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 2 

Abstract 54 

 55 

Cytokines are essential regulatory components of the immune system and their aberrant levels 56 

have been linked to many disease states. Despite increasing evidence that cytokines operate in 57 

concert, many of the physiological interactions between cytokines, and the shared genetic 58 

architecture that underlie them, remain unknown. Here we aimed to identify and characterise 59 

genetic variants with pleiotropic effects on cytokines – to do this we performed a multivariate 60 

genome-wide association study on a correlation network of 11 circulating cytokines measured 61 

in 9,263 individuals. Meta-analysis identified a total of 8 loci significantly associated with the 62 

cytokine network, of which two (PDGFRB and ABO) had not been detected previously. 63 

Bayesian colocalisation analysis revealed shared causal variants between the eight cytokine 64 

loci and other traits; in particular, cytokine network variants at the ABO, SERPINE2, and 65 

ZFPM2 loci showed pleiotropic effects on the production of immune-related proteins; on 66 

metabolic traits such as lipoprotein and lipid levels; on blood-cell related traits such as platelet 67 

count; and on disease traits such as coronary artery disease and type 2 diabetes.   68 
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 3 

Introduction 69 

Cytokines are signalling molecules secreted by cells that are central to multiple physiological 70 

functions, especially immune regulation (1). Broadly-speaking, cytokines include chemokines 71 

that drive movement of cells, and growth factors that drive cell growth and proliferation. 72 

Changes in circulating cytokine levels have been associated with infection (2), autoimmune 73 

diseases (3), malignancies (4), as well as atherosclerosis and cardiovascular disease (5,6). The 74 

expression of cytokines can be strongly regulated by genetic variation (7), and several studies 75 

have identified cis-acting genetic variants associated with circulating levels of certain 76 

cytokines and their receptors under various conditions (8–10). These initial studies laid the 77 

foundation for genetic investigation of circulating cytokine levels at a scale and breadth that 78 

may improve our understanding of individual differences in immune response, inflammation, 79 

infection and common disease susceptibility.  80 

 81 

Despite cytokines operating in concert to facilitate immune regulation, genome-wide 82 

association studies (GWAS) have typically focused on individual cytokines (11–18). The most 83 

extensive cytokine GWAS to date separately analysed individual levels of 41 circulating 84 

cytokines in approximately 8,000 individuals, identifying 27 distinct loci each associated with 85 

at least one cytokine (19). Others have identified loci influencing cytokine production in 86 

response to pathogens (20,21). While these previous GWAS utilised a univariate framework, 87 

analysing each cytokine separately, studies of related traits indicate a multivariate framework 88 

can confer greater statistical power, for example by taking advantage of the tightly co-regulated 89 

nature of both pro and anti-inflammatory cytokines.  90 

 91 

Several methods for multivariate GWAS of correlated phenotypes have been developed (22–92 

27). Simulations have shown that multivariate analysis can result in increased power to detect 93 

genetic associations with small or pleiotropic effects across phenotypes (22,28–30). These have 94 

largely been conducted on metabolic traits where they have demonstrated a boost in statistical 95 

power. For example, multivariate analysis of four lipid traits led to a 21% increase in 96 

independent genome-wide significant variants compared to univariate analysis (23). Similar 97 

findings were shown for other metabolic traits (24,31). Moreover, complex genotype-98 

phenotype dependencies have been revealed when jointly testing rare variants with lipoprotein 99 

traits (32). Notably, a multivariate GWAS of networks of highly correlated serum metabolites 100 

was able to detect nearly twice the number of loci compared to univariate testing, with 101 
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downstream tissue-specific transcriptional analyses showing that the top candidate genes from 102 

multivariate analysis were upregulated in atherosclerotic plaques (31). 103 

 104 

In this study, we focus on correlated immune traits by leveraging the correlation structure 105 

within a network of 11 cytokines to perform a multivariate genome-wide scan in 9,263 106 

individuals from three population-based cohorts. We then investigate the colocalisation of 107 

cytokine-associated variants with those regulating gene expression in numerous tissues and 108 

cell types, circulating protein and metabolite levels, haematological traits, and disease states. 109 

