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Abstract  

It is now well recognised that human semantic knowledge is supported by a large neural network 

distributed over multiple brain regions, but the dynamic organisation of this network remains 

unknown. Some studies have proposed that a central semantic hub coordinates this network. We 

explored the possibility of different types of semantic hubs; namely “representational hubs”, whose 

neural activity is modulated by semantic variables, and “connectivity hubs”, whose connectivity to 

distributed areas is modulated by semantic variables. We utilised the spatio-temporal resolution of 

source-estimated Electro-/Magnetoencephalography data in a word-concreteness task (17 

participants, 12 female) in order to: (i) find representational hubs at different timepoints based on 

semantic modulation of evoked brain activity in source space; (ii) identify connectivity hubs among 

left Anterior Temporal Lobe (ATL), Angular Gyrus (AG), Middle Temporal Gyrus and Inferior Frontal 

Gyrus based on their functional connectivity to the whole cortex, in particular sensory-motor-limbic 

systems; and (iii) explicitly compare network models with and without an intermediate hub linking 

sensory input to other candidate hub regions using Dynamic Causal Modelling (DCM) of evoked 

responses. ATL’s activity was modulated as early as 150ms post-stimulus, while both ATL and AG 

showed modulations of functional connectivity with sensory-motor-limbic areas from 150-450ms. 

DCM favoured models with one intermediate hub, namely ATL in an early time window and AG in a 

later time-window. Our results support ATL as a single representational hub with an early onset, but 

suggest that both ATL and AG function as connectivity hubs depending on the stage of semantic 

processing. 
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1 Introduction 
How are the networks supporting conceptual knowledge organised in the brain? Previous 

literature has focussed on two brain subnetworks, one comprising heteromodal areas in Perisylvian 

cortex that support all types of conceptual knowledge, and one comprising sensory-motor-limbic 

areas that are only recruited for certain categories of concepts (Binder & Desai 2011). However, the 

precise role of these areas and their inter-connectivity remain unknown (Pulvermüller 2013). Most 

previous studies have attempted to localise semantics in the brain using neuropsychology or 

functional magnetic resonance imaging (fMRI) (Binder et al. 2009; Lambon Ralph et al. 2016). 

Nonetheless, these methodologies do not provide the temporal resolution required to separate 

retrieval of semantic information from post-retrieval processes such as mental imagery (Hauk 2016; 

Pulvermüller et al. 2009) or to uncover fast changes in the communication between different nodes 

within the semantic network. 

We used Electro- and Magneto-EncephaloGraphy (EEG/MEG) to compare dynamic brain 

activity and connectivity in response to visually-presented concrete and abstract words. We used this 

contrast to examine the role of hetermodoal semantic areas (hereafter referred to as candidate 

semantic “hubs”), considering that these two categories differ with respect to their general semantic 

processing demands and general sensory-motor-affective attributes (Binder et al. 2005; Dhond et al. 

2007). The term hub is often used to refer to the functional role of brain areas in semantic brain 

networks (Patterson et al. 2007; Pulvermüller 2013). However, graph theory has provided a number 

of empirical metrics to characterise hubs (Bullmore & Sporns 2009). Here, we considered two types of 

heteromodal hubs that are linked to neuroscientific theories of semantics: “representational hubs”, 

in which the activity of neural populations is modulated by the semantic variables, and “connectivity 

hubs”, which mediate communication between semantic areas through modulations of connections 

to heteromodal and sensory-motor-limbic nodes of the semantic network. This distinction is related 

to the distinction between “representation” and “connectivity” made by Woollams and Patterson 

(2017) for describing the role of the anterior temporal lobe (ATL) within a “hub-and-spokes” model.  

The hub-and-spokes model, based on computational modelling, neuropsychological research 

on semantic dementia patients (Patterson et al. 2007; Snowden et al. 2017), and neuroimaging 

research on healthy participants (Lambon Ralph et al. 2016; Lau et al. 2013), proposes that a single 

semantic hub binds together brain regions within a distributed semantic network, and underlies 

category-general semantics (Lambon Ralph et al. 2016; Rogers et al. 2004). However, meta-analytic 

neuroimaging evidence also implicates several other brain regions (Binder et al. 2009), including 
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posterior inferior parietal lobe (especially angular gyrus, AG), middle temporal gyrus (MTG) and 

inferior frontal gyrus (IFG), as potential hubs. Indeed, neuro-computational modelling of word learning 

promotes the possibility of multiple semantic hubs (Tomasello et al. 2017). Some authors have 

therefore argued for an “interactive continuum of hierarchically ordered neural ensembles” (Binder 

& Desai 2011), similar to the framework of convergence zones (Barsalou 2009; Martin 2016; Meyer & 

Damasio 2009). 

Here, we used a largely data-driven approach, in order to objectively characterise the brain 

networks at different stages of semantic processing. First, we analysed evoked activity to find the brain 

areas that first distinguished concrete and abstract words, revealing possible candidates for 

representational hubs. Second, we examined functional connectivity between the main hub 

candidates (ATL, IFG, MTG, AG) and distributed semantic areas, particularly sensory-motor-limbic 

systems, in order to identify connectivity hubs in the whole-cortex networks. Third, using Dynamic 

Causal Modelling (DCM) of evoked responses (David et al. 2006), we tested for the presence of a 

central connectivity hub within the heteromodal semantic subnetwork that links sensory input to 

different nodes of this network in an early and a later time-window. For this purpose, we constructed 

a hierarchy of model comparisons comprising two levels, and asked: a) are models with a single 

connectivity hub preferred over models with no hubs, and b) in the preferred models, do the areas 

that function as connectivity hubs change from earlier to later stages of semantic retrieval?  

2 Materials and methods 
2.1 Data acquisition and pre-processing 

2.1.1 Participants 

20 healthy native English speakers participated in the study, but 3 participants were removed 

due to excessive movement artefacts or measurement error. Hence 17 participants (age 27±6 years, 

12 female) entered the final analysis. A mean handedness laterality quotient of 82 (min 41, max 100) 

was obtained from a reduced version of the Oldfield handedness inventory (Oldfield 1971). All 

participants had normal or corrected-to-normal vision with no reported history of neurological 

disorders or dyslexia. The experiment was approved by the Cambridge Psychology Research Ethics 

Committee and volunteers were paid for their time and effort. 
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2.1.2 Stimuli 

Participants were presented with 184 monomorphemic abstract and concrete words (92 per 

category, see Extended Data Table 1 - 1 for the list of words), matched for a number of psycholinguistic 

variables including Kucera-Francis (KF) and CELEX word frequencies, familiarity, concreteness and 

imageability ratings as well as the number of letters/phonemes/syllables (see Table 1 for details). KF 

Frequency, Familiarity, Concreteness and Imageability values were taken from the MRC 

Psycholinguistic Database (Coltheart 1981) and CELEX Frequency taken from the MCWord Database 

(Binder & Medler, 2005). The two categories differed significantly on concreteness and imageability 

(ts>19.3575, ps<.0005) as indicated by independent samples t-tests, but not with respect to the other 

aforementioned variables ((ts<1.28, ps>.202). 

