325901 160 decreased 3 50.0 MYC mut, RB1 mut, ERBB2 amp 0.0099 0.0557 0.0198
PD0325901 160 increased 3 104.3 BRAF mut, KRAS mut, NRAS mut 0.0099 0.0557 0.0099
PD173074 161 decreased 5 45.6 EP300 mut, MED24 amp, LPL del, MED31 del, MED14 del 0.0099 0.0557 0.5455
Pelitinib 162 decreased 3 39.9 BRAF mut, RB1 mut, MAPK1 del 0.0198 0.0872 0.1287
Pelitinib 162 increased 3 58.3 MYC mut, EGFR mut, CDKN1B del 0.0099 0.0557 0.0396
PFI-1 166 decreased 1 36.5 RIMS2 mut 0.0198 0.0872 1
PHA-793887 168 increased 3 57.7 MYC mut, NRAS mut, KIT mut 0.0099 0.0557 0.0792
PI-103 170 decreased 5 61.1 OR5W2 mut, MC3R mut, OR10G2 del, GNB1 del, MC4R del 0.0099 0.0557 1
Pictilisib 171 decreased 5 49.7 OR52A5 mut, OR4K13 mut, OR5K1 mut, OR11G2 mut, OR4M2 del 0.0099 0.0557 0.7273
Pictilisib 172 decreased 2 37.2 CHD9 mut, ALAS1 del 0.0099 0.0557 0.6364
PIK-93 173 decreased 1 35.1 TG mut 0.0099 0.0557 1
Piperlongumine 174 decreased 4 56.4 DMD mut, UBC mut, ITGB1 del, RHOA del 0.0099 0.0557 0.0792
PLX-4720 175 decreased 5 43.0 KRAS mut, NRAS mut, ERBB2 amp, IL2 del, RHOA del 0.0099 0.0557 0.0099
PLX-4720 175 increased 1 100.2 BRAF mut 0.0099 0.0557 1
PLX-4720 176 decreased 5 44.6 KRAS mut, NRAS mut, PIK3CD mut, ERBB2 amp, RHOA del 0.0198 0.0872 0.2353
PLX-4720 176 increased 1 108.0 BRAF mut 0.0099 0.0557 1
Ponatinib 177 decreased 5 45.8 KRAS mut, RB1 mut, ERBB2 amp, CCND1 amp, TFDP1 del 0.0099 0.0557 0.0326
QL-X-138 180 decreased 3 47.2 TG mut, INS del, SGK1 del 0.0099 0.0557 1
QL-XI-92 181 decreased 3 47.1 APC mut, CCND1 amp, SMAD4 del 0.0099 0.0557 0.1683
Quizartinib 185 decreased 3 30.1 BRAF mut, KRAS mut, CCND1 amp 0.0198 0.0872 0.0099
Refametinib 187 decreased 3 54.6 MYC mut, RB1 mut, ERBB2 amp 0.0099 0.0557 0.0198
Refametinib 187 increased 3 104.2 BRAF mut, KRAS mut, NRAS mut 0.0099 0.0557 0.0099
Refametinib 188 decreased 3 51.5 MYC mut, RB1 mut, ERBB2 amp 0.0099 0.0557 0.1485
Refametinib 188 increased 3 114.0 BRAF mut, KRAS mut, NRAS mut 0.0099 0.0557 0.0099
SB-505124 196 decreased 1 34.7 MACF1 mut 0.0198 0.0872 1
SB216763 197 decreased 3 38.3 GRIN2A mut, DVL1 mut, RHOA del 0.0099 0.0557 0.1485
SB52334 198 decreased 3 45.2 EP300 mut, VHL mut, NFATC1 del 0.0099 0.0557 1
SB590885 199 increased 1 90.7 BRAF mut 0.0099 0.0557 1
Selumetinib 202 decreased 2 34.1 SMARCA4 mut, RB1 mut 0.0099 0.0557 0.0495
Selumetinib 202 increased 2 64.7 BRAF mut, KRAS mut 0.0099 0.0557 0.0198
Selumetinib 203 decreased 3 50.7 MYC mut, RB1 mut, ERBB2 amp 0.0099 0.0557 0.0198
Selumetinib 203 increased 2 107.8 BRAF mut, KRAS mut 0.0099 0.0557 0.0198
Shikonin 207 decreased 4 49.3 ANK2 mut, ITPR2 amp, ITPR1 del, SNAP25 del 0.0198 0.0872 0.396
SN-38 209 decreased 5 55.7 OR2T6 mut, OR2M2 mut, OR2L8 mut, OR52B6 mut, OR4C16 del 0.0099 0.0557 1
SN-38 209 increased 3 53.6 CREBBP mut, KAT2B del, TAF1B del 0.0099 0.0557 0.0198
STF-62247 212 decreased 3 38.1 AGAP2 mut, CCND1 amp, SMAD4 del 0.0099 0.0557 0.1485
