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ABSTRACT2

Multiscale computational models of heart are being extensively investigated for improved3
assessment of drug-induced Torsades de Pointes (TdP) risk, a fatal side effect of many drugs.4
Model-derived metrics (features) such as action potential duration and net charge carried by5
ionic currents (qNet) have been proposed as potential candidates for TdP risk stratification after6
being tested on small datasets. Unlike purely statistical approaches, model-derived metrics are7
thought to provide mechanism-based classification. In particular, the underlying mechanism8
behind the success of the recently proposed qNet metric is attributed to its correlation to early9
afterdepolarizations (EADs), which are known to be cellular triggers of TdP. Analysis of critical10
model components and of ion-channels that have major impact on model-derived metrics can lead11
to improvement in the confidence of the prediction. In this paper, we analyze a large population of12
virtual drugs to systematically examine the influence of different ion channels on model-derived13
metrics that have been proposed for proarrhythmic risk assessment. Global sensitivity analysis14
(GSA) methods were employed to determine and highlight the critical input parameters that15
affect different model-derived metrics. We observed significant differences between the sets16
of input parameters that control model-derived metrics and generation of EADs in the model,17
thus opposing the idea that these metrics and sensitivity to EAD might be strongly correlated.18
Moreover, in classification of a small set of actual drugs, we found that the classifiers based on19
EADs performed worse than those built on other model-derived metrics. Hence, our analysis20
points towards a need for a better mechanistic interpretation of promising metrics such as qNet21
based on formal analyses of models. In particular, GSA should constitute an essential component22
in the in silico workflow for proarrhythmic risk assessment to yield improved understanding of23
the structure of mechanistic dependencies surrounding model-derived metrics while ultimately24
providing increased confidence in model-predicted risk.25

Keywords: Global sensitivity analysis, Torsades de Pointes, Computational Modeling, early afterdepolarizations, ion channel26
pharmacology27
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1 INTRODUCTION

Drug-induced Torsades de Pointes (TdP) is a specific form of polymorphic ventricular tachycardia that28
leads to ventricular fibrillation and sudden cardiac death (Yap and Camm, 2003). Several drugs have been29
withdrawn from the market in the past due to TdP risk (Gintant, 2008). Although the current clinical safety30
guidelines are successfully preventing drugs with torsadogenic risk from reaching the market (Sager et al.,31
2014), safe drugs may be potentially excluded due to the low specificity of the screening process, which32
targets only hERG channels. The Comprehensive in vitro Proarrhythmia Assay (CiPA) is a global initiative33
to provide revised guidelines for better evaluation of the proarrhythmic risk of drugs (Fermini et al., 2016).34
In silico evaluation of proarrhythmic action for different compounds constitutes an important foundation35
under the CiPA initiative to link data from in vitro assays to changes in cell behavior (Fermini et al., 2016;36
Colatsky et al., 2016).37

The main component of the in silico evaluation are classifiers that are based on the so-called “derived38
features”, input variables for the classifiers that are extracted from the outputs of biophysical models. The39
term “direct features” refers instead to the original feature set estimated from experiments investigating how40
drugs affect ion channel kinetics. Biophysical models serve as complex transformations that generate feature41
sets conditioned to the prior knowledge used in creating the model, thus potentially improving the efficacy42
of linear classifiers in inferring TdP risk. Diverse sets of derived features have been suggested as potential43
candidates for TdP risk classification (Table 1). In one of the earliest works on the use of the myocyte44
models for TdP risk prediction, simulated action potential duration at 90 % repolarization (APD90) was45
shown to provide the best discrimination of torsadogenic and non-torsadogenic drugs (Mirams et al., 2011).46
Other derived features extracted from the action potential (e.g., early after depolarization (EAD) and47
transmural dispersion of repolarization (TDR)), have also been suggested as possible candidate metrics48
for TdP risk prediction (Christophe, 2013, 2015). Considering derived features from calcium transient in49
addition to features of the action potential have been shown to improve TdP risk discrimination (Lancaster50
and Sobie, 2016). Recently, tertiary TdP risk classifiers trained on a set of 12 drugs categorized into 351
clinical TdP risk groups (high, intermediate, and low/no risk) have been developed at FDA as a part of52
the CiPA initiative (Li et al., 2017; Dutta et al., 2017). Finally, two new derived features cqInward (Li53
et al., 2017) and qNet (Dutta et al., 2017) have been proposed to separate the 12 training drugs into desired54
target groups. The qNet metric was further validated on 16 test compounds (Li et al., 2018). Uncertainty55
quantification methods (Johnstone et al., 2016) have recently gained increased attention due to their ability56
to better estimate the confidence of the model-predicted risk (Chang et al., 2017) by taking into account57
noise in the in vitro measurements of drug-induced effects on ionic currents, under the CiPA initiative.58

Model-derived features that are directly linked to drug-induced changes in myocyte membrane activity59
are thought to provide mechanism-based classification of compounds into different risk categories by60
providing possible insights into TdP mechanisms. The qNet metric is thought to provide a measure of61
propensity of myocytes to undergo EADs (Dutta et al., 2017; Chang et al., 2017), that are known to be62
the trigger of TdP (Yan et al., 2001). In this paper, we apply global sensitivity analysis (GSA) to the63
existing CiPA in silico framework to identify key model components that require special treatment for64
reducing uncertainties in the estimated model-derived metrics and, ultimately, TdP risk classification.65
Unlike previous approaches where the initial feature selection and construction were performed by testing66
on a small set of drugs, in this study, we analyzed a large virtual population of drugs to identify the67
critical input parameters regulating the variation of several previously proposed model-derived metrics68
(e.g., APD90, qNet) for proarrhythmic risk classification. We also compare the key inputs that regulate69
these model-derived metrics to those regulating generation of the EADs. We demonstrate that, in spite of70
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previously claimed ties between qNet and EAD generation, the parameters that affect qNet are different71
than those influencing cell sensitivity to EAD. Moreover, we show that classifiers built on EAD metrics72
perform worse than classifiers built on qNet. Hence, our results highlight the need for better mechanistic73
understanding of promising model-derived metrics. Furthermore, the sensitivity analysis results provide an74
explanation of the equivalent performance of direct and derived features.75

2 METHODS

The CiPAORd model and input parameters section describes the in silico model used in the paper. To76
perform GSA, we generated a large set of virtual drugs. A virtual drug comprises a random vector of77
changes to parameters of ion channels of the model. The details of the input parameters considered for78
generating the virtual drug population are presented in Sampling virtual drug population. Responses to the79
virtual drugs were examined, evaluating several model-derived features such as APD90, qNet, and peak80
calcium concentration (peakCa). The section In silico simulations and derived features presents details on81
the derived features extracted from the in silico model. To explore the link between model-derived metrics82
and EADs in the model virtual drugs were also tested for their ability to induce EAD. In the section EAD83
protocols we discuss the protocols used to test for EAD generation in the model. The methods used for84
GSA are described in the Global sensitivity analysis. Finally, the methods for classifying the 28 drugs85
selected under the CiPA initiative, which we refer in the manuscript as “CiPA drugs”, with respect to their86
defined torsadogenic risk are described in the section Tertiary risk stratification of “CiPA drugs”.87