2.1.3 Procedure and task 

Single-word stimuli appeared as 28-point Arial font in white on a black screen within a visual 

angle of 4 degrees in a slightly dimmed and acoustically shielded MEG chamber at the MRC Cognition 

and Brain Sciences Unit, University of Cambridge. Duration of stimulus presentation was 150 ms, with 

an average SOA of 2400 ms (uniformly jittered between 2150 and 2650 ms). Participants preformed a 

concreteness decision task, by making button presses with their right hand, using index and middle 

finger to distinguish concrete and abstract words. Short breaks were included after about every 50 

trials. Participants were given a few minutes of practice prior to the experiment, using different 

stimuli, until they felt comfortable with the task. The first two trials (filler items) after each break and 

at the beginning of each block were not included in the analysis. 

A concreteness judgement task was preferred over a passive task in order to ensure that 

participants stay alert throughout the experiment. Additionally, the contrast of concrete and abstract 

words has been extensively used in the previous literature in order to identify the heteromodal 

semantic areas (Binder 2016; Binder et al. 2005; Dhond et al. 2007) based on modulations of brain 

activity. Here, we extended the previous explorations by incorporating the temporal trajectory of 

brain activity and whole-cortex statistics in order to identify the representational hubs in the whole-

cortex. In addition, this contrast was considered suitable for identifying connectivity hubs through 

modulations of connections among the heteromodal semantic areas as well as connectivity between 

heteromodal and sensory-motor cortices. More specifically, concrete words are generally more 

strongly associated with sensory-motor attributes  while abstract words have been suggested to rely 

more on the heteromodal subnetwork of semantics (Binder 2016). Thus, this contrast was considered 

more suitable to tackle representational and connectivity hubs compared to more general (e.g. 

word/pseudoword) or more specific (fine-grained categories of concepts) semantic contrasts.  
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Table 1 Psycholinguistic properties of stimuli: average and standard deviations for relevant psycholinguistic variables for 
the semantic decision stimuli as a function of concreteness. List of stimuli are presented in Table 1 - 1 (Extended Data). 

 Concrete (average ± std) Abstract (average ± std) 

Number of Letters 5.9 ± 0.8 6.0 ± 0.8 

Number of Phonemes 5.0 ± 1.2 5.2 ± 1.2 

Number of Syllables 2.0 ± 0.6 2.1 ± 0.8 

KF Frequency 15.0 ± 18.0 15.0 ± 15.0 

CELEX Frequency 12.0 ± 15.0 15.0 ± 14.0 

Familiarity Rating 462.0 ± 59.0 447.0 ± 98.0 

Concreteness Rating 590.0 ± 26.0 303.0 ± 39.0 

Imageability Rating 566.0 ± 41.0 388.0 ± 78.0 

KF: Kucera-Francis; std: standard deviation. 

 

2.1.4 EEG/MEG data acquisition and pre-processing 

MEG data were acquired in a magnetically shielded room using a Neuromag Vectorview 

system (Elekta AB, Stockholm, Sweden), with 204 planar gradiometers and 102 magnetometers (i.e. 

306 channels overall). EEG data were collected concurrently using a 70-electrode EEG cap (EasyCap 

GmbH, Herrsching, Germany). EEG reference and ground electrodes were attached to the nose and 

left cheek, respectively. The Electro-Oculo-Gram (EOG) was recorded by placing electrodes above and 

below the left eye (vertical EOG) and at the outer canthi (horizontal EOG). Data were acquired with a 

sampling rate of 1000Hz and a band pass filter of 0.03 to 330 Hz. Prior to the MEG recording, the 

positions of 5 Head Position Indicator (HPI) coils attached to the EEG cap, 3 anatomical landmark 

points (two ears and nose) as well as approximately 50-100 additional points covering the whole EEG 

cap were digitised using a 3Space Isotrak II System (Polhemus, Colchester, Vermont, USA) for later co-

registration with MRI data. It is worth noting that simultaneous EEG/MEG recordings have been shown 

to improve the accuracy of source localisation which motivated their concurrent recording in the 

current study (Molins et al. 2008; Sharon et al. 2007). 

Our analysis pipeline for the data is illustrated in Figure 1. The first step of data pre-processing 

included applying signal-space separation (SSS) implemented in the Maxfilter software (Version 2.0) 

of Elekta Neuromag to the raw MEG data in order to remove noise from sources distant to the sensor 

array (Samu Taulu and Matti Kajola 2005). The Maxfilter software also involved movement 

compensation and bad channel interpolation for MEG data. All the next analysis steps (except Dynamic 

Causal Modelling) were performed in the MNE-Python software package 

(http://martinos.org/mne/stable/index.html) (Gramfort et al. 2013, 2014). Raw data were visually 
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inspected for each participant, and consistently bad EEG channels were marked and interpolated. Data 

were then FIR band-pass filtered between 1 and 48 Hz with a window length of 40s in both forward 

and backward directions to achieve zero phase delay. Independent Component Analysis (ICA) was 

applied to the filtered data in order to remove eye movement and heart artefacts. We used FastICA 

algorithm (Hyvärinen et al. 2000) as included in scikit-learn python package (Pedregosa et al. 2011) 

and implemented in MNE-Python meeg-preprocessing package (with minor manual changes to 

achieve a better artefact rejection for some participants). After ICA, data were divided into epochs 

from -500ms to 700ms around the word onsets. Epochs were rejected if peak-to-peak amplitudes 

were higher than the following thresholds, based on previous norms: 120 µV in the EEG (except for 2 

cases where we increased the threshold to 150 µV, because high rejection rates could be identified as 

due to excessive Alpha activity despite good behavioural performance), 2500 fT in magnetometers, 

1000 fT/cm for gradiometers. Trials with incorrect responses were also excluded from further analysis. 

 

Figure 1. A flowchart of different steps of data analysis. 
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2.1.5 Forward model and inverse solution  

We used MNE-Python software to compute forward and inverse models. The forward model 

was computed based on a Boundary Element Model (BEM) of the head derived from structural MR 

images for each participant. EEG/MEG sensor configurations and MRI images were co-registered 

based on the aforementioned digitisation points. Structural MRI images were processed using the 

automated segmentation algorithms in FreeSurfer software (Version 5.3; 

http://surfer.nmr.mgh.harvard.edu/) in order to obtain the reconstructed scalp surface (Dale et al. 

