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Abstract

Eco-evolutionary frameworks can explain certain features of communities in which
ecological and evolutionary processes occur over comparable timescales. In the
particular case of prey-predator systems, a combination of empirical and theoretical
studies have explored this possibility, showing that the evolution of prey traits, predator
traits or the coevolution of both can contribute to the stability of the community, as
well as to the emergence of various types of population cycles. However, these studies
overlook that interactions are spatially constrained, a crucial ingredient known to foster
species coexistence per se. Here, we investigate whether evolutionary dynamics interacts
with the spatial structure of a prey-predator community in which both species show
limited mobility and predators perceptual ranges are subject to natural selection. In
these conditions, our results unveil an eco-evolutionary feedback between species spatial
mixing and predators perceptual range: different levels of species mixing select for
different perceptual ranges, which in turn reshape the spatial distribution of preys and
their interaction with predators. This emergent pattern of interspecific interactions
feeds back to the efficiency of the various perceptual ranges, thus selecting for new ones.
Finally, since prey-predator mixing is the key factor that regulates the intensity of
predation, we explore the community-level implications of such feedback and show that
it controls both coexistence times and species extinction probabilities.

Author summary

Evolutionary processes occurring on temporal scales that are comparable to those of
ecological change can result in reciprocal interactions between ecology and evolution
termed eco-evolutionary feedbacks. Such interplay is clear in prey-predator systems, in
which predation alters the distribution of resources (preys). In turn, changes in the
abundance and spatial distribution of preys may lead to the evolution of new predation
strategies, which may change again the properties of the prey population. Here, we
investigate the interplay between limited mobility, species mixing, and finite perception
in a prey-predator system. We focus on the case in which predator perceptual ranges
are subject to natural selection and examine, via coexistence times and species
extinction probabilities, whether the resulting eco-evolutionary dynamics mediates the
stability of the community. Our results confirm the existence of such eco-evolutionary
feedback and reveal its potential impact on community-level processes.
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Introduction 1

One of the major goals of ecology is to understand the mechanisms that sustain the 2

coexistence of antagonistic species, such as one prey and its predator or competitors for 3

common resources. Under the traditional assumption that ecological and evolutionary 4

changes occur on very different time scales, the connection between ecology and 5

evolution is unidirectional, with the former driving the later. Therefore, the first 6

attempts to explain species coexistence neglected the role of evolutionary processes and 7

relied exclusively on ecological factors, such as species neutrality [1], 8

frequency-dependent interactions [2], and environmental heterogeneity, either in space 9

or in time [3–7]. 10

More recently, however, evidences that ecological and evolutionary processes can 11

occur at congruent time-scales have been found [8–10]. This result suggests that both 12

processes can affect each other in some situations and establish ‘eco-evolutionary 13

feedbacks’ (EEFs) that may alter the ecological dynamics and the stability of 14

communities. Due to rapid evolution, the frequency of the genotypes and their 15

associated phenotypes within a population changes as fast as ecological variables, like 16

population sizes or spatial distributions, and affect their dynamics. In turn, these new 17

ecological configurations redirect the evolutionary process [11–16]. 18

The consequences of these EEFs at the community level have been studied mainly in 19

single-species populations and simple two-species communities [13]. In prey-predator 20

systems, empirical studies have shown that both prey and predator traits can evolve 21

over ecological time scales, leading to EEFs that alter some features of the dynamics of 22

the populations [17,18]. For instance, in a rotifer-algal system, rapid prey evolution 23

induced by oscillatory predator abundance can drive antiphase in prey-predator 24

cycles [14]. Theoretical investigations have also suggested that prey-predator 25

coevolution can induce a rich set of behaviors in population abundances, including 26

reversion in the predator-prey cycles [19]. Another family of studies has focused on the 27

role of EEFs on the stability of the community, showing that different feedbacks 28

influence the stability of prey-predator dynamics in different ways depending on the 29

shape of the trade-offs between the evolving traits [13,20,21]. 30

However, despite these insightful studies, the interplay between eco-evolutionary 31

feedbacks and spatial dynamics, a crucial aspect that often controls species interactions, 32

remains largely unexplored in prey-predator systems. EEFs in spatially structured 33

populations have been studied mostly for single-species populations in which 34

evolutionary dynamics affects the rate of dispersal, either across patches or during range 35

expansions [13,22,23]. Here, we extend those scenarios and investigate how 36

eco-evolutionary dynamics can modulate two-species interactions in a spatially-extended 37

prey-predator community. To this aim, we use an individual-based model in which both 38

species have limited mobility and predation is nonlocal, i.e., only preys within a finite 39

region around the predator are susceptible to predation. The radius of this region 40

defines predators perceptual range, which in our model varies across the population and 41

is subject to natural selection. Perceptual ranges, generally defined as the maximum 42

distance at which individuals can identify elements of the landscape, vary tremendously 43

within species and have a strong impact on determining the success of foraging and 44

haunting strategies via several trade-offs [24,25]. For instance, large perceptual ranges 45

increase the number of potentially detectable preys, but may lead to a reduced 46

attacking efficiency, as information is integrated over a large area [25–27], whilst also 47

allows for the presence of prey crowding effects [28,29]. These trade-offs bound the 48

evolution of the perception range, setting a finite optimal value. Overall, due to its large 49

intraspecific variability, important contribution to individual fitness and sensitivity to 50

species spatial distribution, the perceptual range arises as an important trait for 51

studying the interplay between its evolutionary dynamics and spatial ecological 52
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processes within the community. 53

In fact, our results reveal the existence of a feedback between the evolution of the 54

predator perceptual range and species spatial distributions that controls 55

community-level processes. We perform a systematic investigation of the predator-prey 56

dynamics under different levels of mobility and mutation intensities and characterize the 57

community long-time behavior by species mixing measures, by the distribution of 58

predators’ perceptual range and by species coexistence time period. Depending on 59

individual mobility (and the interactions taking place), different levels of spatial mixing 60

emerge, ranging from segregation to high mixing, and select for different perceptual 61

ranges. Simultaneously, due to predation, perceptual ranges alter the spatial mixing of 62

preys and predators, establishing an eco-evolutionary feedback. Importantly, since 63

species mixing modulates the intensity of the prey-predator interaction, the 64

eco-evolutionary feedback strongly influences the stability of the community. A diagram 65

with the coupling between species spatial distribution, individual traits and community 66

level processes is shown in Fig 1. Finally, although derived for the particular case of a 67

prey-predator system, these results will more generally improve our understanding of 68

how information gathering over nonlocal spatial scales may influence species 69

interactions and how evolutionary processes may alter the ecological dynamics and 70

stability of spatially-structured multispecies communities. 71

Results 72

To investigate the interplay between spatial structure and evolution of the range of 73

nonlocal interspecific interactions in a simple community (see the diagram shown in 74

