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Abstract

Motivation: Cell shapes provide crucial biology information on complex tissues. Different cell types
often have distinct cell shapes, and collective shape changes usually indicate morphogenetic events and
mechanisms. The identification and detection of collective cell shape changes in an extensive collection
of 3D time-lapse images of complex tissues is an important step in assaying such mechanisms but
is a tedious and time-consuming task. Machine learning provides new opportunities to automatically
detect cell shape changes. However, it is challenging to generate sufficient training samples for pattern
identification through deep learning because of a limited amount of images and annotations.
Result: We present a deep learning approach with minimal well-annotated training samples and apply
it to identify multicellular rosettes from 3D live images of the Caenorhabditis elegans embryo with
fluorescently labelled cell membranes. Our strategy is to combine two approaches, namely, feature
transfer and generative adversarial networks (GANs), to boost image classification with small training
samples. Specifically, we use a GAN framework and conduct an unsupervised training to capture the
general characteristics of cell membrane images with 11,250 unlabelled images. We then transfer the
structure of the GAN discriminator into a new Alex-style neural network for further learning with several
dozen labelled samples. Our experiments showed that with 10-15 well-labelled rosette images and 30-40
randomly selected non-rosette images our approach can identify rosettes with over 80% accuracy and
capture over 90% of the model accuracy achieved with a training dataset that is five times larger. We also
established a public benchmark dataset for rosette detection. This GAN-based transfer approach can be
applied to study other cellular structures with minimal training samples.
Contact: dwang7@utk.edu, baoz@mskcc.org

1 Introduction
Live microscopy and image processing are commonly used to investigate
cellular dynamics, quantify cellular behaviors, and support simulation-
based hypothesis testing. The huge amount of microscope data generated
during the studies presents unprecedented challenges for human-based,
interactive data analysis. Advanced computing technology has been used
in microscopic data analysis (Jones et al., 2009); however, the majority of
these efforts require deep domain knowledge through a label-intensive
annotation process. Nowadays, AI-based computer vision provides a
“model-free” approach to solving generic data problems, such as object
identification. For example, convolutional neural networks (CNNs) are
widely adopted for object classification and identification (Krizhevsky
et al., 2012; Szegedy et al., 2015; Simonyan and Zisserman, 2014). Some
well-known CNNs usually contain a large number of parameters (e.g.,

more than 25 million in a ResNet-50 network), which require large well-
labelled training datasets. However, considering funding limitations and
the scarcity of domain experts, it is still quite challenging to establish
comprehensive training datasets from 3D live images of complex tissues
for detecting particular cellular structures.

Multicellular rosette is a form of collective cell shape change that is
used to mediate tissue morphogenesis in diverse organisms and biological
processes, such as cell intercalation, collective migration, and collective
outgrowth of neurites (Blankenship et al., 2006; Harding et al., 2014; Fan
et al., 2018). Multicellular rosettes form when neighboring cells contract
their contact so that multiple cells converge at the center (Fig. 1). Because
these structures are transient and rare, automated detection is essential to
identifying them and characterizing their dynamics (Farrell et al., 2017).

We present a method for unique cellular structure image classification
using 3D time-lapse datasets directly. Our learning process consists of
two steps: common cellular structure learning with unlabeled datasets
(relatively easy to obtain) and target cellular structure learning with small
labelled datasets. We adopt basic concepts within the generative adversarial
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networks (Goodfellow et al., 2014; Arjovsky and Bottou, 2017; Odena
et al., 2016; Li et al., 2018; Radford et al., 2015) to capture the common
structure learning with unlabeled dataset. Then we ingest a small quantity
of target structure images into a hybrid classifier to improve the efficiency
of target structure learning via transfer learning and regularization (Pan
et al., 2010; Noroozi and Favaro, 2016; Doersch et al., 2015). We also
quantify the performance of the hybrid microstructure classifier with
different sizes of training samples.