1999; Fischl et al. 1999). The result of the FreeSurfer segmentation was processed further using MNE 

software package (Version 2.7.3) and the original triangulated cortical surface, which included more 

than 160,000 vertices per hemisphere, was down-sampled to a tessellated grid in which the average 

edge of each triangle was approximately 2.5mm (Segonne et al. 2004). A three-layer BEM containing 

5120 triangles per layer was created for EEG and MEG from scalp, outer skull surface and inner skull 

surface, respectively. The noise covariance matrices for each dataset were computed and regularised 

in a single framework which computes the covariance using a diagonal regularisation technique with 

regularisation factor of 0.1 for all the channel types. Baseline intervals of 500ms duration pre-stimulus 

were used for noise covariance estimation. The resulting regularised noise covariance matrix was used 

to assemble the inverse operator for each participant using L2 minimum-norm estimation (L2 MNE) 

with a loose orientation constraint value of 0.2 and without depth weighting. 

2.2 Whole-cortex evoked analysis 
This analysis was aimed at identifying representational hubs in the whole cortex. After 

removing bad trials according to aforementioned criteria, the number of epochs were equalised 

between concrete and abstract words by matching the time of trial presentation, i.e, removing 

excessive epochs for concrete words that showed minimal temporal alignment with the abstract 

words. Equalisation of the number of trials was performed so as to remove any potential biases due 

to the differences in signal to noise ratios (SNR), given that error rates were significantly higher for the 

abstract words (section 3.1). Trials for each condition were averaged in sensor space in order to yield 

an evoked response per participant and condition, which were then projected onto the source space 

using L2 MNE. We used MNE-Python’s default SNR = 3.0 for regularisation of the inverse operator for 

evoked responses. Afterwards, the individual participant results were morphed to the standard 

average brain (fsaverage5) in Freesurfer software, yielding time courses of activity for 20,484 vertices 

for each participant and condition. Source-estimated time courses were then averaged in five time 

windows from 50ms to 550ms with 100ms increments for further analysis.  
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2.3 Seed-based connectivity analysis 
We computed whole-cortex seed-based connectivity with the main left-hemispheric 

heteromodal semantic areas as seeds: ATL, MTG, AG and IFG (see Figure 6) in order to identify 

connectivity hubs based on the modulation of their connections to distributed semantic areas. Meta-

analytic evidence suggests the heteromodal subnetwork of semantics to be bilateral but stronger in 

the left hemisphere (Binder et al., 2009), particularly for verbal stimuli (Rice et al. 2015). Therefore, 

we constrained the seed regions to the left hemisphere but measured their connectivity to all other 

brain vertices. For this purpose, we extracted the ROI time courses and computed Magnitude Square 

Coherence (COH, chosen following a procedure described in 2.3.1) between each ROI time course and 

every vertex in the brain in four frequency bands of Theta (4-7 Hz), Alpha (8-12 Hz), Beta (13-30 Hz) 

and Gamma (31-45 Hz) (Engel & Fries 2010) and in early (150-350ms) and late (250-450ms) time 

windows post-stimulus. Note that the time windows for connectivity analysis have the same onsets 

as those used in 2.2 except that (a) we used longer time windows here (200ms vs. 100ms) in order to 

ensure a reliable spectral functional connectivity estimation and (b) we restricted this analysis to only 

two time windows, because connectivity analysis requires corrections for multiple comparisons across 

vertices, times, frequency bands and seeds (see 2.4 for details). The onset of these time windows (i.e. 

150 and 250ms) was informed by the earliest semantic effects reported in previous literature (Hauk 

2016; Moseley et al. 2013). In order to extract each ROI time course, we first identified a vertex within 

the ROI that showed the highest sensitivity to that ROI. To this aim, we computed cross-talk functions 

(CTFs) and identified the vertex inside that ROI that showed the largest CTF value (for details of ROICTF 

calculations refer to (Farahibozorg et al. 2018; Hauk et al. 2011; Liu et al. 1998)). Thereafter, we 

extracted ROI time courses based on this vertex for each epoch. Next, in order to compute COH, the 

phase and amplitude/phase consistency were calculated using a multitaper algorithm using the 

default implementation in MNE-Python (version 0.9). Note that different approaches have been used 

in the previous literature in order to summarise ROI time courses, including averaging voxel time 

courses, eigenvectors and using voxels with maximum power (Colclough et al. 2015). Considering the 

limitations of the spatial resolution of the EEG/MEG source localisation, we preferred voxels that 

showed maximum sensitivity to an ROI’s signal (i.e. most likely to receive signal from each specific 

ROI). 

Magnitude-squared Coherence (COH) is the absolute value of the complex-valued Coherency, 

which describes the degree of covariance between the amplitudes and phases of two signals (Nunez 

et al. 1997). Coherency is formulated as: 

    𝐶"#(𝑓) =	
)*+(,)

-)**(,))++(,)
        ( 1 ) 
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where X(f) and Y(f) are Fourier transforms of the brain signals, f denotes frequency, SXY is the cross-

spectrum and Sxx and Syy denote auto-spectra of X(f) and Y(f). It is worth noting that S is Fourier 

transform of the cross-covariance, and hence coherency can be thought of as the analogue of cross 

correlation in the frequency domain. Cij(f) is complex with real and imaginary parts which contain 

amplitude and phase. Magnitude squared Coherence between two signals is measured as the absolute 

value of Cij(f) in Equation 1. 

2.3.1 Choice of Coherence as the most-suitable connectivity metric 

COH was chosen among several alternatives in a data-driven manner (details can be found in 

Extended Data Figure 5 - 1 and Table 5 - 1). Due to the complexity of the neuronal dynamics measured 

by EEG/MEG, numerous methods have been proposed to quantify connectivity between cortical 

sources, each designed to capture one or a few aspects of the signals (e.g. Bastos & Schoffelen 2016; 

Greenblatt et al. 2012). Therefore, selecting one particular connectivity method for a specific purpose 

would require a detailed knowledge of the neuronal mechanisms of brain connectivity. However, such 

mechanisms for semantic networks have not yet been established. Here, we identified the most 

suitable method for our data utilising a novel approach based on Principal Component Analysis (PCA) 

(Jung et al. 2000; Lagerlund et al. 1997). PCA provides a robust multivariate method of dimensionality 

reduction and feature selection that has been used frequently at different stages of EEG/MEG pre-

/post-processing (Jung et al. 2000; Lagerlund et al. 1997). By projecting the multidimensional data on 

orthogonal axes (aka. PCs), PCA can find similarities and differences between the connectivity 

estimations yielded by different metrics and project them on a single PC and distinct PCs, respectively. 