CiPAORd model and input parameters88

In this study, we perform GSA on the CiPAORd model (Dutta et al., 2017). The CiPAORd model was89
developed at FDA by introducing several modifications to the original O’Hara-Rudy ventricular myocyte90
model (O’Hara et al., 2011) to improve proarrhythmic risk assessment.91

Several input parameters have been used for simulation of virtual drug effects. For the hERG channels,92
we used the concentration response of the drug, Emax, the unbinding reaction rate, Ku, and the membrane93
voltage at which half of drug-bound channels are open, Vhalf , as input parameters for the model. In this94
paper, we refer to the Emax parameter that represents the static component of the hERG block as sbIKr.95
For the other channel currents (i.e., fast sodium current INa, late sodium current INaL, L-type calcium96
channel current ICaL, slow-rectifying potassium channel current IKs, inward rectifier potassium current97
IK1, transient-outward current Ito) we used the general Hill equation of channel block,98

bcurrent,drug = 100%×
Ch
drug

IC50,current + Ch
drug

, (1)

where current = {INa, INaL, ICaL, IKs, IK1, Ito}, IC50,current is the drug concentration at which a99
current is reduced by half, Cdrug is the drug concentration, and h is the Hill coefficient. The drug-induced100
blocks of channel currents bcurrent,drug are used to scale the maximum conductance of the current gcurrent101
in the in silico model calculated as102

gcurrent,drug =
100%− bcurrent,drug

100%
× gcurrent. (2)
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We perform GSA explicitly with respect to bcurrent,drug rather than IC50,current, Cdrug, and h. In this103
study, we refer to the parameters of the block of INa, INaL, ICaL, IKs, IK1 and Ito as bINa, bINaL,104
bICaL, bIKs, bIK1, and bIto, respectively. Equation (1) is used in classification of real compounds.105

Sampling virtual drug population106

The population of virtual drugs is created through Monte Carlo sampling from a high-dimensional (10-D)107
input parametric space. The parametric space represent changes in model parameters used to describe drug108
binding and blocks of ionic currents. Basic cycle length (BCL) of cell pacing in the simulations was also109
considered as a parameter for GSA. The input parameters and their examined ranges is provided in (Table110
2). In some cases, GSA was performed on metrics derived from outputs of a mid-myocardial cell (defined111
as M cell in O’Hara et al. (2011)) model. M cells are very sensitive to blocks of repolarization currents and112
produce EAD more easily. Sensitivity to EADs makes the analysis more complicated, and the range of113
hERG block for M cells had to be accordingly reduced.114

In silico simulations and derived features115

The action potential and calcium transients of the cells were simulated for the large virtual population116
of drug dataset (>20000 drugs) generated for GSA, and, separately, for the CiPA training (12 drugs) and117
validation (16 drugs) datasets (manual patch clamp data) (Li et al., 2017; Dutta et al., 2017) using the118
CiPAORd model. Model simulations were run for 200 beats to achieve pseudo steady state. Simulations119
were carried out at different pacing rates (a parameter in GSA) for each of the endocardial (endo), mid-120
myocardial (M), and epicardial (epi) cell types. Several standard metrics explored previously for TdP risk121
discrimination were calculated from the action potential and Ca2+ transients. The metrics obtained from122
the in silico models are listed in the Table 3. Note that the metric qNet was calculated as the area under the123
curve traced by the net current (Inet = ICaL+ INaL+ IKr + IKs+ IK1 + Ito) from the beginning124
to the end of the last simulated beat as defined in Dutta et al. (2017).125

EAD protocols126

Drug-induced EAD risk (sensitivity of a cell against EAD generation) for both the virtual drugs and the127
CiPA compounds was examined in the endo and M cell types using two separate protocols. The M cell type128
in the CiPAORd model was more prone to EAD generation than the endo cell type. We tested generation129
of pause-induced EADs (that are implicated as triggers of TdP (Yan et al., 2001; Liu and Laurita, 2005;130
Viswanathan and Rudy, 1999)) in the M cell type as in our previous study (Parikh et al., 2017). Briefly,131
the cell was stimulated 200 times at a constant cycle length. After 200 stimuli, an additional stimulus was132
applied following a pause equal to the basic cycle length. In the endo cells, pause-induced EADs occurred133
rarely, and we examined drug-induced EAD risk in presence of an added perturbation by reducing the134
maximum conductance of hERG channel current (IKr) as in (Dutta et al., 2017). The cell was stimulated135
for 200 beats with additional block of maximum conductance of IKr by 85%. The 85% block was selected136
since almost half of the population of virtual drugs (across the entire parametric space observed) resulted137
in EAD development in the model simulations.138

Global sensitivity analysis139

GSA was performed using a variance-based sensitivity method (Saltelli et al., 2008; Sobol’, 2001)), and140
Monte Carlo filtering Hornberger and Spear (1981); Saltelli et al. (2008). The supplemental material also141
reports analysis using Morris methods for comparision.142
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Variance-based global sensitivity analysis143

Sobol sensitivity analysis method (Sobol’, 2001) is a model-independent GSA method that is based on144
variance decomposition. It relies on an all-at-time (AAT) sampling strategy where output variations are145
induced by varying all the input factors simultaneously. Let a derived-metric Y from a computational146
model be represented by a function f of the input parameters,147

Y = f(X) = f(X1, X2, · · · , Xk), (3)

where X = {X1, X2 · · ·Xk} is the input parameter set. The function can then be decomposed into a sum148
of elementary functions of increasing dimensions,149

Y = f0 +
∑
i

fi(Xi) +
∑
i

∑
j>i

fij(Xi, Xj) + · · ·+ f12···k(X1, · · · , Xk). (4)

The input parameters are assumed to be random variables that are uncorrelated and mutually independent.150
The functional decomposition can be translated into a variance decomposition. This allows to quantify the151
variance contribution to the total output of individual parameters and the parameter interactions,152

V (Y ) =
∑
i

Vi +
∑
i

∑
j>i

Vij + · · ·+ V123···k, (5)

where Vi = VXi
[EX∼i

(Y |Xi)] is the first-order effect for a given model input Xi, Vij =153
VXi,Xj

[EX∼ij
(Y |Xi, Xj)]−VXi

[EX∼i
(Y |Xi)]−VXj

[EX∼j
(Y |Xj)] and so on are the higher-order effects154

due to interactions of model inputs. Here, EXi
, VXi

are expectation and variance taken over Xi; X∼i155
denotes all factors but Xi. The Sobol sensitivity indices are obtained as the ratio of partial variance to the156
total output variance,157