Finally, we highlight and characterise variants as potential master regulator of the cytokine 110 

network, with pleiotropic effects on production of inflammatory proteins, immune cell 111 

function, lipoprotein and lipid levels, and cardiometabolic diseases.  112 

 113 

 114 

 115 

 116 

 117 

Methods  118 

Study populations 119 

Approval for the study protocols for each cohort was obtained from their respective ethics 120 

committees, and all subjects enrolled in the study gave written informed consent.  121 

 122 

The Cardiovascular Risk in Young Finns Study (YFS) is a longitudinal prospective cohort 123 

study commenced in 1980, with follow-up studies carried out every 3 years. The purpose of 124 

this study was to monitor the risk factors of cardiovascular disease in children and adolescents 125 

from different regions of Finland. In the baseline study, conducted in five Finnish metropolitan 126 

areas (Turku, Helsinki, Kuopio, Tampere and Oulu), a total of 3,596 children and adolescents 127 

were randomly selected from the national public register, the details of which were described 128 

in (33). A total of 2,204 participants responded to the 2007 follow-up study (YFS07), for which 129 

the age range was 30-45 years. Ethics were approved by the Joint Commission on Ethics of the 130 

Turku University and the Turku University Central Hospital. 131 

 132 

The FINRISK cohorts were part of a cross-sectional population-based survey, which are 133 

carried out every five years since 1972 to evaluate the risk factors of chronic diseases in the 134 

Finnish population (34). Each survey has recruited a representative random sample of 6,000-135 
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8,800 individuals, within the age group of 25-74 years, chosen from the national population 136 

information system. This study utilised samples from the 1997 (FINRISK97) and 2002 137 

(FINRISK02) collections, which recruited individuals from five or six (for FINRISK02) major 138 

regional and metropolitan areas of Finland: the provinces of North Karelia, Northern Savo, 139 

Northern Ostrobothnia, Kainuu, and Lapland; the Turku and Loimaa region of south-western 140 

Finland; and the Helsinki and Vantaa metropolitan area. In total, 8,444 (aged 24-74 years) and 141 

8,798 (aged 51-74 years) individuals participated in the FINRISK97 and FINRISK02 studies, 142 

respectively. Importantly, each FINRISK survey is an independent cohort, each comprising a 143 

different set of participants. Ethics were approved by the coordinating ethical committee of the 144 

Helsinki and Uusimaa hospital district, Finland.  145 

 146 

Blood sample collection 147 

Blood samples and detailed information on various physical and clinical variables for the YFS 148 

and FINRISK cohorts were collected using similar protocols as described previously (33,34). 149 

Venous blood was collected following an overnight fast for the YFS cohorts, while non-fasting 150 

blood was collected for FINRISK. Samples were centrifuged, and the resulting plasma and 151 

serum samples were aliquoted into separate tubes and stored at -70°C for later analyses.  152 

 153 

Genotype processing and quality control 154 

Genotyping in YFS and FINRISK cohorts was performed on whole blood genomic DNA. For 155 

YFS07 (N=2,442), a custom 670K Illumina BeadChip array was used for genotyping. For 156 

FINRISK97 (N=5,798), the Human670-QuadCustom Illumina BeadChip platform was used 157 

for genotyping. For FINRISK02 (N=5,988), the Human670-QuadCustom Illumina BeadChip 158 

(N=2,447) and the Illumina Human CoreExome BeadChip (N=3,541) was used for genotyping. 159 

The Illuminus clustering algorithm was used for genotype calling (35) and quality control (QC) 160 

was performed using the Sanger genotyping QC pipeline. This included removing SNPs and 161 

samples with > 5% genotype missingness followed by removal of samples with gender 162 

discrepancies. Genotypes were then imputed with IMPUTE2 (36) using the 1000 Genomes 163 

Phase 1 version 3 as the reference panel followed by removal of SNPs with call rate < 95%, 164 

imputation “info” score < 0.4, minor allele frequency < 1%, and Hardy-Weinberg equilibrium 165 