2 Methods

2.1 Dataset

2.1.1 Raw data
We use a set of C. elegans microscopic images that contains 45 embryos
with ubiquitous fluorescent labeling of cell membrane. The raw images
are 512 x 512 pixels in size and may contain one to three embryos. The
raw images are arranged in sets, each of which contains 300 image stacks
taken at 75-second intervals over the first 375 minutes of embryogenesis.
Each stack is a pseudo 3D image that contains 30 slices at 1 um vertical
distance covering the entire embryo. Image acquisition followed published
protocols (Shah et al., 2017).

2.1.2 Image sets for experiments
Because each raw image may contain more than one embryo, we first crop
the raw images to 128 x 128 images so that each 128 x 128 image contains
the complex global structure information of a single embryo. Technically,
we write an ImageJ (Schneider et al., 2012) macro for this task: For each
embryo, we first mark its bounding box, and then inside this bounding
box, we randomly select 128 x 128 images. For each of these images, we
apply a 3-D median filter and adjust the brightness range to remove the
image noise. Examples of a raw image and denoised image are shown in
Fig. 1.

We select the raw data from a early developmental period of 61 to 110
minutes. The embryo structure is relative simple before 61 minutes and
a meaningful structural pattern of a rosette is seldom observed. For each
image stack, we use images between slice 9 and slice 13 as these slices
usually have the best imaging quality.

Our goal is to identify and locate a rosette in the 128 x 128 3D
microscopic images. Considering the average cell size during the above-
mentioned developmental period and the typical structure of a muticelluar
rosette, we determine 32 x 32 to be the appropriate image size for
classification and detection.

We create two image datasets for deep learning experiments. The first
dataset is a collection of unlabelled images for a unsupervised image
synthesis task. The second dataset is a manually labelled dataset for a
supervised image classification task for target cellular structures. For the
unlabelled dataset, we randomly sample one 32 x 32 image at each slice
of the image stack. In total, our unlabelled dataset contains 50-minute
live image stacks of 45 C. elegans embryos. Because five slices of each
image stack are collected, there are 45 x 50 x 5 = 11250 image patches
in our dataset. The labelled dataset contains 78 manually selected 32 x 32
rosette images from 45 different embryos. Each of the manually annotated
rosette images contains a multicelluar convergence center. Around 200
non-rosette images are also randomly selected from the unlabelled datasets
(see Section 3.2.1 for more information).

2.2 Neural network configuration

We modify an AlexNet-styled convolutional neural network (CNN)
(Krizhevsky et al., 2012) to classify the image (illustrated in Fig. 2).
CNNs use convolutional filters to automatically capture features rather than

Fig. 1. Microscopy image of C. elegans before and after denoising. The orange circle in the
left image contains a rosette structure formed by five adjacent cells with a common center
(marked by a red arrow). The short red line at the right bottom of the image represents a
32-pixel segment.

using hand-engineered features in traditional machine learning algorithms.
Because the input of our network is a 32 x 32 grayscale image, our network
has three convolutional layers, followed by two fully connected layers. We
use 4 x 4 filters for all convolutional layers. The number of filters at the first
convolutional layer is 32 and doubled at each convolutional layer. Unlike
AlexNet, we replace all pooling layers with stride (2 pixels) convolutions
so that the network can learn its own pooling method (Springenberg et al.,
2014). We also place a batch normalization layer after each convolutional
layer and the first fully connected layer. Leaky ReLU is used as the
activation function for all layers except the last fully connected layer in
the network. This architecture is used for all the image classifiers in our
study.

Fig. 2. Neural network structure of image classifier.

2.3 Generative adversarial networks

We present a way to use a sizable unlabelled dataset and transfer learning
techniques to improve the training of the CNNs. Some efforts use
pretrained networks and fine-tune them with the small labelled dataset.
However, most publicly available networks are pretrained on benchmark
computer vision datasets, such as ImageNet (Deng et al., 2009). Due to
the significant differences between the 3D live images and the images
in benchmark datasets, features learned from computer vision datasets
are not directly suitable for our scientific dataset. Furthermore, there is
no sizable labelled dataset similar in structure to our dataset that can be
used to pretrain the network. Hence we take a different approach that uses
generative adversarial networks (GANs) and the sizable unlabelled dataset
to first learn common features of these images and then transfer the learned
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features to new CNNs, which are then further tuned with a small labelled
dataset.