Sunitinib 213 decreased 3 28.3 SETD2 mut, HDAC3 mut, RB1 mut 0.0099 0.0557 0.6364
T0901317 214 increased 3 55.2 MYC mut, GATA1 mut, MMP2 del 0.0198 0.0872 0.1683
TAK-715 215 increased 3 54.5 KIAA1524 mut, MYC mut, MYB mut 0.0099 0.0557 0.3663
Talazoparib 216 decreased 5 53.9 OR56A3 mut, OR2T6 mut, OR10V1 mut, OR4C11 del, OR4E2 del 0.0099 0.0557 0.0396
Tanespimycin 218 decreased 3 54.1 MYC mut, POLA1 mut, RB1 mut 0.0099 0.0557 0.0198
Tanespimycin 218 increased 3 51.2 PIK3CA mut, NCK1 mut, TEK del 0.0099 0.0557 0.3762
Temsirolimus 220 decreased 3 47.3 BDP1 mut, RB1 mut, TBP del 0.0099 0.0557 0.5294
TGX221 221 increased 1 25.8 MRPS27 amp 0.0099 0.0557 1
THZ-2-102-1 223 increased 3 45.8 MYC mut, PIAS2 mut, MYC amp 0.0198 0.0872 0.5455
THZ-2-49 224 decreased 4 49.0 RB1 mut, MCM7 mut, CCND1 amp, CCNA1 del 0.0099 0.0557 0.6364
TL-1-85 227 decreased 3 44.9 APC mut, DACH1 del, SMAD4 del 0.0099 0.0557 0.0693
TPCA-1 230 decreased 3 46.9 PTPRM mut, CTNNB1 del, TCF4 del 0.0099 0.0557 0.9091
Trametinib 231 decreased 2 41.4 LAMA3 mut, COL7A1 del 0.0099 0.0557 0.1881
Trametinib 231 increased 3 100.6 BRAF mut, KRAS mut, NRAS mut 0.0099 0.0557 0.0099
Tretinoin 232 decreased 3 40.1 PTEN mut, PLCD3 mut, SMAD4 del 0.0099 0.0557 0.4059
Tubastatin A 233 decreased 5 49.6 TBL1X mut, HDAC9 mut, WWTR1 mut, CCND1 amp, SMAD4 del 0.0099 0.0557 0.6364
Tubastatin A 233 increased 3 54.6 MYC mut, NRAS mut, KIT mut 0.0198 0.0872 0.7273
TW 37 234 decreased 5 60.2 FPR1 mut, PRKACA mut, ADCY7 del, EDN1 del, NFATC1 del 0.0099 0.0557 0.8182
UNC0638 235 decreased 3 50.1 PIK3CA mut, RHOG del, ARHGAP6 del 0.0198 0.0872 0.9091
Vinblastine 239 decreased 5 55.3 OR10A2 mut, OR1S2 mut, OR52K2 mut, OR51G1 mut, OR4C16 del 0.0198 0.0872 1
Vinblastine 239 increased 3 46.3 CREBBP mut, PYGO1 mut, MYC amp 0.0099 0.0557 0.0792
VNLG/124 242 decreased 3 33.6 SPTA1 mut, DCC del, FYN del 0.0099 0.0557 1
Vorinostat 243 decreased 5 58.0 OR51A4 mut, OR8B2 mut, OR5AS1 mut, OR4E2 del, OR4C15 del 0.0099 0.0557 1
VX-11e 244 decreased 3 41.1 RB1 mut, ERBB2 amp, CCND1 amp 0.0099 0.0557 0.4653
VX-11e 244 increased 3 99.2 BRAF mut, KRAS mut, NRAS mut 0.0099 0.0557 0.0099
WIKI4 248 decreased 4 47.3 LEO1 mut, LEF1 mut, ELP3 del, CDC73 del 0.0099 0.0557 0.9091
WZ3105 250 increased 3 58.4 MAP3K5 mut, PARK7 del, MINK1 del 0.0099 0.0557 0.0792
XMD13-2 253 decreased 3 42.7 BRAF mut, NGF mut, NEDD4L del 0.0198 0.0872 1
XMD14-99 254 decreased 2 34.3 EP300 mut, SMAD4 del 0.0099 0.0557 0.1683
XMD8-85 256 increased 3 31.7 MYC mut, PRPF8 mut, HNRNPK del 0.0198 0.0872 1
Y-39983 258 increased 3 56.4 MYC mut, CRKL mut, STAT5B mut 0.0099 0.0557 0.7273
ZG-10 262 decreased 5 41.0 FUS mut, SNRPA mut, POLR2B mut, POLR2F del, CTDP1 del 0.0099 0.0557 0.0198
ZM447439 264 decreased 4 40.8 OR4M2 mut, OR6C6 mut, OR5D18 mut, OR4C16 del 0.0198 0.0872 1
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