Fig 1) we build an individual-based prey-predator model (see Methods for full details) 75

in which individuals of both species move within a square environment of lateral length 76

L (and periodic boundary conditions). Movement is modeled using Brownian motions 77

with diffusion coefficients Dp for predators and Dv for preys (v stands for victims), 78

which influences the spatial distribution of the populations (Fig 2). Large diffusion 79

leads to homogeneously distributed populations, whereas clusters form at low diffusion 80

due to the existence of reproductive pair correlations [30]. 81

We implement a stochastic population dynamics in which prey reproduction and 82

predator death occur with constant rates r and d, respectively. The predation rate, c, 83

however, is dictated by the availability of preys and the efficiency of the predator to 84

attack them. Mathematically, this can be written as c(R) = E(R)Mv(R), where Mv(R) 85

accounts for the number of preys within predator’s perceptual range, R, and E(R) is 86

the attacking efficiency up to distance R. We have defined the perceptual range R, 87

different for each predator, as the maximum distance measured from the position of the 88

predator at which a prey can be detected. Note that 0 ≤ R ≤ L/2, due to the periodic 89

boundary conditions. If the perception range is large, the number of available preys 90

increases, but it does so at the cost of a reduced predation likelihood. We implement 91

this trade-off through the attacking efficiency E(R), which we assume to be a 92

decreasing function of the predation range. The particular shape of E(R) may depend 93

on several factors, related to prey, predator behavior or environmental features. To be 94

specific, we assume that the attacking efficiency decays exponentially with the 95

perception range as E(R) = c0 exp(−R/Rc), where c0 is a maximal efficiency and Rc 96

fixes how quickly this efficiency decays as the perception range increases. For this 97

particular choice, and considering a homogeneous distribution of preys, Mv(R) ∝ πR2, 98

the predation rate c(R) ∝ R2 exp(−R/Rc) is thus maximized for R?h ≡ 2Rc. We will 99

use this value R?h as a reference to measure the effect of mutations and nonhomogeneous 100

distributions of individuals on the optimal perception range. 101

The trade-off between perception and attacking efficiency, as well as the choice of E 102
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Fig 1. Schematic representation of the eco-evolutionary framework. In the
gray box the microscopic parameters Dv and Dp are the prey and predator diffusion
coefficients that set the level of mobility. The rest of the elements are properties at the
community level that arise from them and from the demographic rates. In the green box
species spatial distribution characterization though the mixing measures M, Mp, Mv.
In the orange box predators perceptual range distribution ρ(R). In the blue box,
community coexistence times T . Arrows indicate the influence between the elements
through different processes.

such that predation rate maximizes at intermediate scales of perception, is grounded on 103

previous theoretical studies showing that foraging success decreases when individuals 104

have to integrate information over very large spatial scales [25–27,31]. Another example 105

that can illustrate the trade-off between perception and predation efficiency is that of 106

flying predators, whose flight altitude influences the area where preys can be detected. 107

However, even though flying at high altitudes opens the field of view and possibly the 108

number and frequency of prey detection it may also have a negative effect on predation 109

success, since attacks are initiated from further away. Note that we do not model the 110

attack process, that we consider to be instantaneous. Thus, the predator mobility 111

described by the diffusion coefficient Dp refers to the predator motion while searching. 112

Ultimately, prey consumption will support predator reproduction. To model this, 113

whenever a prey is caught by a predator, there is a probability b for the predator to 114

reproduce. Hence, predators reproduction rates are determined by the interplay 115

between their perception range and the spatial configuration of preys. Ignoring any 116

complex phenotype-genotype relationship and the role of the environment [32], we 117

assume that newborns inherit the perceptual range from their parent, with some 118

possible mutation that adds to R a random perturbation sampled from a Gaussian of 119

zero mean and variance σ2
µ. This trait remains unchanged during predators’ lifetime. 120

The mutation intensity σµ sets the speed of the evolutionary process. Mathematical 121

details of the model and its implementation are provided in Methods. 122

Since we are interested in how the coupling between limited dispersal and evolution 123

in the perception ranges influences the stability of the community, we fix all the model 124

parameters (see Methods) except the intensity of the mutations in R, σµ, and the 125

diffusion coefficients Dv and Dp, which are the control parameters that drive the degree 126

of mixing in the population (for computational convenience, different values of L will 127

also be used). Therefore, for a given pair of diffusion rates and a mutation intensity, 128

three linked community-level features emerge: the species spatial distributions, the 129

distribution of predator perceptual ranges (i.e., the outcome of the evolutionary 130

dynamics) and the coexistence time of the populations. In the following sections we 131
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Fig 2. Species spatial distribution. Spatial distribution of predators (red) and
preys (blue) in the long-time regime for (A) low and (B) high mobility, with
Dp = Dv = 0.1 and Dp = Dv = 1, respectively. Gray circles indicate the perception
area of the predators, which is subject to evolutionary dynamics (with σµ = 0.1, see
Methods for details). The habitat is a square domain with size L = 20 and periodic
boundary conditions. See S1 Movie and S2 Movie to visualize the model dynamics.

examine each of these features more in depth. 132

Species spatial distributions 133

For fixed prey birth and predator death rates, the spatial distribution of preys and 134

predators is determined by three characteristic spatial scales, controlled by Dv, Dp and 135

R. Fig 2 shows that for large diffusivities (right panel) both predators and preys are 136

homogeneously distributed, whereas they form clusters for low diffusion coefficients (left 137

panel). 138

In order to quantify population clustering within each species, as well as interspecies 139

mixing, we define the indicators Mv and Mp for the former and M for the latter. 140