Generative adversarial networks (GANs) (Goodfellow et al., 2014) is a
generative framework that consists of two competing networks: a generator
network and a discriminator network. The generator produces synthetic
data to fool the discriminator, while the discriminator discriminates
between real data and synthetic data. The game between the generator
G and the discriminator D is the minimax objective. We use a particular
form of GAN, called Wasserstein GAN. A three-convolutional-layer alex-
style network structure is used for both the generator and the discriminator.
The discriminator network has the same network structure as our classifier
shown in Fig. 2.

Samples of generated images patches are shown in Fig. 3(a). These
patches are compared with image patches in the real dataset in Fig. 3(b).
As shown, the newly generated images in Fig. 3(a) captured the majority
of the common features of these live images. The Wasserstein losses for
both the generator and discriminator of the 32 x 32 image case are also
shown in Fig. 3(c) and 3(d).

(a) Generated 32x32 images.

(b) Real 32x32 images.

(c) Loss of generator. (d) Loss of discriminator.

Fig. 3. Generated image patches compared with real image patches and associated
Wasserstein losses.

2.4 GAN-based feature transfer

We first train the GANs with the unlabelled dataset so that the networks can
distinguish fake images from real images by learning most of the common
features of the unlabelled real images. We then transfer these features to
new CNNs and continue to train the new CNNs with labelled images to
capture the target cell structures.

Technically, we are interested in the features learned by the GAN
discriminator. We create new neural networks, using the same network
structure of the discriminator without the last fully connected layer, to
capture the learned features from the GAN discriminator. The output of
the last convolutional layer contains all the structural features learned
by a network. The fully connected layers contain most of the weights
in the architecture and a large number of parameters that contain useful
information for the target task.

We remove the last layer in the GAN discriminator, which is designed
to differentiate the difference between real image and generated images.
We then add a new fully connected layer to classify an image with or
without a rosette. We use the weights of each convolutional layer and the
first fully connected layer of the GAN discriminator (e.g., the fc1 layer
in Fig. 2) to initialize the classifier. Because both the classifier and the
GAN discriminator use batch normalization after each convolutional layer

and the first fully connected layer, there is no bias term for these layers
as a new feature of the “layers(contrib)” package provided by tensorflow
(Abadi et al., 2015). Therefore instead of transferring a bias term of each
layer, we transfer parameters in batch normalization layers.

After initializing the neural network with parameters from the GAN
discriminator, we continue to train the network using a small manually
labelled dataset. The overall workflow of the GAN-based classification is
illustrated in Fig. 4.

Fig. 4. The overall workflow of GAN-based image classification scheme. There are two
steps: common feature learning and target feature learning. An Alex-style network structure
shown in Fig. 2 is used for both the GAN framework and the GAN-based classifier.

2.5 Data augmentation and hyperparameters

Because of the limited number of labelled images, we use several
techniques to compensate for the potential problems associated with
small training datasets for image classification and pattern detection.
Specifically, we apply dropout during training after the first fully connected
layer to eliminate the over-fit problem. Furthermore, we apply several
data augmentation techniques to our dataset including randomly flipping
the image vertically or horizontally and adjusting the brightness and the
contrast of the image by a random percentage in a certain range. We use a
learning rate of 10−5 and a batch size of 32 for the training of the network.

2.6 Computational platform

We implement our networks with tensorflow 1.7.1, a publicly available
deep learning framework. More specifically, the convolutional network for
classifying is built upon tensorflow’s Estimator API with a convolutional
network as the customized model function. The generative adversarial
network is implemented with tensorflow’s TFGAN framework with
both the generator and discriminator customized. All experiments are
performed on an Nvidia DGX server with four cutting-edge Nvidia Tesla
V100 GPUs. Each Tesla V100 is equipped with 640 Tensor cores and a 16
GB memory.