Additionally, it can identify principal axes along which the maximum variance of a data is explained as 

well as the original connectivity metrics that are highly correlated to the most prominent (i.e. first) PC. 

These metrics can be regarded as the most suitable connectivity metrics (MSC) for a data.  

We started by sub-selecting a few connectivity metrics theoretically by focusing on the key 

methods of functional connectivity in three families: phase plus amplitude coupling, phase coupling 

and information theoretic (focused on probability distributions). Next, we selected one method from 

each family, to address the questions of this study: magnitude-squared Coherence (COH), Pairwise 

Phase Consistency (PPC) and mutual information (MI) (Greenblatt et al. 2012). Considering that these 

three metrics might measure similar and/or different aspects of the data, we utilised PCA in order to: 

1) find similarities between them; 2) find unique aspects to each method; 3) identify the method with 

the highest correlation to the first PC as the most suitable connectivity metric. 

After estimating seed-based connectivity using each of the three metrics, for each condition, 

we concatenated the whole brain connectivity vectors (length Nvertices) from all participants, times, 
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seeds, frequency bands and connectivity methods in one matrix yielding grand connectivity matrices 

CMc and CMa of size Nvertex × Nparticipants × Nseeds × Ntimes × Nbands × Nconn for concrete and abstract 

words, respectively. We concatenated CMc and CMa alongside the first dimension and obtained a CM 

matrix. Thereafter, PCA was computed on 2D sub-matrices obtained from the first and last dimension 

of CM for each participant, time, seed and band (i.e. sub-matrix size 2Nvert × Nconn) with dimension 

reduction along the second dimension (i.e. connectivity methods).  

We computed variance explained by each PC as well as correlation of each PC to each 

connectivity method. The explained variance and correlation values were then averaged over times, 

seeds and participants in order to yield one value for each connectivity method at each frequency 

band. In order to account for the potential non-normalities or differences in the probability 

distribution of different connectivity methods, Box-Cox transform (Sakia 1992) was used to obtain a 

Gaussian distribution for each connectivity method before conducting PCA. Furthermore, considering 

the fact that COH, PPC and MI have different scales, we conducted weighted PCA (i.e. normalised by 

variance across rows of each 2NvertxNconn sub-matrix) on centred data.   

We found that COH and PPC were highly correlated with the first PC (correlation 0.85 or 

higher) which explained more than 50% of the variance for every frequency band. MI was partially 

correlated with the spectral measures; however, it was predominately projected on the second PC 

that explained approximately 30% of the variance of the data. Based on these findings, COH and PPC 

were identified as the more suitable measures for the data. Considering that the former is sensitive 

to both amplitude and phase couplings while the latter is only sensitive to the phase, we selected COH 

as the representative connectivity metric for the rest of the study. 

2.3.2 Choice of seeds 

Candidate semantic hubs in ATL, IFG, MTG and AG were defined based on the key 

heteromodal semantic areas proposed in the previous literature, in particular with reference to the 

meta-analytic evidence by (Binder et al. 2009) and a more recent review by (Pulvermüller 2013). It is 

worth noting that subdivisions of the temporal cortex in heteromodal semantics are not fully 

established, and previous studies have considered different number of subregions (Binder et al. 2009; 

Jackson et al. 2018; Lambon Ralph et al. 2016; Pulvermüller 2013). Here, we defined MTG based on 

the aforementioned meta-analytic evidence, except informed by studies of semantic dementia and 

the hub-and-spokes model of semantics (Lambon Ralph et al. 2016; Patterson et al. 2007), we defined 

the anterior part of the temporal lobe as an independent ROI. Additionally, we defined Angular Gyrus 
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and parts of the Supramarginal Gyrus (SMG) as one seed labelled “AG”. This seed has been identified 

as a key semantic area by (Binder et al. 2009). 

2.4 Whole-cortex statistical analysis: cluster-based 

permutation 
We used a cluster-based permutation test (Maris & Oostenveld 2007) for statistical analysis 

of the whole-cortex evoked and seed-based functional connectivity results. For this purpose, we 

computed univariate vertex-wise t-tests and thresholded them at a t-value corresponding to an initial 

p-value p0 (two-tailed). Cluster-based permutation was applied to these thresholded t-maps and 

randomisation was replicated 5000 times in order to obtain the largest random clusters. The cluster-

level significance for the original clusters was then calculated as the percentile of the cluster size 

compared to the largest random clusters across the 5000 permutations. We used spatio-temporal 

clustering for the whole-cortex evoked responses (accounting for multiple comparisons across vertices 

and time windows) and spatio-temporo-spectral clustering for the seed-based connectivity in order 

to also take the four frequency bands into account. Furthermore, considering that cluster-based 

permutation results can be sensitive to the choice of p0 (Smith & Nichols 2009), we tested several 

initial thresholds and only clusters that appeared based on more than one p0 were deemed robust. 

More specifically, for the whole-cortex evoked responses, we tested five thresholds (0.05, 0.045, 0.04, 

0.025 and 0.01) and for the seed-based connectivity we tested stricter thresholds (0.025, 0.01, 0.008,  

0.002 and 0.001) to make some allowance for the multiple comparisons across the four seeds (i.e. 

candidate hubs). Additionally, considering the low spatial resolution of EEG/MEG of our source 

localisation method for deeper brain areas (see (Farahibozorg et al. 2018; Hauk et al. 2011; Liu et al. 

1998) for more details), before conducting cluster-based permutation, the areas highlighted in green 

in Figure 2 were excluded.  

Figure 2. Vertices excluded from whole-cortex statistical analyses: 
green labels defined manually (informed by the previous studies; e.g. 
(Farahibozorg et al. 2018; Hauk et al. 2011; Liu et al. 1998)) mark 
deeper brain areas that were removed from the whole-cortex 
statistical analysis due to the limited spatial resolution of the 
EEG/MEG source localisation.  

 

2.5 Dynamic Causal Modelling (DCM) 
DCM analysis focused on identification of the organisation of connectivity among the 

aforementioned candidate hubs: left ATL, IFG, MTG and AG, as well as the visual word form area 

(vWFA) in the posterior fusiform gyrus of the left hemisphere which was used as the input region. As 
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the first step, we computed evoked source estimates in the same manner as outlined in 2.2 with two 

exceptions. Firstly, since DCM for ERP requires signed evoked responses (i.e. reflecting the direction 

of current flow), we here computed source reconstructed ERPs for dipole components perpendicular 

to the cortical surface based on the aforementioned source estimates with loose orientation 

constraint. Secondly, in order to obtain more compatibility with the previous DCM ERP literature 

(Chennu et al. 2016; Garrido et al. 2008; Phillips et al. 2015), we used a band-pass filter between 1-35 

Hz.  Next, we used CTFs to identify the vertex with the highest sensitivity to each ROI, the time course 

of which was extracted and utilised in the subsequent analyses. The procedure was similar to 2.3, 

except defining CTFs at group-level and extracting ROI timecourses based on subject-level timeseries 

that were morphed to fsaverage brain (see 2.2) so as to obtain more homogenous evoked responses 

across subjects for subsequent Fixed Effect Inference on DCMs (see below). 