P-value < 5 × 10-6. Instances where data was generated using different genotyping platforms, 166 

overlapping SNPs were merged using PLINK version 1.90 software (https://www.cog-167 

genomics.org/plink2) (37). A total of 6,664,959, 7,370,592 and 6,639,681 genotyped and 168 

imputed SNPs passed quality control in YFS, FINRISK97 and FINRISK02, respectively. 169 
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Cryptic relatedness was assessed using identity by descent (IBD) estimates and in cases where 170 

the pi-hat relatedness was greater than 0.1, one of the two individuals was randomly removed 171 

(N=44 for YFS, N=291 for FINRISK97, and N=39 for FINRISK02). Genetic PCs were 172 

obtained through principal component analysis (PCA) using FlashPCA (38) on ~60,000 LD 173 

pruned SNPs.  174 

 175 

Measurement of cytokines 176 

Concentrations of cytokines, chemokines, and growth factors (hereafter referred to as 177 

cytokines) were measured in serum (YFS07), EDTA plasma (FINRISK97), and heparin plasma 178 

(FINRISK02) using multiplex fluorescent bead-based immunoassays (Bio-Rad). A total of 48 179 

cytokines were measured in YFS07 (N=2,200) and FINRSK02 (N=2,775) using two 180 

complementary array systems: the Bio-Plex ProTM Human Cytokine 27-plex assay and Bio-181 

Plex ProTM Human Cytokine 21-plex assay. For FINRISK97, 19 cytokines were assayed on 182 

the Human Cytokine 21-plex assay system. All assays were performed in accordance with the 183 

manufacturer’s instructions, except that the amount of beads, detection antibodies, and 184 

streptavidin-phycoerythrin conjugate were used at half their recommended concentration. 185 

Fluorescence intensity values determined using the Bio-Rad’s Bio-Plex 200 array reader were 186 

converted to concentrations from the standard curve generated by the Bio-PlexTM Manager 6.0 187 

software. For each cytokine, a standard curve was derived by fitting a five-parameter logistic 188 

regression model to the curve obtained from standards provided by the manufacturer. 189 

Cytokines with concentrations at the lower and upper asymptotes of the sigmoidal standard 190 

curve were set to the concentration corresponding to the fluorescent intensity 2% above or 191 

below the respective asymptotes.  192 

 193 

Cytokine data filtering, normalisation and clustering 194 

The analysis was limited to 18 cytokines (Table S1) assayed in all three cohorts. Although 195 

Interleukin 1 receptor, type I (IL-1Ra) was assayed in all three cohorts, it was excluded from 196 

the analyses due to its inconsistent Pearson correlation pattern with other 18 cytokines across 197 

the three datasets. 198 

 199 

Before normalisation, cytokine data was subset to individuals with matched genotype data in 200 

YFS07 (N=2,018), FINRISK97 (N=5,728), and FINRISK02 (N=2,775). We excluded 201 

individuals in YFS07 reporting febrile infection in the two weeks prior to blood sampling 202 

(N=92). To identify extreme outlier samples, PCA was performed on the log2 transformed 203 
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cytokine values using the missMDA R package (39). This method first imputed the missing 204 

cytokine values using a regularised iterative PCA algorithm implemented in the imputePCA 205 

function, before performing PCA. Three and two outlier samples were removed from 206 

FINRISK97 and FINRISK02 respectively. Based on IBD analysis described above, 44 207 

(YFS07), 291 (FINRISK97), and 39 (FINRISK02) individuals were also removed. After 208 

filtering, a total of 1,843, 5,434 and 1,986 individuals passed quality control in YFS07, 209 

FINRISK97 and FINRISK02, respectively, and these were used for downstream analysis. 210 

 211 

Since all 18 cytokines displayed non-Gaussian distributions, we performed normalisation of 212 

cytokine levels. For YFS07, the lower limit of detection (LOD) was available for each 213 

cytokine. Reported values that were below the LOD were indistinguishable from background 214 

noise signals or instrument error (40), and were excluded and treated as missing. For 215 