3 Results

3.1 GAN-based classifier is better trained

When using a small training dataset, it is known that a conventional
classifier can run into a data over-fitting problem quickly (Zeiler and
Fergus, 2014). Compared with a neural network that directly trained
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on the small labelled dataset, a GAN-based network achieves better
testing accuracy and, more importantly, demonstrates a more stable
training process. To better understand how the GAN-based classifier works
differently from the conventional classifier, we investigate the weights of
filters on the first convolutional layer (e.g., the conv1 layer in Fig. 2).
Figure 5 shows the weights of the filters in the first convolutional layer of
both a conventional classifier and a GAN-based classifier that are trained
for the 32 x 32 images.

The weights of the GAN-based classifier (shown in Fig. 5(b)) are
smoother than the weights of the conventional classifier (Fig. 5(a)).
Quantitatively, we measured the standard deviations of both sets of weights
and found that the STD of the GAN-based classifier is much smaller than
that of the conventional classifier (0.192 vs. 0.285). The filter smoothness
indicates that the GAN-based classifier is better trained.

(a) Filter of the convolutional layer of conventional classifier.

(b) Filter of the convolutional layer of GAN-based classifier.

Fig. 5. Visualization of the filters of a conventional classifier and a GAN-based classifier.

We also analyzed the weights of the second-to-last fully connected
(FC) layer (e.g., the fc1 layer in Fig. 2) of both the conventional classifier
and the GAN-based classifier. There are 2048 x 256 parameters in the
FC layer within the network for 32 x 32 images. The weights of the FC
layer contain essential information on how the neural network handles
the input images for the classification. Due to the complexity of a
convolutional neural network, it is difficult to explicitly explain the role of
these weights using a regular mapping function (for more information,
see http://cs231n.github.io/understanding-cnn/). Here we reveal some
differences between the conventional and GAN-based classifiers. We
use the t-Distributed Stochastic Neighbor Embedding (t-SNE) method
(Maaten and Hinton, 2008) to visualize the weights of these networks
and explore their local similarity. The weight of the FC layer in the neural
network for 32 x 32 images using t-SNE visualization is illustrated in Fig.
6.

(a) Weights of the FC layer of a
conventional classifier.

(b) Weights of the FC layer of a
GAN-based classifier.

Fig. 6. Visualization of the weights of FC layers in a conventional and a GAN-based
classifier.

As shown in Fig. 6, the weights of the FC layer in the conventional
classifier (illustrated in Fig. 6(a)) are more uniformly distributed, which
means that the similarity of the individual weights is not significant.
Compared with Fig. 6(a), Fig. 6(b) has three tight clusters, which infers that
the GAN-based neural network is more sensitive to the subtle differences
in specific structural features, such as the size of structural center and the
contrast in edges.

We also compared visualizations of the output of each layer from
both of the GAN-based model and the conventional model trained for
the 32 x 32 images using the small dataset in Fig. 7. Because the values
of the activations in each layer are not of the same scale and size, we first
normalize all feature maps and then reshape them to a size of 32 x 32. In
the visualizations of conv layer 2, we saw a clear pattern of a rosette in the
GAN-based model, which cannot be found in the conventional classifier.

Fig. 7. Visualizations of the output of each layer in GAN-based model vs. a conventional
neural network with small training dataset.

From the visualizations we also found that the activation maps of the
GAN-based model look brighter than those of the conventional model,
especially in Layers 2 and 3. The magnitude of the activations (the values
of the feature maps) is an reasonable indicator of how well a model
is trained. These activations, working as feature detectors, with higher
values are often more important to the classification task than those with
lower values (Molchanov et al., 2016; Li et al., 2016). To measure the
magnitude of activations quantitatively, we calculated the mean activations
in each trained model using a small 32 x 32 dataset. We compared the
mean activations at four different configurations of the training process:
(1) random initialization without any training, (2) initialization with the
parameters from the discriminator of the pretrained GAN but without any
fine-tuning, (3) the trained conventional model, and (4) the trained GAN-
based model (Fig. 8). We found that the mean activation value of each
layer from a model without training is quite low. On the other hand, those
values from a model with initialization by the pretrained GAN significantly
increase, indicating a much better starting point for fine-tuning a labelled
dataset. We then trained both models for 20k iterations over the 32 x 32
training dataset and found that the mean activations in the GAN-based
model are larger than those in the conventional model.