S1i =
Vi

V (Y )
, S2ij =

Vij
V (Y )

· · · . (6)

The number of sensitivity indices in (6) grow exponentially with k and typically only sensitivity indices of
up to order two (S1i and S2i) and the total-effect indices (STi) are estimated (Iooss and Lemaı̂tre, 2014).
The total-effect index

STi =
EX∼i[VXi

(Y |X∼i)]

V (Y )
= 1−

VX∼i[EXi
(Y |X∼i)]

V (Y )
(7)

measures the impact of main effect of Xi and all its higher-order interaction effects with the other parameters158
(Homma and Saltelli, 1996). The Python SALib package was employed to perform the variance-based159
sensitivity analysis (Herman and Usher, 2017). The calculations of S1i, STi and S2ij require n× (2k + 2)160
model evaluations using Saltelli’s sampling scheme (Saltelli, 2002) where n is the sample size and k is the161
number of input parameters. In this study, we considered n = 1000 unless otherwise specified, resulting in162
22000 Monte Carlo samples (virtual drugs) for k = 10.163

Multivariate linear regression has been used in the past (Sobie, 2009) to identify sensitivity of outputs164
from cardiac cell models to changes in input parameters. To illustrate the differences between linear165
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regression 1 and variance-based sensitivity analysis, in the Figure 1, we provide few examples highlighting166
the differences between the variance based sensitivity measures and sensitivity coefficients from the linear167
regression. For a hypothetical output feature (Feature1 in Figure 1 A) that can be perfectly fitted by a linear168
regression of model input parameters (Feature1 = 1.5P1 + P2 + 5) the sensitivity coefficients obtained169
using the two methods are identical (Figure 1). In contrast, the sensitivity estimates are inaccurate for the170
model features that present non-linear input-output relationship when using the linear regression methods,171
and the variance-based analysis provides a proper estimate under this situation. The metrics S1 captures172
the contribution of the first order as well as all higher order terms of individual input. For the Feature2173
in the Figure 1 the S1 terms capture the contribution of the P1 and P 2

1 terms. The metric S2 captures all174
the second order interaction terms (i.e., P1P2). The variance in the hypothetical Feature3 in the Figure 1175
depends on interaction between P1 and P2 parameters, which is captured by the S2 index, and also in the176
total sensitivity index ST , which includes all higher-order interaction terms, including S2. The S2 index177
of 0.38 indicates a contribution of 38% in the variance of Feature3 from the second-order interaction178
term (Figure 1 B). Hence, the variance based sensitivity analysis provides a method, which allowed us179
to estimate the contributions of parameter interactions and non-linear effects on regulation of the output180
features.181

Monte Carlo filtering182

Monte Carlo filtering (MCF) is used generally in factor-mapping tasks to identify key input parameters183
responsible for driving model outputs within or outside predefined target regions (refer to (Saltelli et al.,184
2008) for a detailed methodology). A brief overview of the MCF technique in the context of EAD sensitivity185
analysis of the CiPAORd model is presented here. Model simulations were carried out for n Monte Carlo186
samples (virtual drugs) generated for the Sobol sensitivity analysis in presence of additional perturbations187
(see section EAD protocols). Each input parameter Xi of the Monte Carlo input sample set with size n is188
categorized into the “Behavioral” subset (Xi|EAD−) and the “Non-behavioral” (Xi|EAD+) with sizes n1189
and n2 = n− n1, respectively, based on the absence and presence of EADs in simulated output. Empirical190
cumulative density functions (CDF) Fn1(Xi|EAD−) and Fn2(Xi|EAD+) are estimated for both the191
subsets of random input samples. The distance between the two empirical CDFs provides an estimate of192
sensitivity of EAD feature to the input parameter Xi. Kolmogorov-Smirnov two-sample statistic test was193
used to quantify the difference between the two CDFs. Kolmogorov-Smirnov test is characterized by a194
D-statistic and a p-value. The D-statistic is defined as (Saltelli et al., 2008)195

dn1,n2 = sup||Fn1(Xi|EAD−)− Fn2(Xi|EAD+)||. (8)

The larger the D-statistic (or equivalently the smaller the p-value), the more important the input parameter196
is in driving the behavior of the model to EAD (Saltelli et al., 2008). The sensitivity of EADs to different197
input parameters has been recently analyzed using multivariate logistic regression (Morotti and Grandi,198
2016). Unlike logistic regression that relies on underlying assumption that a hyperplane separates the199
regions of interest, the MCF methods are valid in the more general case, where a highly non-linear or200
discontinuous surface separates the regions of interest (see Supplemental Material for comparision of the201
Monte Carlo filtering and logistic regression methods).202

1 Here and further in the paper, we discuss linear regressions with input features typically used in the sensitivity analysis of cell models, i.e., regressions with
only linear combinations of features constructed from the input parameters.
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Tertiary risk stratification of “CiPA drugs”203

In silico simulations of blocks with the 28 “CiPA drugs” were carried out using the in vivo manual patch204
clamp measurements collected on the pharmacological effects of these compounds reported in Li et al.205
(2017, 2018). The effective therapeutic concentrations, the IC50 values, the Hill coefficient values, the drug206
binding parameters, and the defined torsadogenic risk of the “CiPA drugs” are listed in the Supplemental207
Material.208

The “CiPA drugs” were classified based on the concentration (normalized to effective free therapeutic209
plasma concentration (EFTPC)) necessary to induce EADs and in the CiPAORd model. The effects of210
“CiPA drugs” were simulated using protocols described in the EAD protocols section at progressively211
increasing drug concentrations until EADs were observed. A maximum concentration of 70xEFTPC was212
tested for each drug. Drugs that did not result in EADs in the tested concentration range were classified213
as low risk drugs. Drugs that instead resulted in EADs at concentrations smaller than 8xEFTPC were214
labeled as high risk, while the remaining drugs were labeled as intermediate risk drugs. The threshold215
of 8xEFTPC was chosen to give best fit to the data. The “CiPA drugs” were also classified based on216
additional hERG channel perturbations that are required to induced EADs in the CiPAORd endo cell model217
as in Dutta et al. (2017). “CiPA drugs” were simulated using protocols described in the EAD protocols218
section at progressively increasing hERG channel perturbations (65 -100% block). Drugs that did not219
result in EADs in the presence of additional hERG channel perturbations were classified as low risk drugs.220
Drugs that instead led to EADs at perturbation levels smaller than or equal to 90% additional hERG block221
were labeled as high risk, while the remaining drugs that resulted in EADs in the presence of additional222
hERG block of >90 - 100% were labeled as intermediate risk drugs to achieve the best risk stratification.223
The classification of the “CiPA drugs” based on the qNet metric was also performed for comparison at224
2xEFTPC concentration. The threshold values of 57 and 74, which provided the best discrimination across225
the different risk categories were used to classify the drugs into low, intermediate and high risk groups.226
Drugs with qNet values less than 57 were classified as high risk and drugs with qNet values greater than227
74 were classified as low risk drugs.228