These quantities are defined in terms of the Shannon index or entropy [33–35], 141

conveniently modified to correct for the effect of fluctuations in the number of 142

individuals (see Methods for the mathematical definitions). The interspecies mixing M 143

takes values between 0 and 1, with 0 indicating strong species segregation and 1 144

representing the well-mixed limit. On the other hand, Mp and Mv also take values 145

within the same range, but since these metrics focus on one single species, Mα = 0 146

indicates a high level of clumping of species α (= v or p) and Mα = 1 a uniform 147

distribution of the corresponding species. 148

The mixing measures are sensitive to the diffusion coefficients and predators 149

perception range. First, we analyze the spatial distribution of species at a fixed 150

mutation intensity and in the long-time limit, i.e., once the distribution of perceptual 151

ranges reached a stationary form. 152

For a fixed mutation-noise standard deviation (σµ = 0.1), Fig 3 shows the average 153

values of the mixing measures in the long-time regime as a function of the individuals 154

mobility, revealing a complex interaction between mobility and species mixing. When 155

both preys and predators have the same diffusion coefficients, Dv = Dp, all the mixing 156

indices increase with mobility (Fig 3A). However, when species have different diffusion 157

coefficients, Dv 6= Dp, the mixing may become a non-monotonic function of one of the 158
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diffusion coefficients. For the particular case shown in Fig 3B, the prey mixing still 159

increases monotonically with Dv, but the interspecies and the predator mixing show a 160

maximum at intermediate Dv. Prey population can be seen as a dynamical resource 161

landscape that drives the spatial distribution of predators. Increasing Dv always leads 162

to a more uniform distribution of preys. However, the extent to which this also leads to 163

more uniform distributions of predators is limited by Dp (which in Fig 3B is fixed at a 164

low value Dp = 0.1). In particular when Dv � Dp predators cannot follow the 165

dynamics of the preys and both M and Mp decrease with increasing Dv. 166

Fig 3. Species mixing. Average predator-prey mixing 〈M〉 and prey and predator
mixing, 〈Mv〉, 〈Mp〉, respectively, for different individuals mobility with (A) Dp = Dv

and (B) Dp = 0.1. Mutation intensity is σµ = 0.1 and habitat size L = 10. Average is
performed over time and 104 realizations in the long-time regime.

Next, we explore the effect of the mutation intensity on the long-time average 167

interspecies mixing, 〈M〉 (angle brackets indicate average over time and realizations). 168

In the non-evolving case, i.e. in the no-mutation limit (σµ = 0) and setting the same 169

perceptual range R for all predators, mixing is a convex function of R, showing a 170

minimum for intermediate perception ranges (see S1 Fig). The values of R giving 171

minimum mixing without evolution (S1 Fig) are close to the ones dynamically achieved 172

under evolution (see section Evolutionary dynamics), stressing the fact that predation 173

reduce interspecies mixing. When mutations are allowed (σµ > 0), however, predators’ 174

perceptual range are not free parameters, but an outcome of the eco-evolutionary 175

dynamics and thus controlled by the individuals mobility and mutation intensity. In 176

particular, in Fig 4, fixing Dv = Dp, we show how σµ changes the predator-prey mixing 177

curve shown in Fig 3A. To this aim we define the relative change with respect to the 178

no-mutation limit case (σµ = 0), in which all predators have the optimal perceptual 179

range R? (see section Evolutionary dynamics), 180

∆〈M〉(Dv, Dp|σµ) ≡ 〈M〉(Dv, Dp|σµ)− 〈M〉(Dv, Dp|σµ = 0)

〈M〉(Dv, Dp|σµ = 0)
, (1)

where brackets indicate average over time and realizations in the long-time regime. 181

While at low mobility interspecies mixing is reduced as mutation noise σµ increases 182

(i.e. more segregated predator-prey distributions will be obtained for larger mutation 183

intensity), at high mobility the effect is the opposite. Particularly, at intermediate 184

mobility, the mixing suffers a maximum positive change. These effects arise mainly from 185
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Fig 4. Mixing dependency on mutation intensity. Average predator-prey mixing
change relative to the no-mutation case, ∆〈M〉 defined in Eq (1), as a function of the
diffusion coefficients Dv = Dp and for different levels of mutation noise variance.
Habitat size L = 10. Symbols indicate the results from simulations. Dashed lines are
smooth fits to simulation data for different mutation intensities. The horizontal
continuous line ∆〈M〉 = 0 is the no-mutation case (σµ = 0). Vertical line indicates the
maximum mixing for σµ = 1.0.

the mutation-induced variability in the values of R in the predator population, which 186

will be discussed in the next section. 187

Evolutionary dynamics 188

In our model we assume that predators perceptual range (and thus predator 189

reproduction rates) are subject to natural selection. We neglect any complexity in the 190

genotype-phenotype relationship and the role of environment [32], assuming that the 191

value of the trait R of a predator is passed to its offspring, with some variation due to 192

mutation, remaining unchanged during its lifetime. Natural selection is at work since, 193

depending on the spatial distribution of preys, some perceptual ranges are favored 194

against the others and hence tend to be overrepresented within the populations. 195

Homogeneous limit. In the Dv, Dp →∞ limit (which leads toM,Mv,Mp → 1), 196

the populations of preys and predators are randomly distributed in space and 197

well-mixed with each other. In this homogeneous mean-field limit, it is possible to 198

derive an equation for the dynamics of the distribution of perceptual ranges in the 199

population, ρ(R). We define its normalization such that its integral gives, at each time, 200

the total number of predators, Np:
∫
dRρ(R) = Np. On average, and in the absence of 201

any mutation effect, the encounters between preys and predators lead to an expected 202

rate of change of ρ(R), ρ̃(R), given by 203

ρ̃(R) = bρ(R)〈c(R)〉p , (2)

which is proportional to the mean predation rate 〈c(R)〉p (averaged over all predators 204
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that experience different environments but with the same R) multiplied by the 205

probability b of birth after a predation event. In this homogeneous limit, and if the 206

number of individuals is large enough so that we can neglect demographic fluctuations, 207

the expected number of preys within a radius R is 〈Mv(R)〉p = πR2v. v is the (uniform) 208

density of preys. Thus 〈c(R)〉p = 〈E(R)Mv(R)〉p = c0πR
2ve−R/Rc (see Methods for 209

further details). Next, considering the effect of mutations, which changes the perception 210

ranges of the new individuals, and adding the contribution from the predator death at 211

fixed rate d, the distribution of perception ranges evolves according to 212

∂ρ(R, t)