3.2 GAN-based classifier outperformance conventional
classifier

3.2.1 Experiments
As shown in the previous subsection, the GAN-based classifier is better
trained than the conventional classifier using a small labelled dataset. This
is significant for developmental biology since sometimes sizable labelled
data is difficult to obtain. In this section, we first investigate the effect
of the size of a training dataset on the performance of conventional and
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Fig. 8. Mean activations of each convolutional layer inside different configurations with
small training samples.

GAN-based classifiers. We then further evaluate the performance of the
GAN-based classifier with training datasets of a different size.

Two sets of experiments were designed to investigate the effect of
the size of a training dataset on the performance of conventional and
GAN-based classifiers. We have 78 32 x 32 rosette images. Because
rosette images appear less frequently in the observation dataset than non-
rosette images, we selected three times more non-rosette images (195
images) from these unlabelled datasets. Because these C. elegans images
are collected on three different dates, we selected the annotated images
(20 rosette images and 20 non-rosette images, the ratio of rosette to non-
rosette is 1:1) collected on one specific day as the validation dataset. All the
images from the other two days were used as a training dataset (58 rosette
images and 175 non-rosette images, the ratio of rosette to non-rosette is
around 1:3).

In the first set of experiments, we used the entire training dataset (233
images) and test dataset (40 images). In the second set of experiments,
we only used around 1/5 of the training datasets (12 rosette image and 40
non-rosette images) to train the neural networks. We adopted all of the data
augmentation techniques mentioned in Section 2.5 in each experiment.

We adopted the F1 score as a measure of our network testing accuracy.
An F1 score considers both the precision and the recall of the neural
network outputs to compute the harmonic average of the precision and
recall. An F1 score reaches its best value at 1 (perfect precision and recall)
and worst at 0. It is a good measure for our study because the rosette and
non-rosette images have a unbalanced distribution within our datasets.

3.2.2 Performance
The model performances of the two sets of experiments are shown in
Figure 9. The upper graphs (Fig. 9(a)) show the model performance with
the entire training dataset, while the lower graphs (Fig. 9(b)) show the
performance of the second set of experiments using 1/5 of training dataset
(12 rosette and 40 non-rosette images).

As shown in the graphs on the left in Fig. 9(a), the GAN-based network
and the conventional classifier perform the same with the entire dataset.
The prediction accuracy over the 52 32 x 32 images is around 86%.

The left (accuracy) graph in Fig. 9(b) shows that the GAN-based
classifier outperforms the conventional classifier to overcome the data
underfitting problem. A decrease in the precision of conventional classifier
prediction (shown in the middle graph of Fig. 9(b)) is the main reason
for performance deterioration. It is also worth mentioning that the GAN-
based classifier works pretty well using the small training datasets, with
an accuracy of around 82%, which is comparable with that of the entire
training dataset (shown in Fig. 9(a)).

(a) Experiment result and performance comparison with large training dataset (32x32
images). The performance results of conventional classifier are shown in light blue,
while the results of GAN-based classifier are shown in green.

(b) Experiment result and performance comparison with small training dataset
(32x32 images). The performance results of conventional classifier are shown in
orange, while the results of GAN-based classifier are shown in green.

Fig. 9. The comparison of model performance with the entire (upper graphs) and 1/5 (lower
graphs) of the training dataset. The graphs on the left show the total accuracy of both rosette
and non-rosette image prediction, while the graphs in the middle and on the right show the
model prediction and recall rate of rosette data only.

3.3 GAN-based classifier sustains performance better with
small data samples

We further investigated the impact of dataset sizes on the GAN-based
classifier by conducting 11 sets of experiments using the whole (78 rosettes
and 195 non-rosettes) or partial training datasets (100%, 90%, 80%, 60%,
50%, 40%, 30% 20%, 10% and 2%). In each of the experiments, we
conducted 20 individual runs. Each used either the entire dataset or a
randomly generated partial training dataset. The results are illustrated in
Fig 10.