3 RESULTS

Analysis of global sensitivity for APD90, qNet, peakCa, and EAD229

Variance-based analysis230

Figure 2 demonstrates distribution of one of the model-derived metrics obtained from simulation of 22000231
virtual drugs. The APD90 metric values are plotted against individual input parameters to visualize the232
influence of different input parameters on the metric. Each point on the scatter plot represents an individual233
virtual drug. Virtual drugs with comparable block of a particular ion-channel can result in a completely234
different output response due to differences in the effect of a virtual drug on other input parameters. The235
latter appears on the scatter plot as the variability of APD90 along the Y-axis. The scatter plot (Figure 2)236
shows a clear trend in APD90 with increase in the sbIKr parameter. This observed trend suggests that the237
parameter sbIKr is highly influential in regulating APD90. The Sobol sensitivity indices quantify the238
influence of individual parameters on the derived metrics.239

Figure 3A shows values of the first-order Sobol sensitivity indices (S1) and differences between total240
sensitivity indices (ST ) and S1 for three output responses APD90, qNet, and peakCa simulated in the241
CiPAORd endo cell model. The Sobol sensitivity indices indicate that APD90 is the most sensitive to242
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sbIKr block, qNet to sbINaL, and peakCa to bICaL. Sobol indices quantify the contribution of the243
input parameter to the metrics in isolation as well as in presence of interaction with other parameters.244
The effect of sbIKr on APD90 as quantified by S1 indicates that sbIKr contributes to > 50% of the245
variation observed in APD90 across the observed input space. qNet was found to be most sensitive to246
bINaL, sbIKr, bINa, and bICaL with contributions to the output variation of 30%, 26%, 17%, and247
10%, respectively. bICaL had the strongest impact on the variability of peakCa concentrations with an S1248
index of around 0.6. Among the different drug-effects evaluated via in vitro ion-channel screening, the249
changes in the block of transient outward current and dynamic hERG kinetic parameters showed relatively250
minor influence on the tested model-derived metrics.251

The difference between the ST and S1 indices in Figure 3B shows the impact of higher-order indices.252
Small differences between S1 and ST for several derived metrics such as APD90, qNet, peakCa suggest253
minor influence of parameter interactions. The estimated sum,

∑
S1i, of the first-order Sobol indices S1254

for the direct features indexed by i (Table 2) for different model-derived metrics are listed in Table 4.
∑

S1i255
represents the contribution of all individual input parameters to the total variation of a model-derived256
metric without considering parameter interactions. The observed values (Table 4) indicate that >78% of257
the variance in qNet, APD90, and peakCa can be attributed to the individual input parameters for the258
endo cell model. The parameter interactions explain less than 22% of the variance of these derived metrics.259
Moreover, the S2 sensitivity index measure does not show any significant second-order interactions. This260
suggests that the observed small interactions effects derive from higher-order interactions terms (results261
are not shown). The S1 and ST sensitivity indices obtained for all the derived features (Table 3) across262
different cell types are reported in the Supplemental Material. The results of the sensitivity analysis using a263
less computationally expensive GSA method such as Morris method (elementary effects analysis) as well264
as multivariate linear regression methods, is also reported in the Supplemental Material for comparison.265
Unlike elementary effects, Sobol indices quantify the contribution of an input parameter to the metrics in266
isolation as well as in the presence of interaction with other parameters.267

Regional sensitivity analysis268

Next we wanted to determine the most influential model parameters that enhance or reduce the269
susceptibility to early afterdepolarizations in the CiPAORd model. To achieve this we performed Monte270
Carlo filtering, which is referred in literature as a method of regional sensitivity analysis. For Monte Carlo271
filtering, the target space was partitioned into realizations with either presence or absence of EADs in272
simulated action potentials under the action of a virtual drug population (n = 22000). Figure 4 shows the273
empirical CDFs for each of the 10 input parameters. The dotted and solid lines represent the estimated CDFs274
for the behavioral Fn2(Xi|EAD+) and the non-behavioral Fn1(Xi|EAD−) subsets, respectively. The275
behavioral and non-behavioral subsets comprised 10479 and 11521 samples. If the two CDF distributions276
are not significantly different, than the parameter is likely unimportant, and for any value of that particular277
parameter in the examined range, the outputs are likely to fall into either behavioral or the non-behavioral278
subsets. For uniformly distributed inputs as in this study, the CDF of the non-influential parameters are279
close to the identity line. The bigger the distance between the empirical CDFs for the behavioral and non-280
behavioral subsets, the greater is the influence of the parameter to development of EADs. The figure shows281
that the parameter bICaL (Figure 4A, dashed-dotted line) has the strongest influence on susceptibility of282
the model to EADs. The parameters sbIKr (Figure 4B, solid line), bIKs (Figure 4C, dashed line), and283
bIK1 (Figure 4D, dashed line) have the next highest contribution to model sensitivity to EADs. The shape284
of the CDF curve provides additional information on the model behavior. For example, the green dashed285
line (Figure 4A) is steep at higher blocks of L-type calcium current. This indicates that the higher block of286
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L-type calcium current drives the model away from EAD generation, suggesting a protective role of L-type287
calcium current. On the contrary, the increase in the block of sbIKr parameter, as expected, resulted in288
increased development of EADs pointing towards increased proarrhtyhmic propensity at higher blocks of289
hERG current.290

Figure 5 provides estimates of the differences in the behavioral and non-behavioral empirical CDFs using291
a Kolmogorov-Smirnov two-sample test. The results show that the parameter bICaL regulating the block292
of the L-type calcium channel current had the highest influence on EAD in models with both endo and M293
cell types. In the M cell, the parameter sbIKr and bCaL appear to be equally important for regulation of294
EADs in the model. In contrast, since the additional block of the hERG channel current was required to295
trigger EAD in the endo cell type, the parameter sbIKr had moderate influence in regulation of EADs.296
The parameter bIKs had moderate influence in both endo and M cell types. The block bIK1 appears to297
have higher influence in the endo cell compared to the M cell. The parameters Ku, Ito and bINa were the298
least important. Monte Carlo filtering demonstrates that sbIKr and bICaL parameters contribute the most299
to generation of EADs.300

Classification of CiPA training/validation drugs based on EADs301

Here, we wanted to examine how the findings from the global sensitivity analysis on the virtual drug302
population would translate for a set of actual drugs with channel blocks covering only a relatively small303
portion of the parametric space examined previously. Specifically, we wanted to evaluate the performance304
of the classifiers built on the EAD feature considering only the most influential parameters as suggested by305
global sensitivity analysis presented in the previous sections. In addition, we also compare the performance306
of the classifiers based on EADs to TdP risk classifiers built on metrics such as qNet, which are thought to307
be correlated to EADs.308