FINRISK97 and FINRISK02, the detection limits were not available; however, it was observed 216 

that these two datasets exhibited a bimodal distribution, with the leftmost peak below the 217 

expected LOD when compared to the YFS dataset. Individuals in the leftmost peak were 218 

therefore set to missing. The log2-transformed cytokine values were then normalised to follow 219 

standard Gaussian distributions (with mean of 0 and sd of 1) using rank-based inverse normal 220 

transformation (rntransform) as implemented in the GenABEL R package (41). For each study 221 

group, residuals for all cytokines were calculated by regressing the normalised cytokine values 222 

on age, sex, BMI, lipid and blood pressure medication, pregnancy status (FINRISK97), and 223 

the first 10 genetic PCs using a multiple linear regression model.  224 

 225 

Detection of groups of correlated cytokines was done in FINRISK97, the cohort with the 226 

largest sample size. Pairwise Pearson correlation was performed amongst residuals of 18 227 

cytokines. These cytokines were then subjected to hierarchical clustering, with one minus the 228 

absolute correlation coefficient used as the dissimilarity metric. We then defined a cytokine 229 

network – a group of 11 cytokines that were moderate- to highly-correlated (r > 0.57) – for 230 

subsequent use in the multivariate analysis.  231 

 232 

Statistical Analysis  233 

Univariate association analysis was carried out with linear regression in PLINK (37), where 234 

the residuals of each cytokine were regressed on each SNP genotypes. Summary statistics at 235 

each marker across three datasets were then combined in a meta-analysis using the METAL 236 

software program (42), which implemented a weighted Z-score method.  237 
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 238 

Multivariate testing (MV) was performed under the canonical correlation framework 239 

implemented in PLINK (MV-PLINK) (22), which extracted the linear combination of traits 240 

most highly-correlated with genotypes at a particular SNP. The test is based on Wilks’ Lambda 241 

(λ = 1−ρ2), where ρ is the canonical correlation coefficient between the SNP and the cytokine 242 

network. Corresponding P-values were computed by transforming Wilks’ Lambda to a statistic 243 

that approximates an F distribution and the loadings for each cytokine represented their 244 

individual contributions toward the multivariate association result (22). Since the multivariate 245 

beta-coefficients and standard errors were not calculated by MV-PLINK, the cohort-level 246 

multivariate P-values were combined in a meta-analysis using the weighted Z-score method 247 

(43,44) implemented in the metap R package. Briefly, the P-values for each dataset were 248 

transformed into Z-scores, weighted by their respective sample sizes and the sum of these 249 

weighted Z-scores were then divided by the square root of the sum of squares of the sample 250 

size for each study. The combined weighted Z-score obtained was back-transformed into a one-251 

tailed P-value. 252 

 253 

To assess the inflation of the test statistics as a result of population structure, quantile-quantile 254 

(Q-Q) plots of observed vs. expected-log10 P-values were generated from the multivariate 255 

analysis of the three datasets, both individually and meta-analysed. Corresponding genomic 256 

inflation factor (λ) was calculated by taking the ratio of the median observed distribution of P-257 

values to the expected median.  258 

 259 

To investigate the existence of additional independent signals within the significant 260 

multivariate loci, a conditional stepwise multivariate meta-analysis was performed within each 261 

locus. For each study cohort, the lead SNP at each locus (P-value < 5 × 10-8) together with 262 

other covariates were fitted in a linear regression model for each cytokine in the network. The 263 

resulting residuals were provided as an input for the multivariate test of the locus being 264 

assessed. The cohort-level conditional P-values were then combined in a meta-analysis. The 265 

stepwise conditional analysis was repeated in the univariate model with the lead multivariate 266 

SNPs until no additional significant signal was identified.  267 

 268 

Colocalisation analysis  269 

Bayesian colocalisation tests between cytokine network-associated signals and the following 270 

trait- and disease-associated signals were performed using the COLOC R package (45). For 271 
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whole blood cis-eQTLs, we downloaded publicly-available summary data from the eQTLGen 272 

Consortium portal (http://www.eqtlgen.org/). The eQTLGen Consortium analysis is the largest 273 

meta-analysis of blood eQTLs to date and comprises of 31,684 blood and PBMC samples from 274 

a total of 37 datasets (46). For immune cell cis-eQTLs, we either generated cis-eQTL summary 275 

data in resting B-cells (47), resting monocytes (48), and stimulated monocytes with interferon-276 