∂t
=

∫ L/2

0

Gµ(R,R′)ρ̃(R′)dR′ − dρ(R)

= πbc0v

∫ L/2

0

Gµ(R,R′)ρ(R′)(R′)2e−R
′/RcdR′ − dρ(R) , (3)

while prey-density changes follow

dv

dt
= rv −

∫ L/2

0

〈c(R)〉pρ(R)dR ,

= rv − πc0v
∫ L/2

0

R2e−R/Rcρ(R)dR , (4)

where the first term represents prey birth at constant rate r and the second one 213

accounts for predation. 214

The integral kernel Gµ relates newborn with parental perceptual ranges and thus 215

depends on mutations. Recall that these mutations are random perturbations that 216

follow a Gaussian distribution of zero mean and variance σµ. The kernel Gµ should also 217

account for boundary conditions in R, such that mutations leading to perception ranges 218

that would be negative or larger than half of the system size are rejected. Thus, Gµ is a 219

Gaussian function restricted to the interval [0, L/2], 220

Gµ(R,R′) =

 1
N (R)e

−(R−R′)2

2σ2µ 0 < R′ < L/2

0 else
, (5)

where N is a normalization factor given by 221

N (R) =
√

π
2σµ

[
erf
(

R√
2σµ

)
− erf

(
R−L/2√

2σµ

)]
. The agreement between the theoretical 222

prediction for the well-mixed case (Dv, Dp →∞), computed from Eqs (3)-(5), and 223

direct simulations of the individual-based dynamics is shown in Fig 5. The 224

infinite-diffusion homogeneous limit is implemented in the simulation by randomly 225

redistributing predators and preys in space at each time step. Starting from any initial 226

distribution, the maximum of the time-dependent distribution ρ(R), that defines the 227

dominant perceptual range R?, approaches values near the one that gives the maximum 228

catching rate R?h = 2Rc (Fig 5A). The long-time dominant value corresponds exactly to 229

the optimal one, R?h, when mutation is negligible. As mutation intensity σµ increases, 230

the long-time distribution ρ(R) becomes wider and there is also a small shift towards 231

larger values (Fig 5B), which arises due to the asymmetric form of the catching rate 232

〈c(R)〉p. Thus, the dominant R has a main component set by the optimal value and a 233

small positive shift due to mutation effects. These changes, specially the strong effect 234

observed in the perceptual range variability, are the ones responsible for the feedback in 235

the predator-prey mixing shown in Fig 4. The corresponding result from 236

individual-based simulations is obtained by averaging over independent runs the 237

perceptual range distribution ρ(R) at each time, and extracting its maximum R? at that 238

time. The agreement between both results persists as long as the number of individuals 239
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is large. Lastly, note that Eqs (3)-(4), recover the classical Lotka-Volterra predator-prey 240

equations in the limit of vanishing trait variability, ρ(R, t)→ Npδ(R−R?). 241

Fig 5. Evolutionary dynamics in the homogeneous limit. (A) Temporal
evolution of the dominant perception range R∗ (the mode, i.e. the maximum of ρ(R)),
relative to the one giving the maximum predator growth in the homogeneous case, R∗h,
for σµ = 0.1 and a system size L = 40. Solid line is obtained from numerical solution of
Eqs (3)-(4), and dots give the maximum of the distribution ρ(R) obtained from the
average of 100 independent runs of the individual-based model with Dv, Dp →∞. In all
cases the initial distribution gives weight only to R = 2R?h. (B) Probability density for
finding a perception range value R in the population of predators, ρ̄(R) = ρ(R)/Np, in
the long-time regime, for low and high mutation noises. Dots correspond to simulations
of the individual-based model (with Dv, Dp →∞, average over 100 runs) and solid lines
to the numerical solution of Eqs (3)-(4). Dashed vertical lines show the position of the
mode of each distribution.

Finite mixing case. For the general case of limited dispersal, far from the 242

well-mixed scenario, some of the features shown in Fig 5 still persist, but modified due 243

to the underlying spatial distribution of preys and predators. Since the analytical 244

approximations derived for the infinite diffusion limit are not valid, we study this 245

scenario via numerical simulations of the individual-based model. In Fig 6A we show 246

that, starting from different initial distributions of R, the location R∗ of the maximum 247

of the average distribution ρ(R), giving the most probable value of R, evolves in time 248

towards a value that depends on the mobility of both species, with reduced mobility 249

favoring larger perceptual ranges (Fig 6B). The change in ρ(R), both with time and 250

with species mobility in the long-time limit, is shown in S2 Fig. The most probable 251

perception range decreases with increasing predator and prey diffusion rates, and it 252

approaches the homogeneous value as a power-law (see inset of Fig 6B). 253

We identify that the change in the dominant perception range due to mobility is well 254

captured by the prey mixing parameter Mv: Fig 6C shows the dominant R in the 255

long-time regime as a function of prey clumping. We extract that 256

|R? −R?h|
R?h

= (1− 〈Mv〉)γ , (6)

with γ ' 1.5 (γ ' 0.5) when fixing Dp = Dv (Dp = 0.1) and mutation intensity 257

σµ = 0.1. This relation is valid for low mutation intensity, such that in the well-mixed 258
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Fig 6. Dominant perceptual range: from the segregated to the well-mixed
scenario. (A) Temporal evolution of the location R? of the maximum in the average
perception range distribution ρ(R) (average over 104 runs), relative to the optimal
perception range for homogeneous populations, R?h, for high (Dv = Dp = 1.0) and low
(Dv = Dp = 0.1) diffusion coefficients. Two different sharply-localized initial population
distributions are used in each case. Bars indicate the standard deviation of ρ(R) around
R?. (B) Dominant perception range relative to the homogeneous-case optimal, R?/R?h,
as a function of prey and predator diffusion rates. Dashed lines are guides to the eye
and indicate the discretization ∆R = 0.1 used for the numerically obtained ρ̄. Inset
shows the asymptotic approach of R? to the homogeneous optimal, R∗h, as Dv increases
with Dp = 0.1. (C) The relative difference between the dominant range in the
simulations and the optimal one in the homogeneous case, |R? −R?h|/R?h versus
1− 〈Mv〉, which measures prey clumping (averaged over time and realizations in the
long-time regime), for different values of prey diffusion Dv, while keeping Dp = Dv