Figure 6 shows action potential traces obtained from simulation of 4 “CiPA compounds” using two309
different protocols for the endo cell CiPAORd model. In the first protocol we increased drug concentrations310
from 1x - 70x EFTPC to test the EAD development under different concentrations. We observed (Figure 6311
A) that a drug with high torsadogenic risk like Dofetilide, resulted in EADs at relatively small concentrations312
(5x EFTPC). The intermediate risk drug Clarithromycin and low risk drugs Verapamil and Loratadine313
are not associated EADs under all the concentrations tested (Figure 6 A). We also evaluated the EAD314
development at a fixed drug concentration of 2x EFTPC while increasing the additional block of hERG315
channels from 65 to 100 % (Figure 6 B). Similar to the protocol with increased drug concentration,316
we observed that high risk drug Dofetilide is associated with EADs in the presence of relatively small317
additional perturbations of hERG current (84.5% block) compared to low and intermediate risk drugs.318
However, unlike the protocol with increased drug concentrations, where the compounds Clarithromycin and319
Loratadine are not associated with EADs at all tested concentration, presence of additional perturbations of320
hERG block around 94% resulted in generation of EADs for both these drugs.321

Using these two protocols we examined the classification of CiPA compounds based on the drug322
concentration (normalized to EFTPC) necessary to induce EADs in the CiPAORd model, defined here323
as ThEAD,conc and also based on the amount of additional hERG perturbation required to induce EAD324
in the model, denoted here as ThEAD,hERG. Since the Monte Carlo filtering results point to sbIKr and325
bICaL being the most critical parameters regulating EAD development, only drug-induced changes of326
these two parameters were taken into consideration. We also compared the obtained thresholds for EADs to327
the thresholds considering drug-induced changes of all the seven ion channel currents measured from the328
in vitro assays and characterized by the 9 parameters reported in Table 2. The results are summarized in the329
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Table 5. Our EAD analysis show that the drugs in the high-risk category have consistently a threshold value330
of less than 7 and 90 for ThEAD,conc and ThEAD,hERG, even for the threshold obtained when considering331
only the drug effects on two parameters, static block of hERG channel current sbIKr and the block of332
L-type calcium channel current bICaL. Addition of dynamic hERG channel current parameters as well as333
other input parameters resulted in no significant changes in the observed thresholds for EAD generation. A334
high risk drug Disopyramide from the CiPA validation dataset did not induce EAD in the model under335
all tested conditions. The intermediate risk drugs Cisapride and Ondansetron resulted in EADs in the336
model at a threshold of less than 7 similar to the drugs in high risk category under all tested conditions.337
Similarly, Ranolazine and Metoprolol drugs that are defined as low risk under the CiPA initiative had a338
threshold value of less than 7 and 90 for ThEAD,conc and ThEAD,hERG, respectively, for all the conditions339
tested. The low-risk drugs Diltiazem, Mexiletine, Verapamil, Loratadine, Nifedipine, and Nitrendipine340
did not produce EADs in the model under all the tested conditions for the protocol with increase in drug341
concentrations. Similar results were observed for the additional hERG perturbation protocol except for the342
drugs Loratadine and Mexiletine. Chlorpromazine resulted in EADs at relatively high threshold compared343
to the high risk drugs with a threshold of > 14 and > 91 for ThEAD,conc and ThEAD,hERG, respectively,344
under all conditions. Low risk drug Tamoxifen consistently resulted in EADs in the model at thresholds345
values similar to intermediate risk drugs. Terfenadine, Pimozide, and Clozapine were the only few drugs346
with significant changes in the observed threshold and switching to a different risk category when the347
drug-induced changes of parameters other than sbIKr and bICaL were ignored for the protocol with348
increased drug concentration. Similarly, few drugs like Droperidol, Pimozide, Mexiletine and Terfenadine349
switched risk category when the drug-induced changes of parameters other than sbIKr and bICaL were350
not considered for the protocol with additional hERG perturbation.351

Although EADs are thought to be cellular precursors of TdP, the classifier based on EADs alone ranks352
correctly only 17-20 drugs, thus performing worse than qNet. In the table (Table 5) we also report the353
estimated qNet values for the 28 drugs at 4x EFTPC drug concentrations. We observe the drugs like354
Ranolazine, Cisapride, Ondansetron, and Domperidone, which are not correctly classified by either of the355
EAD based classifiers, are correctly classified by qNet.356

4 DISCUSSION

DISCUSSION

Uncertainties in in vitro measurements of drug-induced effects on ionic currents present an important357
concern in evaluating the torsadogenic risk of compounds by interrogating in silico biophysical models.358
Discrepancies in estimates for model parameters based on available in vitro assay data have been recently359
highlighted in uncertainty quantification studies (Johnstone et al., 2016; Chang et al., 2017). High360
uncertainty in model parameters leads to low confidence in model predicted risk, and thus, not surprisingly,361
risk stratification of the CiPA training drugs proved to be unreliable especially at high drug concentrations362
(Chang et al., 2017), where model parameter estimates are inherently less accurate. However, it is important363
to emphasize that the relative contributions of drug-induced modulation of ion-channels on output features364
differ significantly. Uncertainties in model input parameters that are highly influential (e.g., as revealed by365
sensitivity analysis) result, therefore, in lower confidence in the predicted risk, while errors in estimating366
less influential model parameters are better tolerated by risk measures (Loucks et al., 2017; Mirams et al.,367
2016). In this paper, we present a study that applies GSA within the context of in silico prediction of368
pharmacological toxicity. The target of GSA was the latest version of the in silico model of an isolated369
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cardiac cell (Dutta et al., 2017), CiPAORd, which was developed under the CiPA initiative and incorporates370
dynamic hERG-drug interactions (Li et al., 2017). Our analysis explored the effects of a large population371
of virtual drugs on the seven major cardiac ion-channel currents thought to be important in regulation of372
TdP. GSA provided a systematic understanding of the model input-output relationships and allowed for the373
identification of the most influential parameters that regulate model-derived features used for proarrhythmic374
risk classification. The knowledge gained from GSA could help further improve the model structure and375
increase reliability of model-predicted risk.376