After extraction of the ROI time courses, we used SPM12 (version r6909) for DCM analysis.  

The model space, as displayed in Figure 3, comprised 28 models. We defined a hierarchical 

organisation of DCM families in two levels in order to address the following two questions. In the first 

level of hierarchical comparison, aimed at identification of the winner grand-family, all the 28 models 

were categorised into three families of hub models, no-hub models and no-modulation models. The 

hub family consisted of models 1-16 where one of ATL, IFG, MTG and AG areas played the role of a 

single hub that received input from the vWFA and was connected to all other semantic areas in the 

model space. The no-hub family consisted of models 17-26. In models 17-18, all the candidate areas 

where included as multiple convergence zones and received input directly from the vWFA; in models 

20-26, only connections of the vWFA to only one of the semantic areas were modulated by the 

semantic contrast (no further connections to the rest of the network were modulated). Finally, in the 

no-modulation family, models 27-28 had no connection that was modulated by condition (differing 

only in the presence/absence of self-connections in the vWFA).   

Thereafter, in the second level of hierarchical comparison, fine-grained families within the 

winner grand-family from hierarchy 1 investigations were compared (Figure 3). Models within each 

fine-grained family spanned different scenarios of self-modulation of the candidate hub areas while 

self-modulation of vWFA was included in all the models. Finally, we compared single models within 

the winning fine-grained family in order to examine whether or not one of the models stood out as a 

conclusive winner and estimated the parameters (i.e. average connection strengths) of this model 

(details below). 

Each model included evoked responses to both concrete and abstract words and was fit for 

each participant separately. Intrinsic connections were assumed to be common between the 
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conditions, while extrinsic connections were used to model condition-induced modulations of a 

preselected set of connections. Each model was inverted in two time-windows of 0-250ms and 0-

450ms, where the former was considered the early and the latter was considered the later time 

window. Because DCM is a dynamical system, it requires the data to start at the point of stimulus 

onset. Thus, both early and late time-windows start from 0ms (i.e. stimulus onset). Data were reduced 

to 8 spatial modes and no down-sampling, detrending or Hanning windows were used. Furthermore, 

we used the traditional ERP model for DCM inversion (David et al. 2006) instead of the more recently 

introduced canonical microcircuits (CMC) (Bastos et al. 2012) since the former showed higher model 

evidence for all the models in the model space (see  Extended Data Figure 7 - 1). Furthermore, 

considering the lengths of the time windows of the DCM analysis (i.e. 250ms and 450ms), we included 

modulations of both forward and backward connections in the model. This choice was made 

heuristically and informed by the previous literature where semantic effects have been reported as 

early as 150ms (Moseley et al. 2013).  

Finally, we used family-level Bayesian Model Selection (BMS) with Fixed Effect Inference (FFX) 

on the free-energy approximation to the model evidence, in order to identify the winning families in 

each hierarchy of DCM evaluations (Stephan et al. 2007). FFX was considered as more suitable for the 

current study given that we are studying a homogenous group of healthy young adults, and therefore 

it is reasonable to assume that the same model applies for all participants. Furthermore, we verified 

that winning models were not driven by outliers in the free-energy. After conducting BMS, we 

averaged parameters of the winning single model inside the winning fine-grained family across 

participants. 
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Figure 3. DCM model space delineating grand-families and fine-grained families encompassing 28 models. ATL: Anterior 
Temporal Lobe, IFG: Inferior Frontal Gyrus, MTG: Middle Temporal Gyrus, AG: Angular Gyrus, WFA: Word Form Area, Cov Zn: 
Convergence Zone, SA: Semantic Area.  
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3 Results 
3.1 Behavioural results 

We conducted paired t-tests in order to compare reaction times (RT) and error rates (ER) for 

abstract and concrete words. The former showed significantly higher RTs and ERs (RTs for abstract vs 

concrete: 879±118 vs 778±111ms, ERs: 8.1±5.0 vs 4.5±4.3%), consistent with previous findings (Dhond 

et al. 2007).  

3.2 Whole-cortex evoked analysis 
We used whole-cortex evoked analysis to identify potential representational hubs using a 

data-driven approach. We defined five time-windows of interest covering the key stages of written 

word comprehension: 50-150ms, 150-250ms, 250-350ms, 350-450ms, 450-550ms. In the following 

subsections, we will refer to them by their central time point, e.g. 100ms for 50-150ms.  

After source estimation, we examined the grand-average responses to word onset (averaged 

across concrete and abstract words and across participants), and observed that both conditions 

showed a posterior-to-anterior flow of current along the ventral occipito-temporal pathway that is 

typical for visual word recognition (Chen et al. 2015; Marinković 2004). Thereafter, using spatio-

temporal cluster-based permutations to contrast responses between concrete and abstract words, we 

found two significant clusters, both including bilateral ATLs and IFGs (Figure 4). The effect started as 

early as 100ms in the left ATL and extended to the left IFG as well as right ATL/IFG at 300ms, lasting 

until 450ms. The largest cluster appeared in the time window of 350-450ms. All bilateral clusters 

showed higher amplitudes for abstract words. Results of the cluster-based permutation and univariate 

paired t-test are shown in Figure 4. 
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Figure 4. Whole-cortex evoked responses for concrete minus abstract words: contrasts of word categories are averaged 
within five time windows of 100ms duration spanned between 50 and 550ms. Left: uncorrected univariate t-tests. Right: 
significant clusters of spatio-temporal cluster-based permutation tests. Warm colors indicate higher values for concrete 
words, and cool colors for the abstract words. 

3.3 Functional seed-based connectivity  
In this analysis we identified the connectivity hubs within the distributed semantic network 

based on concreteness effects on whole-cortex functional connectivity to sensory-motor-limbic 

semantic areas. In order to test for these connectivity hubs, we computed seed-based coherence 

(COH) between the time courses of four candidate semantic hubs in the left ATL, IFG, AG and MTG 

and every cortical vertex (except those excluded due to EEG/MEG spatial resolution, see Figure 2). 