(circles) or Dp = 0.1 (squares). Bars indicate bin size of the computationally obtained
ρ(R). Dashed lines represent the power-law expressions set in Eq. (6), with γ ' 1.5 for
Dp = Dv and γ ' 0.5 for Dp = 0.1. Habitat lateral length L = 10 and mutation
intensity σµ = 0.1 in all the panels.

scenario, Mv → 1 (achieved for large diffusivities), we have R? ' R?h. The prey mixing 259

is the main quantity that controls the dominant perceptual range as it condense the 260

spatial information of the environment experienced by predators. As prey form clusters, 261

Mv < 1, predators typically find preys at distances larger than in the homogeneous 262

case (see Fig 2). So, in the low-mobility regime their predation rate only becomes 263

significant for larger R. 264

Coexistence times and extinction probabilities 265

We have observed in the previous sections that the eco-evolutionary feedback between 266

evolution of perception ranges and species mixing controls predation rates. Thus, we 267

expect it to impact also the population dynamics and the stability of the community. 268

To quantify this, we measure the coexistence time between preys and predators, T , and 269

the probability that preys get extinct before the predators, β, as a function of the 270

predator and prey mobilities and the intensity of the mutations. Mean coexistence time 271

T is defined as the time until either preys or predators get extinct, averaged over 272

independent model realizations, and β is obtained as the fraction of realizations in 273

which predators persist longer than preys. Since preys are the only resource for 274
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predators, these will shortly get extinct following prey extinctions. On the contrary, 275

when predator extinctions occur first, preys grow without constraint because we do not 276

account for interspecific competition. For each realization we use initial conditions that 277

lead to a very short transient after which spatial structure and the perceptual range 278

distribution achieve its long-time behavior. In most cases, the well-mixed mixed 279

scenario with uniformly distributed perceptual range allow this to happen. Nevertheless, 280

for small mutation rates (σµ < 0.1), the evolutionary time scales become comparable to 281

the coexistence times and in these cases we need to fast forward the evolutionary 282

component of the transient dynamics by setting an initial condition for the perceptual 283

range distribution close to the expected at long times. 284

In Fig 7A we show the mean coexistence time T as a function of predator and prey 285

diffusion coefficients, assuming Dv = Dp, for different mutation intensities. This curve 286

is a complex outcome of the values of the dominant perceptual range, the associated 287

catching rate, and the degree of mixing that arise from limited dispersal. Long 288

coexistence would occur when there is a balanced mixing between preys and predators, 289

which allows predation in a controlled manner, preserving prey population. For small 290

mutation intensity, the coexistence time, which is maximum at low diffusivities, 291

decreases as the diffusion coefficients increase until reaching a minimum at intermediate 292

mobility. Then, T increases slowly, approaching asymptotically the well-mixed case. As 293

mutation increases there is a clear change in the depependence of T with the 294

diffusivities. The maximum of T is shifted to intermediate values of diffusivities. This is 295

one of the relevant results of this paper. This result comes from the effect that mutation 296

intensity (when non-negligible) has in predator-prey mixing, as shown in Fig 4: mixing 297

decreases for low mobility and increases at intermediate values of the mobility. Since 298

mixing controls interspecies interaction, a key ingredient for coexistence, this is 299

translated to the behavior of T . As seen in Fig 7A, the level of mobility at which the 300

increase in mixing is maximum (vertical dashed line, from Fig 4) roughly matches the 301

location of the maximum T . 302

As discussed in the previous sections, mutation intensity interferes in predator-prey 303

mixing mainly through its influence in perceptual range variability (see Fig 5B), 304

establishing the feedback that mediates community coexistence. Despite that, 305

variability in R brings secondary effects. For instance, variability gives resilience to the 306

community, since it allows predators to overcome time periods in which, due to 307

fluctuations in the spatial distribution of preys, the (on average) optimal R is 308

temporarily suboptimal. Also, variability reduces overall predators’ predation success. 309

Finally, we calculate the probability that preys become extinct before predators β, 310

as a function of Dv (which is taken to be equal to Dp) for different values of σµ 311

(Fig 7B). Even though the most likely event is that predators disappear before preys 312

(β < 0.5), as the diffusion coefficients increase from very small values, we observe an 313

increase on β passing through a maximum at intermediate values of diffusivities. 314

Despite the nonlinear effects between catching rate and species spatial distributions, β 315

generally becomes large as mixing increases (see Fig 3A and Fig 7B), since it enhances 316

predation. Note that, comparing Figs 7A and 7B, the maximum β (high predation) is 317

not related to maximum coexistence, which calls for an ideal balance between catching 318

and prey population preservation. The influence of mutation intensity in the profiles 319

shown in Fig. 7B, again, is due to the feedback in the interspecies mixing shown in 320

Fig 1, which regulates the level of predation. Hence, prey extinction is reduced at low 321

mobility but increased at high mobility, shifting the profile. 322
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Fig 7. Community coexistence times and prey extinction probability. (A)
Mean coexistence time T and (B) Probability of prey extinction before predators, β, as
function of the diffusion coefficients Dp = Dv for different levels of mutation noise
intensities with system size L = 10. Initial conditions are preys and predator uniformly
distributed in space with uniformly distributed perception range R, and results were
extracted from 5 × 103 realizations. Dashed lines are smooth fits to guide the eyes.
Vertical dashed lines indicate the diffusivity value at which the increase of mixing with
respect the no-mutation case is maximum (from Fig 4, σµ = 1.0)

Summary and Discussion 323

Using an individual-based model, we have investigated whether the evolutionary 324

dynamics of predator perceptual ranges influences the stability of spatially-structured 325

prey-predator communities. First, we studied how different levels of interspecies mixing 326

arise due to limited mobility and variability in the perceptual range induced by the 327

intensity of mutations. Second, we evaluated the consequences of the interplay between 328

species mixing and the predator perception range in other community-level outcomes. 329