Sensitivity analysis used for cardiac models377

Different methods and tools, each with their own advantages and disadvantages, allow for the analysis of378
the sensitivity of complex systems to the input parameters (e.g., refer to (Saltelli et al., 2008; Iooss and379
Lemaı̂tre, 2014; Pianosi et al., 2016) for thorough reviews on the subject). Simple sensitivity analyses380
performed by varying one parameter at a time have been carried out to asses the impact of changes in381
ionic currents on cardiac cellular electrophysiology (Romero et al., 2009; Chang et al., 2014). This type of382
sensitivity analysis, although computationally inexpensive, only quantifies the impact on model outputs of383
changes in a single input parameter relative to the point estimates chosen for the rest of the parameters384
that are held constant. On the contrary, GSA quantifies the effects of global variations over the entire385
input parameter space. Multivariate linear regression models that rely on AAT sampling approaches have386
been used in the past on the cardiac cellular models (Sobie, 2009) to identify how changes in model387
parameters affect different outputs of the model, to address different physiological questions, to improve388
model structure, and to suggest novel experiments (Cummins et al., 2014; Sarkar and Sobie, 2010; Britton389
et al., 2013; Sadrieh et al., 2013; Devenyi et al., 2017; Devenyi and Sobie, 2016; Lee et al., 2013). Recently,390
application of multivariate logistic regression has been reported to relate perturbations in model parameters391
to the presence/absence of EADs (Morotti and Grandi, 2016). The multivariate linear regression is suitable392
and accurate for models with almost linear input-output relationship. Similarly, the logistic regression393
applied to determine EAD sensitivity is accurate if a surface separating EAD and non-EAD regions is close394
to a hyperplane.395

Critical inputs regulating APD90, qNet, peakCa396

In this study we applied a more general form of GSA that is suitable even in presence of non-linear input-397
output relationships (Saltelli et al., 2008). In particular we used the Sobol variance-based sensitivity method398
(Saltelli et al., 2008; Sobol’, 2001) to rank cardiac ion-channel currents based on their relative contributions399
to variability in the model-derived features. We also performed sensitivity analysis to determine the cardiac400
ion-channels that regulate EAD generation in the CiPAORd models using Monte Carlo filtering methods401
Hornberger and Spear (1981); Saltelli et al. (2008). Our systematic sensitivity analysis identified critical402
input parameters for the variability of the different model-derived features used for TdP risk assessment (see403
Figure 3 and data in the Supplemental Material). More specifically, we observed that the recently proposed404
qNet metric is most sensitive to modulations in sodium currents and to the sbIKr parameter. sbIKr,405
bIK1 and bICaL were found to be the most influential parameters regulating APD90 (Figure 3). In the406
past, APD90 has also been shown, by varying one parameter at a time in the original ORd model (O’Hara407
et al., 2011), to be most sensitive to block of hERG current. Furthermore, the QT interval measured in 3D408
human-heart simulations (Sahli Costabal et al., 2019) with original ORd model (O’Hara et al., 2011) at the409
cellular level exhibits similar sensitivity profile as APD90. This is in agreement with previous observations410
of high correlation between APD90 and QT interval in the cardiac model simulations (Beattie et al., 2013).411
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In our study, features derived from the calcium transient such as peakCa were found, as expected, to be412
most sensitive to the bICaL parameter.413

In spite of the observed differences in the sensitivity profiles, different derived metrics have been reported414
to perform well on certain in vitro datasets. APD90 (Mirams et al., 2011), a metric based on APD50415
and diastolicCa (Lancaster and Sobie, 2016), and a metric based on EADs (Christophe, 2013) have been416
shown to provide good risk discrimination of drugs considering in vitro measurements reported in (Mirams417
et al., 2011). We have shown previously that different derived features extracted from the original ORd418
model (O’Hara et al., 2011) show similar performance in TdP risk discrimination (Parikh et al., 2017)419
when tested on a combination of several datasets. The similarity in performance of different metrics might420
be due to the presence of estimates of drug effects on only three channel currents (i.e., fast sodium current,421
L-type calcium channel current, and hERG current) in the majority of the datasets, the small size of the422
datasets, and the differences in structure of the myocyte models used for obtaining the derived feature.423
Different derived metrics, such as APD50, APD90, peakCa, and CaD90 have been shown to provide424
the best classification when varying the computational model of interest (Mirams et al., 2011).425

Several cardiac ion-channel/parameters that are thought to be important for improved drug-induced TdP426
risk assessments and measured experimentally via in vitro ion-channel screening (Crumb et al., 2016)427
showed really minor influence in regulation of the model-derived features. For example, the block of428
transient outward current and the dynamic hERG block parameters showed relatively minor influence on429
majority of the tested metrics. Specifically qNet metrics appeared to be insensitive to the bIK1, bto and430
Ku parameters (Figure 3 and the Supplemental Material).431

GSA results are highly dependent on explored parametric space. Here, we evaluate the sensitivity over432
the 10-D input space comprising parameters of seven major cardiac channel currents that are thought to433
play an important role in determining the risk of TdP. However, the actual drugs might lie within a very434
small subspace of the explored hyperspace. Visualization of the blocks of different ion channel currents435
for the 28 CiPA drugs (Figure 7) reveals that majority of the drugs do not result in block of IK1, INa,436
and IKs currents. Figure 7 demonstrates that accurate classification of the Ranolazine drug to low risk437
category requires a feature that is at least moderately sensitive to variations in block of late sodium current,438
since the drug appears to be a pure hERG and sodium channel blocker. Our GSA results (Figure 3) point to439
qNet as a candidate, as it is the only feature among the tested derived features that is highly sensitive to440
block of late sodium current and block of hERG. qNet has been observed to outperform other standard441
derived features on the 28 CiPA drugs (Dutta et al., 2017; Li et al., 2018, 2017).442

EAD sensitivity analysis443

The EAD sensitivity analysis (Figure 4 and 5) indicates that the generation of EADs, which are thought444
to be cellular precursors of TdP genesis (Yan et al., 2001), are most sensitive to variations in block of445
ICaL and to the static component of the hERG channel current in the CiPAORd model. Block of hERG446
channels is well established to be critical for generation of EADs and eventually Torsades de Pointes447
(Redfern et al., 2003) and has been shown to be the primary current responsible for generation of EADs448
in the simulations using original ORd model (Christophe, 2013). The role of L-type calcium channel449
currents in regulation of EADs have been also highlighted across different studies (January and Riddle,450
1989; Zeng and Rudy, 1995; Weiss et al., 2010). Our results show that variations in blocks of the IKs451
and IK1 currents have a moderate influence on the genesis of EADs in the CiPAORd model. Drug effects452
on the Ito, INa have the least influence on EAD generation (Figure 5 and 4). The recently introduced453
dynamic-hERG block parameters Vhalf and Ku (Li et al., 2017), which are measured using challenging454
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experimental protocols (Milnes et al., 2010; Veroli et al., 2014), show minor influence on EAD genesis455
(Table 5) when compared to other tested inputs. These parameters also exhibit relatively small contribution456
to the variance of all the tested derived metrics compared to other influential input parameters (Figure457
3, and data in the Supplemental Material). However, it should be noted that in cases where the majority458
of the primary regulating parameters are similar between drugs, accounting for changes in the modestly459
influential parameters can allow for improved predictions. On classifying CiPA drugs based on EADs, we460
observed that prediction improves by correctly classifying 3 more drugs when accounting for drug-induced461
effects of other parameters in addition to the sbIKr and bICaL parameters (Table 5). However, our results462
also point towards the important consideration that errors in measuring the most influential parameters463
regulating a particular metric have a bigger impact on the predicted classification compared to neglecting464
some of the less influential parameters. GSA allows us to determine and rank most of the critical model465
components.466