Note that a whole-cortex seed-based analysis (i.e. ROI by vertex connectivity) is more informative than 

an ROI by ROI connectivity approach, considering that concrete and abstract words differ with respect 

to general but not specific sensory-motor attributes (e.g. concrete words are more tangible but not 

necessarily action-related), and thus defining sensory-motor ROIs is not straightforward. We 
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calculated connectivity in Theta, Alpha, Beta and Gamma bands, and in two time windows of 150-

350ms and 250-450ms. Significant clusters for differentiating concrete and abstract concepts were 

identified using spatio-temporo-spectral cluster-based permutations. Among the tested seeds, only 

left ATL and AG showed significant differences in connectivity between concrete and abstract words 

(Figure 5 a). Left AG showed higher Alpha (250-450ms) and Beta (150-450ms) band COH to the left 

somatosensory cortex for the concrete words. Left ATL showed higher Beta (250-450ms) and Gamma 

(150-450ms) band COH to the right orbitofrontal cortex for the abstract words (Figure 5 b). Both 

effects started in the early time window (150-350ms) and persisted into the later time window (250-

450ms).  

  

3.4 Dynamic Causal Modelling 
We compared possible organisations of the dynamic network that binds the heteromodal 

semantic areas using DCM analysis of evoked responses (i.e. ATL, IFG, MTG and AG with vWFA as the 

input region). The aim was to investigate whether this heteromodal network is bound by a central 

connectivity hub in the latency ranges 0-250ms and 0-450ms. Heteromodal semantic areas that are 

involved in semantic processing regardless of the word categories have been established in previous 

literature. Therefore, we here used DCM, which requires a hypothesis-guided analysis approach (i.e. 

ROI by ROI connectivity) and can explicitly find the best model of connectivity among the selected 

areas. As such, hypothesis-guided DCM analysis and data-driven functional connectivity investigations 

Figure 5. Results of whole-cortex seed-based connectivity: a) seed in the left AG. Larger connectivity to left somatosensory 
cortex for concrete words was found in the beta band for early and late latency ranges, and in the alpha band for the late 
time window only; b) seed in the left ATL. Larger connectivity to right orbitofrontal cortex for abstract words was found in 
the gamma band for early and late latency ranges, and in the beta band for the late time window only. Coherence was 
identified as the suitable connectivity metric for this analysis (see Extended Data Figure 5 - 1 and Table 5 - 1). 
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provide complementary evidence to identify the connectivity hubs within the heteromodal semantic 

network and between the heteromodal nodes and distributed semantic areas, respectively.  

3.4.1 ROIs and time courses  

ROIs included in the DCM models and their average signed ERP responses for an example 

participant are shown in Figure 6. We used paired t-tests to test for significant differences between 

absolute ERP responses to concrete and abstract words in the averaged time windows of exploration 

(i.e. 0-250ms and 0-450ms) and found that only ATL showed a significant difference between the two 

conditions (p = 0.016 and p = 0.031 for earlier and later time windows respectively), consistent with 

the earlier whole-cortex activity analysis.  

3.4.2 First hierarchy: grand-family of hubs showed the highest model 

evidence 

In this step of analysis, we compared three grand-families of models (the hub, no-hub and no-

modulation families shown in Figure 3) using FFX BMS and found that the first family showed the 

highest posterior probability (Figure 7- left panel), within both 0-250ms and 0-450ms post-stimulus 

windows. This grand-family consisted of four fine-grained families including ATL hub, IFG hub, MTG 

hub and AG hub. Each of these families consisted of four models where the hub received input from 

Figure 6. Example signed ERPs for ROIs included in DCM models. Left: ROIs included in the DCM models including ATL, 
IFG, MTG, AG and vWFA; right: signed ERP time courses of the ROIs from -50ms to 450ms for a representative subject. 
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the vWFA and established connections to the other nodes of the heteromodal subnetwork. BMS 

results are shown in Figure 7- left panel.  

 

3.4.3 Second hierarchy: ATL and AG hub families showed the highest 

model evidence 

In the next step, in order to find areas that serve as a hub, we compared the fine-grained 

families within the grand-family of hub models, and found that models with ATL as the hub showed 

the highest posterior probabilities for the 0-250ms time window, and models with AG as the hub 

showed highest posterior probabilities for the 0-450ms time window (Figure 7- middle panel). In the 

former family, ATL received input from the vWFA (via bidirectional connections) and was connected 

to the IFG, MTG and AG. In the latter, AG received input from vWFA and was connected to ATL, IFG 

and MTG. Each family comprised four models where inter-areal connections were bidirectional and 

self-modulations of the vWFA were switched on. However, the self-modulation of ATL/AG hubs in 

Figure 7. DCM results based on two hierarchies of family comparisons: a) DCM results within 0-250ms. Hub models and 
ATL-hub model were identified as winning families of the first and second hierarchy of comparisons, respectively. Model 3 
within the ATL-hub family was identified as a conclusive winner. b) DCM results within 0-450ms. Hub models and AG-hub 
model were identified as winning families of the first and second hierarchy of comparisons, respectively. Model 4 within the 
AG-hub family was identified as a conclusive winner. Models were inverted using classic DCM for ERP and not canonical 
microcircuits (see Extended Data Figure 7 - 1). BMS: Bayesian Model Selection, FFX: Fixed-effect Inference, ATL-H: ATL-Hub, 
IFG-H: IFG-Hub, MTG-H: MTG-Hub, AG-H: AG-Hub. 
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their corresponding family, as well as self-modulations of other heteromodal nodes, varied across 

models in each family (refer to section 2.5 for more details).   

3.4.3.1 Single models within ATL and AG hub families 

After identifying ATL and AG hubs within 0-250ms and 0-450ms post-stimulus as the winner 

fine-grained families, we compared models within each family and estimated average parameters 

across participants for the single winning model within each time-window. Results are shown in Figure 

7- right panel. Within the ATL hub family in the 0-250ms time window, model 3 was identified as the 

conclusive winner (Free energy estimations for the four models: -609.40, -608.12, -526.34, -596.70), 

where self-connections of vWFA and other areas as well as forward-backward connections of ATL to 

all the nodes of the network but not self-connections of ATL were modulated. Within AG hub family 

in 0-450ms time window, model 16 was identified as the conclusive winner (Free energy estimations 

for the four models: -1751.3, -1941.9, -1738.7, -1578.7). In this model, self-connections of vWFA and 

forward-backward connections of the AG to all the nodes of the network but not self-connections of 

AG or convergence zones were allowed to be modulated.  

4 Discussion  
We used source-reconstructed EEG/MEG data in order to characterise spatio-temporal 

dynamics of semantic brain network using a word concreteness task. Our results provide novel 

evidence for distinct roles of the anterior temporal lobe (ATL) and angular gyrus (AG) in semantic brain 

networks, where only ATL appeared as a representational hub, while both ATL and AG appeared as 

connectivity hubs. Our conclusions are based on three lines of evidence: firstly, our data-driven evoked 

analysis revealed left ATL to be the first area modulated by word concreteness within 150ms after 

word presentation. This modulation persisted into later time windows and spread to the bilateral ATLs 

and inferior frontal gyri (IFGs). We found activation in no other brain areas to be significantly 

modulated by concreteness, supporting the central role of ATL as a single representational hub. 