Our results reveal the existence of an eco-evolutionary feedback between interspecies 330

mixing and predators perception: species mixing selects a certain distribution of 331

perceptual ranges due to an underlying perception-vs-attacking efficiency trade-off; in 332

turn, the distribution of perceptual ranges reshapes species spatial distribution due to 333

predation. More specifically, when species mobilities are low, preys and predators form 334

monospecific clusters and thus segregate from each other. Therefore, preys often inhabit 335

regions of the environment that are not visited by predators, which forces the evolution 336

of larger predatory perception. Conversely, as mobility becomes higher, species mixing 337

increases and short-range predation is favored. Finally, our results indicate that 338
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community stability and diversity, characterized by the mean coexistence time and prey 339

extinction probability, are strongly controlled by the eco-evolutionary feedback. In 340

particular, the average coexistence time is maximum when the interaction between 341

species mixing and predator perception ranges yields in predation rate that is large 342

enough to sustain the population of predators but low enough to avoid fast extinctions 343

of preys. 344

The two community-level metrics, mean coexistence time and species extinction 345

probabilities, provide important information about the diversity of the community at 346

different scales [36]. From a metapopulation perspective, each model realization 347

performed to obtain these observables can be related to the dynamics taking place 348

within distinct local regions, known as patches. In our case, since realizations are 349

independent, these patches are isolated (not coupled by dispersal events) and constitute 350

a “non-equlibrium metapopulation” [37]. In this context, the mean coexistence time is a 351

proxy for alpha (intra-patch) diversity, i.e. how long species coexist in each patch, 352

whereas species extinction probabilities inform about the beta (inter-patch) diversity, 353

i.e., how many patches are expected to be occupied by preys and how many by 354

predators once one of the species has been eliminated. Using a mathematical reasoning, 355

the fraction of patches in which predators and preys coexist at any time t is given by 356

P (t) =
∫∞
t
p(t′)dt′ = 1−

∫ t
0
p(t′)dt′, where p(t) is the distribution of coexistence times. 357

Supported by our numerical simulations, we can approximate p(t) ' T −1e−t/T (except 358

for coexistence times that are much smaller than the mean, see S3 Fig). Therefore, 359

P (t) ' 1− e−t/T . The fraction of patches occupied only by preys is given by 360

(1− β)(1− P (t)), and the fraction of patches in which overexploitation has caused prey 361

extinction is given by β(1− P (t)). Hence, the mean coexistence time T and the prey 362

extinction probability β quantify the diversity of the community at different 363

spatiotemporal scales [33, 36, 38], that might serve as important guides for the design of 364

ecosystem management protocols [38,39]. 365

Since we were interested in studying whether the spatial coupling between mobility 366

and perception could lead to an eco-evolutionary feedback when both processes occur at 367

comparable time scales [14,15], we kept all the characteristic time scales of the system 368

fixed, except those related to diffusion and the evolutionary dynamics of perceptual 369

ranges. In this scenario, provided that evolution is fast enough, the spatial distribution 370

and the distribution of perceptual ranges relax to their stationary values in timescales 371

much shorter than the characteristic time scales at which community-level processes 372

occur, defined by the mean coexistence time. Under this condition, the long-time regime 373

is well-defined and can be characterized by constant quantities. A sensitivity analysis on 374

reproduction rates and initial conditions reveals that, as far as this relationship between 375

time scales is maintained, both the existence of the eco-evolutionary feedback and its 376

impact on community stability and diversity remain unaffected. This condition can be 377

broken, for instance, if predator and prey birth-death rates are small, or too unbalanced, 378

producing very short coexistence times. Our results are also robust against changes in 379

the source of individual-level trait variability, as individual-level trait variability affect 380

mixing in a similar way. In this work, we have considered the case in which variability is 381

induced by mutation in the transmission of the trait, but variability can be rooted in 382

non-inheritable properties, such as body size or the individual internal state (level of 383

hunger, attention...) [25], that do not introduce spatial correlations between trait values. 384

We have seen that sampling predators’ newborn perceptual range from a suitable fixed 385

distribution (being independent on the parents’ trait), we are able to mimic the results 386

shown in Fig. 7. This implies that different processes that promote variability can 387

control community coexistence. 388

Finally, although we have focused here on a prey-predator dynamics, our results will 389

more generally illuminate whether and to which extent the interplay between species 390
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spatial distributions and evolution shaping the range of ecological interactions and 391

information gathering processing may determine several community-level outcomes, 392

such as diversity, stability and the distribution of traits. Therefore, our study opens a 393

broad range of questions and directions for future research. First, we have limited to the 394

case in which only predator traits can evolve, whereas evolution of prey traits has been 395

also shown to impact profoundly the population dynamics of both species in well-mixed 396

settings [21]. A natural extension of our study would be to explore such scenario in a 397

spatially-extended framework as the one introduced here. More complex possibilities, 398

such as the co-evolution of traits in both species could also shed some light on the 399

possible existence of new population dynamics [19] or more general evolutionary 400

processes, such as arm races in phenotype space (red queen-like dynamics) instead of 401

trait distributions reaching a stationary configuration [40]. Different movement models, 402

such as Lévy flights instead of Brownian motion, can modify both the optimal range of 403

the interactions [27] and the emergence of clusters of interacting individuals [41], 404

possibly leading to new community-level results. The existence of environmental 405

features that could also affect the degree of mixing and its coupling with the range of 406

interactions, such as the presence of external flows, would extend our results to a wider 407

range of ecosystems in which the importance of rapid evolutionary processes has been 408

already reported [42,43]. 409

Methods 410

Model details 411

The model mimics the eco-evolutionary dynamics of a prey-predator system in a square 412

environment of lateral length L. Each predator and prey has a position in space. In 413

addition, each predator has a different perceptual range R that determines the 414

distribution, in the population of Np predators, of this trait (ρ(R), with 415∫
dRρ(R) = Np). Three ingredients conform the dynamics of this individual-based 416

model: population dynamics, evolution with mutation, and individual dispersal. 417

1. Population dynamics. The number of preys, Nv, and predators, Np, change in
time due to prey reproduction, predator death and predation. These processes are
modeled as Poisson processes that occur at rates that may depend on the different
densities and perceptual ranges. Each predator may die at a constant rate d and
may catch a prey with rate c(R) that depends on its perceptual range. If a certain
predator catches a prey, it reproduces with probability b, generating at its position
a new individual which inherits its trait R, possibly modified by a mutation.
Preys, on the other hand, reproduce with constant rate r and die as a consequence
of predation events. These processes can be written in the form of a set of
biological reactions for preys V and predators P