Fig. 10. The accuracy and standard deviation of GAN-based classifier with datasets of
different sizes.

As shown in Fig. 10, the average accuracy of the GAN classifier
with the entire dataset is around 84% with a deviation of 4%. The model
accuracy is around 80% (with a standard deviation of 4.5%) when we use
more than 40% of the entire training set. The accuracy decreases to 76%
and the standard deviation increases to 7% when only 20% of the training
dataset is used (i.e., 12 rosette images and 40 non-rosette images). When
the training dataset is too small (10% or less of the dataset), the accuracy
drops much faster and the standard deviations become much larger. Further
evaluations over the precision and recall of these experiments (when over
20% training datasets are used) reveal that the decrease in accuracy is
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mainly due to a decrease in precision; that is, when the training data is
insufficient, the classifier identifies many rosette images, but some of the
predicted images are non-rosettes when compared with the training labels.
In a summary, Fig. 10 shows that the GAN-based classifier can deliver
comparable accuracy (over 90% of the accuracy with the entire dataset)
using around 1/5 of training datasets. These results indicate that significant
time can be potentially saved in training data annotation and preparation.

3.4 Rosette detection

A well-trained GAN-based classifier (with a small 32 x 32 dataset) can
be used for rosette detection inside large observation images. It can also
be used for large image classification (such as an image with or without a
rosette).

We use a sliding window (32 x 32) approach to identify and detect a 32
x 32 block of the 128 x 128 images. We adopt a stride of 4 pixels; therefore,
there are 24 x 24 steps for each 128 x 128 image. At each step, if the model
predicted a higher probability value than a predefined threshold (such as
0.9), we drew a red box around the current image block. We recorded all
the probability output of each scan and generated a probability heatmap to
illustrate the results of rosette identification and detection. Two examples
of the results are shown in Fig. 11.

(a) Rosette identification 1. (b) Rosette identification 2.

(c) Probability heatmap of rosette
identification 1.

(d) Probability heatmap of rosette
identification 2.

Fig. 11. Example rosette images and associated probability heatmap for rosette detection.

3.5 Rosette dataset

We created an annotated dataset that includes around 400 128 x 128 images
with explicitly marked 32 x 32 rosette structures. We further grouped the
rosette images into two categories according to the probability value from
the neural network. There are 85 images identified with a probability value
greater than 0.9 and around 300 images with a probability value between
0.80 and 0.9. Examples of these images are illustrated in Fig. 12.

4 Conclusion
Compared with multi-institutional efforts for large-scale data exploration
(Rajkomar et al., 2018), establishing an adequate training dataset from a

(a) Example of rosette images (with a high level of confidence).

(b) Example of rosette images (with a moderate level of confidence).

Fig. 12. Rosette detection with high (upper graph) and medium probability (lower graph).

limited collection of microscopic images is a challenging but critical step to
enabling deep-learning-based pattern identification. We have presented a
GAN-based approach to efficiently classifying images with a particular
cellular structure with relatively small unlabelled images and minimal
annotated samples. By taking advantage of a competitive discrimination
procedure with an unlabeled dataset, our GAN-based classifier can be
better trained with small annotated training samples. Therefore, the
the GAN-based classifier can outperform a conventional classifier (with
same network structure) with a small annotated training dataset. Further
quantitative measurements proved that the GAN-based classifier can
sustain satisfactory performance even when 15 rosette and 36 non-rosette
images were used. We think the methodology and concepts can be applied
to other groups who are interested in using deep learning to identify and
detect unique structures within microscopic data, such as flies, mice, and
human brains.

5 Data and software availability
We created an annotated dataset that includes 128 x 128 images with
explicitly marked 32 x 32 rosette structures. The dataset is available in
dropbox (www.dropbox.com/sh/vlz3m2uzw73svts/
AADHQpVGKNwnEskRF21oGJKTa?dl=0). These images can serve
as a benchmark training dataset for further algorithm and application
improvements. Related code and software utilities are located at
https://github.com/daliwang/BioGAN.
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