Secondly, whole-cortex seed-based functional connectivity results identified left ATL and AG as 

connectivity hubs through modulations of connectivity to sensory-motor-limbic systems in two time-

windows of 150-350ms and 250-450ms. Thirdly, effective connectivity analysis (dynamic causal 

modelling, DCM) among the key heteromodal semantic hub candidates (i.e. ATL, IFG, MTG and AG) 

and with the visual word form area (vWFA) as the input region favoured single hub models in both 

early and later time windows (i.e. 0-250ms and 0-450ms). Comparisons of more fine-grained families 

of models favoured the left ATL-hub family in the earlier time-window and AG-hub family in the later 

time-window. Therefore, our results suggest that while both activity and connectivity of ATL are 
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modulated by semantics, especially during earlier stages of semantic information retrieval, AG also 

supports semantic connectivity at later stages. In the following, we will discuss the implications of our 

results for the structure of the semantic brain network. 

4.1 ATL activity is modulated by concreteness 
Left ATL’s modulation by concreteness within 150ms post-stimulus provides novel data-driven 

evidence in support of the key role of this region in semantic processing. This finding is in-line with the 

hub-and-spokes framework that suggests ATL as a semantic hub that acts as the first link between 

perceptual and semantic stimulus representations (Lambon Ralph et al. 2016; Patterson et al. 2007) 

and thus predicts an early modulation of the hub by semantic variables. Early modulations by lexico-

semantic variables have previously been reported in the left ATL and middle temporal gyrus (MTG) 

(Hauk et al. 2012; Westerlund & Pylkkänen 2014) and modality-specific semantic access in sensory-

motor cortices (Moseley et al. 2013) based on hypothesis-driven ROI-based analyses. However, ROI-

based approaches may neglect relevant effects in unexplored regions. Our data-driven whole-cortex 

approach overcomes these limitations and can be expected to improve the reproducibility and 

generalisability of our results.  

In addition to the earliest modulations of the left ATL, we found the largest effects in the N400 

time window (350-450ms) in bilateral ATLs and anterior IFGs. Generally, we found higher absolute 

activations for abstract words in all clusters/time windows, likely reflecting higher processing 

demands on the semantic system (Binder et al. 2005; Dhond et al. 2007; Jackson et al. 2015; Lau et al. 

2013).  It is worth noting that ATL activation in this later time window was accompanied by the IFG. 

While it is possible that our IFG effects are the result of leakage from ATL (Hauk et al. 2011; Liu et al. 

1998), IFG has been implicated in semantics by a range of neuroimaging studies, mostly related to 

control and unification (Bookheimer 2002; Devlin et al. 2003; Lambon Ralph et al. 2016). Our abstract 

words were associated with longer reaction times, which may explain the involvement of cognitive 

control areas at later stages of processing. Alternatively, the timing of our effects is consistent with 

previous studies that have suggested a role of IFG in the generation of the N400 ERP component 

(Hagoort 2004; Lau et al. 2008). .      

4.2 Dynamic organisation of the heteromodal semantic 

subnetwork: key roles of ATL and AG 
Prominent models of brain semantic networks propose that a heteromodal subnetwork of 

semantics is involved in semantic processing through modulation of both activity and connectivity 
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(Binder 2016; Lambon Ralph et al. 2016; Pulvermüller 2018; Seghier 2012; Woollams & Patterson 

2017). Our results shed new light on dynamic trajectory of connectivity of this network and suggest 

different types of hubs, namely representational and connectivity hubs within this network.   

In our whole-cortex seed-based functional connectivity analyses ATL and AG showed 

modulations of connectivity from 150 ms post-stimulus. Left ATL was more strongly connected to right 

orbitofrontal cortex for abstract words, while left AG showed stronger connections to left 

somatosensory cortex for concrete words. Both regions have been proposed as links to sensory-

motor-affective areas, but with a possible advantage of AG for concrete sensorimotor concepts and 

of ATL for abstract social-affective concepts (Binder et al. 2005; Binder & Desai 2011). Interestingly, 

our abstract words were rated as more emotional (higher valence) than our concrete words, which 

may have contributed to stronger connections between ATL and orbito-frontal cortex (Binney et al. 

2016; Lambon Ralph et al. 2016). Thus, our observed connectivity patterns are consistent with this 

proposal.    

Additionally, our DCM analysis showed a central role of ATL in an early latency window (0-250 

ms), with a conclusive single winning model where all intrinsic and extrinsic connections except for 

self-connections of the ATL were modulated by the concreteness contrast. Additionally, in the more 

prolonged time-window (0-450ms), a key role for the AG was revealed, with a conclusive model where 

the extrinsic but not the intrinsic connections of the semantic areas were modulated. These results 

suggest that the heteromodal semantic subnetwork is coordinated by a central node that acts as a 

connector hub bridging between input sensory regions and the rest of semantic network, and suggest 

that this hub region is dynamically relocated, from ATL to AG, as a concept unfolds in the brain.      

4.3 Caveats 
The choice of connectivity metrics for EEG/MEG analysis is still challenging. Here we used 

effective and functional connectivity for complementary purposes, namely to identify connectivity 

hubs within the heteromodal semantic network and between the nodes of this network and all other 

brain areas, respectively.  Coherence was identified as the best metric for functional connectivity in 

our data based on an empirical approach, but other metrics may give different answers, owing to 

different sensitivities to different types of neural communication. For effective connectivity, DCM is 

arguably the sole available method for modelling the full evoked responses to experimental 

manipulations based on biophysical models of the brain, though even then, there are multiple possible 

neural models within DCM for EEG/MEG (Bastos et al. 2012; David et al. 2006). While we used the 

model evidence to justify the “ERP” model that has been used most commonly in the literature 

(Chennu et al. 2016; David et al. 2011; Garrido et al. 2008), the model evidence can only find the most 
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likely model among those tested but it cannot determine whether the winning model is in fact the 

true model. In particular, inspired by the previous literature (Binder et al. 2009; Lambon Ralph et al. 

2016; Martin et al. 2014), we here only focused on different scenarios spanning one-layer networks 

with single or multiple parallel semantic areas or two-layer models with a single hub in the 

intermediate layer. Nevertheless, current findings do not obviate the possibility of more complex 

heteromodal semantic networks with different permutations of semantic areas in three or more 

network layers, potentially involving multiple hubs. Moreover, DCM makes several strong 

assumptions, the robustness of which needs to be validated in future studies using other datasets, 

including more direct electrical recordings in humans and animals.  