V
r−→ V + V ,

P
d−→ ∅ , (7)

P + V
c(R)−−−→

{
P + P̃ with probability b

P with probability 1− b ,

where we added the notation P̃ to indicate that the predator newborn might have 418

its trait slightly modified from the parental value due to mutation (see Eq (10) 419

below). 420

Each predator detects preys within a disk of radius given by its perceptual range 421

R, with every prey inside that region equally likely to be caught. Following 422
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previous results that link the perceptual ranges, information gathering and 423

foraging success [25–27,31], the model accounts for a trade-off between perceptual 424

range and predation efficiency E(R), such that while large perceptual range 425

increases the potential number of preys, predation efficiency decreases. Combining 426

these effects, for a given predator the predation rate can be written as 427

c(R) = E(R)Mv(R) , (8)

where Mv(R) is the number of preys within the predation disk of radius R 428

centered at the position of each predator. Since Mv(R) is a monotonically growing 429

function of R, the shape of E determines whether the predation rate maximizes at 430

a certain perceptual range. The efficiency function E is expected to introduce an 431

upper bound to viable perceptual ranges. This conditions is fulfilled if, for large R, 432

the efficiency decays faster than the increasing number of preys in the range, 433

Mv(R). In the case of homogeneously distributed particles, Mv(R) ∝ R2. In this 434

case, the catching rate c has a nontrivial maximum at a finite value of R if E 435

decays faster than R−2. To be specific, an exponential decay is assumed for the 436

attacking efficiency, 437

E(R) = c0e
−R/Rc , (9)

where Rc sets the distance at which E significantly decays and c0 is proportional 438

factor. For the spatially homogeneous case, we find that c(R) ∝ R2 exp(−R/Rc), 439

which has a maximum at R?h ≡ 2Rc. This optimal value R?h is used as a reference 440

in our results. 441

2. Evolution with mutation. Each predation event is followed by the possible 442

reproduction of the predator, occurring with probability b. In this case, besides 443

inheriting the parental position, the newborn individual also inherits the parental 444

perceptual range, R, but with an added random perturbation, ξµ, which models 445

mutations and thus giving rise to a modified value of the trait R̃, 446

R̃ = R+ ξµ . (10)

ξµ is a zero-mean Gaussian variable whose variance, σ2
µ, regulates the intensity of 447

the mutations. In order to avoid perceptual ranges that exceed system size or are 448

negative, mutations leading to R < 0 or R > L/2 are rejected. We neglect any 449

complexity in the genotype-phenotype map, so that we consider the phenotypic 450

trait R to be directly determined by the parental one and the mutations. 451

3. Individual dispersal. Individuals are assumed to follow independent 452

two-dimensional Brownian motions with diffusion constants Dv and Dp for preys 453

and predators respectively. The position of every individual is updated after each 454

time step ∆t (to be defined by the Gillespie algorithm described below) by 455

sampling a turning angle, θ, and a displacement, `. The turning angle follows a 456

uniform distribution between [0, 2π), and the traveled distance is obtained from 457

the absolute value of a normal random variable with zero mean and variance 458

proportional to the individual’s diffusion coefficients. Periodic boundary 459

conditions are implemented. Mathematically, this position updating for individual 460

i can be written as 461

xi → xi + `θ̂ ∀ i ∈ {1, 2, . . . , Np +Nv} , (11)

where θ̂ is a random direction and ` the length of the displacement of the jump, 462

sampled from p(` > 0) ∝ exp[−`2/(2¯̀2)], being ¯̀=
√

2Di∆t with Di = Dv, Dp 463

the individual’s diffusion coefficient and ∆t the simulation time step as will be 464

detailed below. 465
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Model implementation: the Gillespie algorithm 466

We implement the stochastic birth-death dynamics, occurring at Poisson times 467

depending on the respective rates, following the Gillespie algorithm [44–46]: First, from 468

a configuration with Np predators and Nv preys, the predation rate c(Ri) is computed 469

for each predator, of perceptual range Ri. Next, recalling that predator death (d) and 470

prey reproduction (r) rates are the same for all individuals, the total event rate is 471

computed [44] as g = rNv +
∑Np
i=1[c(Ri) + d]. Then, we compute the time-step ∆t to 472

the next demographic event as ∆t = ζτ where ζ is an exponentially distributed random 473

variable with unit mean and τ ≡ 1/g, the average time to the next event. After this ∆t, 474

a single event will occur, prey reproduction, predation or predator death, chosen from 475

all the possible events (and individual involved) with probability proportional to the 476

contribution of the respective rate (see Eq (7) and (8)) to the total rate g. If predator 477

death or prey reproduction occur, we simply remove or generate a new individual at 478

parents’ position, respectively. If predation occurs, a prey randomly chosen within the 479

perception range of the selected predator dies and, with probability b, a new predator is 480

generated at the same location as the predator, with value of the perception range 481

obtained from Eq (10). 482

For simplicity, we fix in this paper the values r = d = c0 = b = Rc = 1 and focus our 483

study in the influence of the different values of diffusion coefficients Dp and Dp, and 484

mutation rate (for computational convenience we use also different values of system size 485

L). The impact of changing the rates to other values is briefly addressed in section 486

Summary and Discussion. 487

Mixing measures 488

In order to quantify the spatial arrangement of the species, we define measures of 489

mixing. A possible way to proceed is to use the Shannon index or entropy, which has 490

been applied to measure species diversity, racial, social or economic segregation on 491

human population and as a clustering measure [33–35]. Based on these previous 492

approaches, we propose a modification described below. 493

As usual, we start regularly partitioning the system in m square boxes with size 494