Mechanistic insight from model-derived metrics467

Simple statistical classifiers based on direct feature from our group and others have been shown previously468
to provide equivalent performance as biophysically detailed models for TdP (Mistry, 2018; Kramer et al.,469
2013; Mistry et al., 2015; Parikh et al., 2017). Our sensitivity analysis results also highlight strong linearity470
between the inputs and different model-derived metrics (such as qNet, APD90, etc.) that are proposed471
for TdP risk stratification (Table 4). The metric linearity suggests that the model-derived metrics can be472
well captured as a linear combination of the set of direct features and provides a plausible explanation473
for equivalent performance of the simple statistical methods. Almost linear input-output relationship in474
different cardiac models has also been observed in several previous studies (Sobie, 2009; Sarkar and Sobie,475
2010). However, one of the most appealing feature for the biophysical models is that of interpretability,476
i.e. the model-derived features attempt to capture the aspects of the underlying physiological phenomena477
such as APD prolongation or increase in calcium levels to provide a mechanism-based classifier. Being478
biophysically motivated, classifiers built on model-derived features are thought to allow generalizable479
assessments also in cases where the training datasets are small and hence the effects on targets of interest480
might need to be extrapolated. A promising metric qNet, proposed by the modeling team at FDA (Dutta481
et al., 2017), has recently been shown to provide excellent classification of drugs in the CiPA training482
and validation data, a result thought to be linked to EAD generation (Dutta et al., 2017; Li et al., 2018).483
However, our GSA results show that none of the tested derived features demonstrating identical sensitivity484
profile to EAD (Figure 3, 5 and the Supplemental material). The qNet metric was observed to be sensitive485
to variations in block of sodium currents and block of sbIKr for the endo cell model. In contrast, the486
bICaL and sbIKr parameters are found to be the most influential for EADs. Moreover, we observed that487
the categorization of CiPA drugs based on analysis of EADs was not as predictive as model-derived metric488
such as qNet (Table 5). We found that drugs like Ranolazine, Cisapride, Ondansetron, and Domperidone,489
which were not correctly classified by either of the EAD based classifiers, were correctly classified by qNet.490
Hence, the previously reported correlation between qNet and EAD generation (Dutta et al., 2017) seems not491
to be well justified, and our results highlight the need of further research to better understand the mechanistic492
underpinning of the success of this promising metric. One possible speculation for improved predictive493
power of qNet for drugs like Ranolazine might be the reduced transmural dispersion of repolarization494
(Shimizu and Antzelevitch, 1998), which is affected by the block of the late sodium current. There can495
be several other possible explanations for poor performance of EAD metric compared to qNet, such as496
inaccurate reproduction of EADs in the current model, small size of the tested datasets, biases in the target,497
and the need to test EADs on coupled cells/tissue models.498
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Summary499

The proarrhythmic risk assessment based on simulated drug responses in isolated cell model (Mirams500
et al., 2011; Christophe, 2013, 2015; Lancaster and Sobie, 2016; Li et al., 2017; Dutta et al., 2017; Passini501
et al., 2017; Li et al., 2018; Parikh et al., 2017), tissue models (Kubo et al., 2017; Trenor et al., 2013)502
or organ level computational models (Okada et al., 2015; Costabal et al., 2018; Sahli Costabal et al.,503
2019) provide important physiological and mechanistic insights. Moreover, in silico models serve as504
an excellent tool for evaluation of drug safety in diseased conditions (Trenor et al., 2013; Kubo et al.,505
2017). However, the uncertainties in pharmacological data used for model-driven predictions and in506
the intrinsic structures of biophysical models used for cardiotoxic risk predictions present fundamental507
challenges. In this study, we showed potential application of sensitivity analysis for improved model-based508
proarrhythmic risk predictions. The critical model inputs regulating the model-derived metrics such as509
APD90 and qNet proposed for evaluation of proarrhythmic risk were identified. The analysis highlighted510
the need for better mechanistic understanding of promising metrics such as qNet and provided possible511
explanation for equivalent performance of the simple statistical based-classifiers and complex model-driven512
risk predictions. In conclusion, the sensitivity analysis method in addition with uncertainty quantification513
approaches can form an important component of the model-based cardiotoxic risk prediction pipeline.514
An improved pipeline would ultimately allow for refinement of existing biophysical models to achieve515
increased confidence in the model-driven proarrhtymic risk predictions.516
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5 TABLES

Table 1. Previously proposed derived features.

Feature In silico model # compounds tested Reference
APD90 Ventricular myocyte models of rabbit, rat and human 31 Mirams et al. (2011)
Cdrug,EAD

EFTPC Human ventricular myocyte model 31 from Mirams et al. (2011) Christophe (2013)
TDR Human ventricular myocyte model 55 from Kramer et al. (2013) Christophe (2015)

CDrug,Arrhythmia

EFTPC 3D FEM model of human heart 12 Okada et al. (2015)
APD50&DiastolicCa2+ Human ventricular myocyte model 86 from Mirams et al. (2011); Kramer et al. (2013) Lancaster and Sobie (2016)

cqInward Human ventricular myocyte model 12 Li et al. (2017)
TdPpopulation,score Human ventricular myocyte model 62 (55 from Kramer et al. (2013)) Passini et al. (2017)

qNet Human ventricular myocyte model 12 Dutta et al. (2017)

Cdrug,EAD - concentration of the drug that produces EAD,
Cdrug,Arrhythmia - concentration of the drug that produces arrhythmia in the model,
TDR - Transmural dispersion,
cqInward - metric that that quantifies the change in the amount of charge carried by INaL and ICaL,
APD90 - Action potential duration at 90% amplitude,
APD50 - Action potential duration at 50% amplitude,
DiastolicCa2+ - Diastolic calcium concentration, and
TdPpopulation,score - The fraction of models developing repolarization abnormalities(RA)
multiplied by a factor inversely related to the drug concentration at which those RA occur

Table 2. Ranges of input parameters
endo cell M cell

Parameter Min Max Min Max Description
bINa, % 0 90 0 90 percent block of fast sodium current
bINaL, % 0 90 0 90 percent block of late sodium current
bIto, % 0 90 0 90 percent block of transient outward current
bIKs, % 0 90 0 90 percent block of slowly activating delayed rectifier potassium current
bICaL, % 0 90 0 90 percent block of L-type calcium channel current
bIK1, % 0 90 0 90 percent block of inward rectifier potassium current
sbIKr 0 8 0 1.5 static component of the hERG channel current