Finally, we utilised a word concreteness decision task in a visual word recognition paradigm 

which has been successfully and frequently used in previous fMRI (Binder et al. 2005) and EEG/MEG 

(Dhond et al. 2007) studies, and can be assumed to involve heteromodal as well as some general 

modality-specific regions (e.g. somatosensory versus limbic cortices) involved in semantic processing. 

Some of our findings might be specific to this particular experimental design. Thus, an important next 

step is to tackle the representational versus connectivity hubs and their timings for more general as 

well as more specific semantic contrasts, as well as different task settings such as auditory word 

presentations or nonverbal visual inputs. 

4.4 Conclusions  
Our study provided novel insights into the dynamic brain networks underlying semantic word 

processing that could not have been provided using metabolic neuroimaging or neuropsychological 

methods. We confirmed a central role for the ATL as a representational hub that may perform early 

categorisation and similarity judgments, and for both ATL and AG as connectivity hubs that may 

support semantic integration and unification processes. Therefore, our results are consistent with 

both the central role of the ATL as strongly indicated by both patient and imaging work (Lambon Ralph 

et al. 2016; Patterson et al. 2007) and also the importance of the AG as indicated by neuroimaging 

metanalyses (Binder et al. 2009). Consideration of the time course of semantic processing in this study 

has therefore allowed integration of previously distinct approaches to neural semantic networks.  
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6 Extended Data 
Table 1- 1 List of concrete and abstract words used in the experiment. 

Concrete Abstract 
ABDOMEN JUDGE TROUT ACCORD HAVOC THRILL 
ANCHOR LANTERN TRUMPET ACUMEN HERESY TOPIC 
APRICOT LINEN VINEGAR ADAGE HONESTY VERITY 
ARROW MANTLE VIOLIN AMITY HONOUR WEALTH 
BALLOON MATCH VOLCANO APATHY HORROR WISDOM 
BARREL MEDAL WHARF AXIOM HUMOUR WRATH 
BASIN MUZZLE  BELIEF IDIOM  
BASKET NAPKIN  BOREDOM IMPETUS  
BAYONET NECTAR  BRAVERY INSIGHT  
BLANKET NOZZLE  CHEAT INTERIM  
BLISTER NUTMEG  COURAGE LEVITY  
BLOSSOM OLIVE  CUSTOM LIBERTY  
CABINET ONION  DEITY LOYALTY  
CAMERA ORANGE  DELIGHT MALADY  
CELLAR OYSTER  DEMON MASTERY  
CHAPEL PEDAL  DENIAL MERIT  
CHISEL PERCH  DESPAIR MIRACLE  
CHROME PIANO  DIGNITY MISERY  
CLOVE PIGEON  DOGMA MOTIVE  
COWHIDE PLANK  DREAM MYSTERY  
CRADLE PLATTER  EMOTION NADIR  
CROSS PORCH  ENIGMA PANIC  
DIAMOND PRISON  FALLACY PARADOX  
DOUGH PRUNE  FANTASY PASSION  
EAGLE PULPIT  FETISH PAUSE  
EASEL RIFLE  FLAIR PHANTOM  
EMERALD ROCKET  FOLLY PIQUE  
FLASK RUDDER  FORFEIT RARITY  
FLOWER SADDLE  FORTUNE REALM  
FOREST SATIN  GAIETY REGRET  
FRAME SEAWEED  GALLANT REVENGE  
FURNACE SHAWL  GENIUS ROMANCE  
GALLERY SHUTTER  GLOOM SCARE  
GIRDLE SKYLARK  GLORY SCORN  
GLACIER SNAKE  GRACE SHAME  
GRAVEL STADIUM  GREED SIMILE  
HAMMER STEEPLE  GRIEF SORROW  
HATCHET STRAW  GRUDGE SPITE  
ICICLE SWORD  GUILT SPREE  
IODINE TEMPLE  HARMONY TEMPER  
IVORY TRIPOD  HATRED THEME  
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Table 5 - 1 PCA analysis of seed-based connectivity across connectivity methods. Based on these results, Coherence was 
identified as the most suitable method for functional connectivity analysis in Figure 5. 

Pooled 
Con/Abs 

PCA across connectivity methods 

 1st PC 2nd PC 3rd PC 
 Theta Alpha Beta Gamma Theta Alpha Beta Gamma Theta Alpha Beta Gamma 
%EV 54.7±3.8 55.9±3.7 61.1±4.5 62.1±4.6 31±1.5 30.1±1.7 28.2±3.4 26.3±3.3 14.2±2.9 14±3 10.8±2.7 11.6±2.7 

MI 0.37±0.1 0.44±0.1 0.5±0.2 0.58±0.1 -0.87±0.3 -0.89±0.05 0.82±0.2 0.8±0.1 0.003±0.04 0.003±0.03 0.01±0.07 0.02±0.06 

PPC 0.86±0.03 0.86±0.03 0.86±0.1 0.87±0.03 0.2±0.09 0.23±0.06 -0.24±0.2 -0.27±0.1 0.46±0.05 0.45±0.05 0.23±0.3 0.29±0.3 

COH 0.86±0.03 0.86±0.03 0.87±0.2 0.87±0.04 0.19±0.06 0.22±0.05 -0.21±0.1 -0.26±0.1 -0.46±0.05 -0.46±0.05 -0.23±0.3 -0.3±0.3 

EV: Explained Variance; MI: Mutual Information; PPC: Pairwise Phase Consistency; COH: Coherence 

 

 

Figure 5 - 1 PCA analysis of seed-based connectivity across connectivity methods. Boxcox-transformed a) COH; b) PPC and 
c) MI plotted against distributions of the first (blue), second (red) and third (yellow) principal component scores over vertices 
and time windows (averaged across seeds and participants). The first PC showed high linear correlation with COH and PPC 
(>0.8) while the second PC showed higher correlation with MI. More details are presented in Table 5 - 1. Based on these 
results, Coherence was identified as the most suitable method for functional connectivity analysis in Figure 5. COH: 
Coherence, PPC: Pairwise Phase Consistency, MI: Mutual Information, PCA: Principal Component Analysis. 
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Figure 7 - 1 Comparing model evidence of classic DCM for ERP (David et al. 2006) and canonical microcircuit models (CMC) 
(Bastos et al. 2012) for the 28 models in Figure 3 within 0-250ms (left) and 0-450ms (right). Results of analysis are shown 
in Figure 7. Odd numbers show ERP results while even numbers show CMC results. Therefore, the former shows 
substantially higher model evidence. 
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