δx = L/
√
m and obtaining for each box i the entropy index si [34], given by 495

si = −f (i)p ln f (i)p − f (i)v ln f (i)v , (12)

where f
(i)
p (f

(i)
v ) is the fraction of predators (preys) inside box i, i.e. 496

f
(i)
q = N

(i)
q /[N

(i)
p +N

(i)
v ] with q = p, n and N

(i)
p , N

(i)
v the numbers of predators and 497

preys in that box, respectively. In terms of Eq (12), predator-prey mixing is maximum 498

when there is half of each type in the box, yielding si = − ln 1/2 = ln 2. Unbalancing 499

the proportions of the two types in the box reduces si. If a box contains only predators 500

or preys, si = 0, indicating perfect segregation. Finally, we define a whole-system 501

predator-prey mixing measure by averaging the values si in the different boxes, each 502

one weighted by its local population [34], 503

〈M〉m ≡
m∑
i=1

N (i)

N
si , (13)

being N (i) = N
(i)
p +N

(i)
v the total box population and N = Nv +Np the total 504

population. To really characterize the lack of inhomogeneity arising from interactions 505

and mobility, one should compare the value of 〈M〉m with the value M that would be 506

obtained by randomly locating the same numbers of predators and preys, Np and Nv 507

among the different boxes. At this point, approximations for M which are only 508
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appropriate if the number of individuals is large have been typically used. In our case, 509

since predator and prey populations have large fluctuations, it is necessary to give a 510

more precise estimation. In a brute force manner, one can obtain computationally the 511

mixing measure for the random distribution simply by distributing randomly in the m 512

spatial boxes the Nv preys and Np predator and averaging the corresponding results of 513

Eq (13) over many runs. On the other hand, this can be done analytically since we 514

known that, for random spatial distribution, the number of individuals nq of type q 515

(= p, v) in each box would obey a binomial distribution B(nq, Nq), where Nq is the total 516

particle number in the system. We have that B(nq, Nq) =
(
Nq
nq

)
( 1
m )nq (1− 1

m )Nq−nq . 517

Then, Eq (13) for randomly mixed individuals becomes 518

M≡
Nv∑
nv=0

Np∑
np=0

B(nv, Nv)B(np, Np)
nv + np
Nv +Np

s(nv, np) , (14)

with s as defined in Eq (12). 519

Finally, a suitable measure of predator-prey mixing that characterizes spatial 520

structure from the well-mixed case (M = 1) to full segregation (M = 0) is given by 521

M≡ 〈M〉m
M

. (15)

Also, we can define an analogous measure for each species’ spatial distribution 522

separately, which can be interpreted as a degree of clustering [35], 523

Mv = − 1

Mv

m∑
i

(N
(i)
v /Nv) ln(N

(i)
v /Nv)

m
, (16)

and 524

Mp = − 1

Mp

m∑
i

(N
(i)
p /Np) ln(N

(i)
p /Np)

m
, (17)

for preys and predators respectively, where 525

Mv =

Nv∑
nv=0

B(nv, Nv)[(nv/Nv) ln(nv/Nv)] , Mp =

Np∑
np=0

B(np, Np)[(np/Np) ln(np/Np)] .

(18)
For Mv or Mp = 1, the corresponding species is well spread around the domain. 526

Smaller values indicate clustering of the individuals. 527

The mixing measures are certainly affected by the size of the box δx used, which 528

should be tuned to obtain maximum sensibility to the spatial distribution. For very 529

large or very small box size, we see that different spatial distributions become 530

indistinguishable. For instance, for the predator-prey mixing, if the box size is very 531

large (of the order of system size), we will find that the predators and preys are well 532

mixed independent on the values of the diffusion coefficients. On the other hand, if box 533

size is very small it will be either occupied by a single predator or prey, if not empty, 534

indicating segregation independently on the individuals mobility. In S4 Fig, we show 535

how the mixing measure changes with box size δx and system size L for low mobility 536

(Dv = Dp = 0.1), which produces a highly heterogeneous spatial distribution. We 537

identify that for δx ' 2 maximum sensitivity with respect to diffusion coefficients is 538

attained. We used δx = 2 in our results, being a suitable scale since it is also of the 539

order of the typical values of the perceptual range attained under evolution. Regarding 540

the system size, we found only weak variations in the mixing measures, which are shown 541

in the inset of S4 Fig. 542
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Supporting information 543

S1 Movie Temporal evolution of population spatial distribution of 544

predators and preys with low predator and prey mobilities. Predators and 545

preys in colors red and blue, respectively, Dp = Dv = 0.1, mutation noise intensity 546

σµ = 0.1 and habitat size L = 20. 547

S2 Movie Temporal evolution of population spatial distribution of 548

predators and preys with high predator and prey mobilities. Predators and 549

preys in colors red and blue, respectively, Dp = Dv = 1, mutation noise intensity 550

σµ = 0.1 and habitat size L = 20. 551

S1 Fig Mixing measures as a function of predators perceptual range R in 552

the non-evolving case. Predator-prey, prey and predator mixing for different values 553

of diffusion coefficients as a function of predators’ perceptual range R (which is fixed, 554

not evolving, the same for all individuals and σµ = 0). Vertical lines show the dominant 555

perception range achieved through the evolutionary process under low mutation noise 556

(σµ = 0.1). L = 10. 557

S2 Fig Normalized perceptual range probability density at long times and 558

its temporal evolution. (A) ρ̄(R) = ρ(R)/Np at long-times for low (Dp = Dv = 0.1) 559

and high (Dp = Dv = 1) mobility. (B) ρ̄(R) at different times (initial condition is a 560

sharp distribution at R = 4) obtained from the individual-level simulations for the high 561

mobility case Dn = Dp = 1. In both panels habitat domain has size L = 10 and 562

mutation intensity σµ = 0.1. The perceptual range values are scaled by the optimal 563

value R?h of the homogeneous case for comparison. 564

S3 Fig Coexistence time probability distribution. Coexistence time 565

probability distribution obtained from individual-level simulations with 566

Dv = Dp = 1, 10, 100, mutation intensity σµ = 1.0 and habitat size L = 10. Inset shows 567

the behavior at short timescale for the same cases. Solid red lines indicate an 568

exponential distribution with the same mean. 569

S4 Fig Mixing measures as a function of the box size used in their 570

calculation, and of system size. Average mixing measures for the low mobility case 571

Dp = Dv = 0.1 for different box sizes δx. Mutation intensity σµ = 0.1 and habitat size 572

L = 10. Inset shows the dependence on system size L for δx = 2 (for systems sizes in 573

which it is not possible to set this value we take the closest points). Averages are 574

performed over time and realizations in the long-time regime. 575
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