Vhalf , mV -200 -1 -200 -1 degree of drug trapping for the hERG channel
Ku, ms−1 0 0.1 0 0.1 unbinding reaction rate for the hERG channel
BCL, ms 500 2000 500 2000 Basic cycle length for the simulations

Table 3. Derived features extracted from the CiPAORd model
Derived Feature Description

qNet Net electronic charge carried by IKr, INaL, ICaL, IKs, IK1, Ito currents
APD90 Action potential duration at 90% repolarization
APD50 Action potential duration at 50% repolarization
peakV m Peak voltage

diastolicCa Diastolic calcium level
peakCa Peak value of intracellular calcium
CaTD50 Calcium transient duration at 50% return to baseline
CaTD90 Calcium transient duration at 90% return to baseline

Table 4. Total contribution of the main effects on the variance of derived metrics estimated by the sum of
the Sobol S1 index

qNet APD90 peakCa∑
S1i 0.92 0.84 0.78
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Table 5. Thresholds of EAD (xEFTPC and hERG channel pertrubation) and qNet for CiPA training (12
drugs) and validation (16 drugs) datasets

ThEAD,conc ThEAD,hERG qNet
endo cell M cell endo cell endo cell TdP risk

Drug C1 C2 C1 C2 C1 C2 C1
Quinidine 1 1 1 1 65.0 74.0 12.56 High
Ibutilide 1 1 1 1 65.0 65.0 6.71 High

Azimilide 2 4 3 4 83.0 87.5 49.90 High
Bepridil 3 2 3 2 84.5 79.0 45.64 High

Dofetilide 3 3 6 4 84.5 86.0 57.12 High
Vandetanib 3 >70 3 4 90.0 90.0 49.40 High

Sotalol 4 5 5 6 87.5 88.5 57.32 High
Ranolazine 4 3 5 3 89.0 83.0 73.92 Low
Cisapride 5 2 7 3 87.5 83.0 61.43 Medium

Metoprolol 6 5 6 6 90 89.0 58.02 Low
Ondansetron 6 7 7 7 89.5 90.0 63.13 Medium
Astemizole 9 9 22 12 91.0 91.5 65.36 Medium
Droperidol 10 7 25 10 90.5 89.5 62.48 Medium

Chlorpromazine 14 35 21 27 91.5 92.5 66.42 Medium
Terfenadine 17 4 15 4 90.5 87.5 60.49 Medium
Tamoxifen 17 31 20 27 93.5 93.5 69.73 Low

Nitrendipine >70 >70 >70 >70 100 100 77.53 Low
Pimozide >70 4 20 3 92.5 88.0 62.6 Medium
Clozapine >70 >70 23 >70 93.0 93.0 68.17 Medium

Risperidone >70 >70 >70 >70 94.0 93.5 70.14 Medium
Clarithromycin >70 >70 >70 >70 94.5 94.5 69.34 Medium

Diltiazem >70 >70 >70 >70 100 100.0 88.59 Low
Mexiletine >70 >70 >70 >70 100 96.5 88.97 Low
Verapamil >70 >70 >70 >70 100 100.0 73.99 Low

Disopyramide >70 >70 >70 >70 95.5 95.5 72.03 High
Loratadine >70 >70 >70 >70 94.0 94.0 70.30 Low

Domperidone >70 >70 >70 >70 100 100.0 58.45 Medium
Nifedipine >70 >70 >70 >70 100 100.0 84.97 Low

TdP risk classification summary
No. correctly classified drugs No. correctly classified No. correctly classified Total number of Drugs

Category C1 C2 C1 C2 C1 C2 C1
High 7 (4, 3) 6 (4, 2) 7 (4, 3) 7 (4, 3) 7 (4, 3) 7 (4, 3) 7 (4, 3) 8 (4, 4)

Intermediate 4 (2, 2) 2 (1, 1) 6 (2, 4) 3 (1, 2) 8 (2, 6) 5 (1, 4) 11 (4, 7) 11 (4, 7)
Low 6 (3, 3) 6 (3, 3) 6 (3, 3) 6 (3, 3) 5 (3, 2) 4 (2, 2) 6 (4, 2) 9 (4, 5)
Total 17 (9, 8) 14 (8, 6) 19 (9, 10) 16 (8, 8) 20 (9, 11) 16 (7, 9) 24 (12, 12) 28 (12, 16)

C1 Drug-induced modulation of 9 parameters (sbIKr, Ku, Vhalf , bINa, bINaL, bICaL, bIKs, bIK1 and bIto) is considered.
C2 Only drug-induced changes in sbIKr and bICaL is considered (Vhalf = −100, Ku = 0.05 ).
Note Numbers in parentheses are number of drug from training and validation set.
Note BCL fixed to 2000 for endo cell type and 700 for M cell type model under all tested conditions.
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Feature1 Feature2 Feature3

P1 P2 P1 P2 P1 P2

Method 1: Linear Regression

LinR 0.69 0.31 0.00 0.23 0.41 0.18

Method 2: Sobol Sensitvity Analysis

S1 0.69 0.31 0.38 0.62 0.42 0.20
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ST 0.69 0.31 0.38 0.62 0.80 0.58

Figure 1. Example highlighting the difference between the multivariate linear regression and variance-
based sensitivity methods. A: Schematic of variation in three synthetic features due to variation in two
input parameters. B: Sensitivity estimates of the three synthetic features from A using multivariate linear
regression and variance-based sensitivity methods.

Figure 2. Scatter plot of APD90 versus different input parameters (direct features) for the 22000 simulated
virtual drugs (endo cell model).
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Figure 3. Assessment of sensitivity to blocks of different cardiac ion-channels, drug-binding parameters
and BCL for APD90, qNet, and peakCa output responses in the CiPAORd endo cell model using the
Sobol sensitivity indices. A: First-order sensitivity Sobol index, S1. B: Total sensitivity Sobol index, ST .
The algorithm to calculate Sobol indices can produce negative values that could be eliminated by increasing
sampling size.
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Figure 4. Ranking the most influential model parameters regulating EAD generation in the CiPAORd
endo cell model using Monte Carlo filtering analysis. Empirical CDF for each of the 10 input parameters
conditional to the presence or absence of EADs: A: bIto, bICaL; B: Ku, sbIKr, Vhalf C: bINa, bINaL,
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Fn2(Xi|EAD+) above unity line is assigned negative signs to easily visualize if the inputs enhance or
reduce the susceptibility of EADs .
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Figure 7. Drug-induced block of non-hERG ion channels for 28 CiPA compounds at their EFTPC based
on the measurements from the in vitro assay Crumb et al. (2016); Li et al. (2018). A: Stacked bar chart of
six ion channel current block values for each of the 28 drugs.B: A swarm plot of block values of six ion
channel currents categorized into high, medium, and low risk groups.
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