γ or lipopolysaccharide (48), or obtained publicly-available cis-eQTL summary data generated 277 

by the BLUEPRINT consortium in neutrophils and CD4+ T-cells (49). For cis-eQTL mapping 278 

in B-cells and monocytes (resting and stimulated), information on accessing the raw gene 279 

expression and genotype data, data pre-processing, and cis-eQTL analysis has been described 280 

in a previous study (50). The BLUEPRINT immune cell summary statistics was downloaded 281 

from: ftp://ftp.ebi.ac.uk/pub/databases/blueprint/blueprint_Epivar/. For protein QTLs, we used 282 

publicly-available SomaLogic plasma protein GWAS summary statistics from the INTERVAL 283 

study (17). For disease or complex trait associations, we compiled summary statistics of 185 284 

diseases and quantitative traits from GWAS studies conducted in 285 

European ancestry individuals, which were accessed from the UK biobank (Table S10), or 286 

downloaded from either ImmunoBase (https://www.immunobase.org/), the NHGRI-EBI 287 

GWAS Catalog (https://www.ebi.ac.uk/gwas/), or LD Hub (http://ldsc.broadinstitute.org/). 288 

Here, we only considered immune-related and cardiometabolic diseases. For each cytokine 289 

network locus, we only tested traits or diseases with the minimum association P-value < 1 × 290 

10-6 at this locus. COLOC requires either beta-coefficients and its variance, or P-values, for 291 

each SNP, in addition to MAF and sample size. Since PLINK multivariate did not produce beta 292 

values and standard errors, we instead used meta-analysed P-values for the multivariate 293 

cytokine GWAS summary data. For each association pair assessed for colocalisation, SNPs 294 

within 200kb of the lead multivariate cytokine GWAS SNP were considered. COLOC 295 

(coloc.abf) was run with default parameters and priors. COLOC computed posterior 296 

probabilities for the following five hypotheses: PP0, no association with trait 1 (cytokine 297 

GWAS signal) or trait 2 (e.g. eQTL signal); PP1, association with trait 1 only (i.e. no 298 

association with trait 2); PP2, association with trait 2 only (i.e. no association with trait 1); PP3, 299 

association with trait 1 and trait 2 by two independent signals; PP4, association with trait 1 and 300 

trait 2 by shared variants. In practice, evidence of colocalisation were defined by 301 

PP3 + PP4 ≥ 0.99 and PP4/PP3 ≥ 5, a cut off previously suggested (50).  302 

 303 

 304 

 305 
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 306 

 307 

Results 308 

Summary of cohorts and data 309 

Our final dataset comprised a total of 9,267 individuals enrolled in three population-based 310 

studies, YFS07 (N=1,843), FINRISK97 (N=5,438), and FINRISK02 (N=1,986), all of whom 311 

had genome-wide genotype data and quantitative measurements of 18 cytokines (Table S1). 312 

Characteristics of the study cohorts are summarised in Table 1. Genotypes for the three 313 

datasets were imputed with IMPUTE2 (36) using the 1000 Genomes Phase 1 version 3 of the 314 

reference panel. After quality control, a total of 6,022,229 imputed and genotyped SNPs were 315 

available across all cohorts. Cytokine levels were measured in serum and plasma using Bio-316 

Plex ProTM Human Cytokine 27-plex and 21-plex assays, then subsequently normalised and 317 

adjusted for covariates including age, sex, BMI, pregnancy status, blood pressure lowering 318 

medication, lipid lowering medication, and population structure (Methods). An overview of 319 

the study is shown in Figure 1. 320 

 321 

A correlation network of circulating cytokines  322 

To characterise the correlation structure of circulating cytokines, we utilised the largest dataset 323 

available (FINRISK97) and the set of 18 cytokines overlapping all three cohorts. IL-18 was 324 

very weakly correlated with other cytokines (Figure 2A), while TRAIL, SCF, HGF, MCP-1, 325 

EOTAXIN and MIP-1b showed moderate correlation with the others. A distinct set of 11 326 

cytokines showed high correlation amongst themselves (median r=0.75). In the smaller cohorts 327 

(YFS07 and FINRISK02), the cytokine correlation structure was similar but weaker (Figure 328 

S1), with the set of 11 cytokines also showing relatively high correlation (YFS07 median 329 

r=0.42; FINRISK02 median r=0.46). We utilised this set of 11 cytokines (denoted below as the 330 

cytokine network) for multivariate association analysis. 331 

 332 

The cytokine network included both anti-inflammatory (IL-10, IL-4, IL-6) and pro-333 

inflammatory (IL-12, IFN-γ, IL-17) cytokines as well as growth factors (FGF-basic, PDGF-334 

BB, VEGF-A, G-CSF) and a chemokine (SDF-1a) involved in promoting leukocyte 335 

extravasation and wound healing (51–53). These cytokines were all positively correlated, 336 

which is likely indicative of counter-regulatory (negative-feedback) mechanisms amongst pro-337 

inflammatory and anti-inflammatory pathways, such as that of IFN-γ and IL-10 (54). 338 
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 339 

Multivariate genome-wide association analysis for cytokine loci  340 

We performed a multivariate GWAS on the cytokine network in each cohort separately, then 341 

cohort-level results were combined using meta-analysis (Methods). Since one hypothesis test 342 

(corresponding to the cytokine network) was performed for each SNP, a genome-wide 343 

significance threshold of P < 5 × 10-8 was used. Minimal inflation was observed for the cohort-344 

level and meta-analysis test statistics with lambda (λ) inflation ranging between 1.00-1.02 345 

(Figure S2A – D). 346 

 347 

We identified 8 loci reaching genome-wide significance for the cytokine network (Figure 2B; 348 

Table 2). The strongest association was rs7767396 (meta-P-value = 6.93 × 10-306), a SNP 349 

located 172kb downstream of vascular endothelial growth factor A (VEGFA) (Figure S3A). 350 

The VEGFA locus was previously identified in GWAS for individual cytokine levels including 351 

VEGF-A, IL-7, IL-10, IL-12, and IL-13 (14,19). Consistent with these earlier results, we found 352 

that VEGF-A, IL-10, and IL-12 were the top three cytokines based on their trait loadings 353 

(relative contribution of each cytokine to the multivariate association result) in each cohort and 354 

also significantly associated with this locus in the univariate scans (Figure S4A). Multivariate 355 

analysis also confirmed four other previously known associations (14,16,19), including loci 356 

harbouring SERPINE2 (rs6722871; meta-P-value = 1.19 ×10-59), ZFPM2 (rs6993770; meta-P-357 

value = 4.73 × 10-8), VLDLR (rs7030781; meta-P-value = 3.78 × 10-13), and PCSK6 358 

(rs11639051; meta-P-value = 1.93 × 10-58) (Figure 2B; Table 2; Figure S3B – E). The 359 

cytokine with the highest loading at each of these loci was consistent with those previously 360 

identified in univariate analysis (Figure S4B – E). 361 

 362 

The multivariate GWAS also detected novel cytokine associations not identified in any 363 

previous univariate tests of these cytokines. These were three loci with genic lead SNPs in the 364 

candidate genes F5, PDGFRB, and ABO. The lead variant at the F5 locus (rs9332599; meta-365 

P-value = 7.17 ×10-12) is located in intron 12 of F5 (Figure S3F). At the platelet-derived 366 

growth factor receptor-beta (PDGFRB) locus, the lead variant rs2304058 (meta-P-value = 4.06 367 

× 10-9) is within intron 10 of PDGFRB (Figure S3G). At the ABO locus, the lead variant 368 

rs550057 (meta-P-value = 2.75 × 10-8) is within the first intron of ABO (Figure S3H); 369 

furthermore, rs550057 is located ~1.6 kb upstream of the erythroid cell specific enhancer, 370 

which contains a GATA-1 transcription factor binding site and has been shown to enhance the 371 

transcription of the ABO gene (55). 372 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 8, 2019. ; https://doi.org/10.1101/544445doi: bioRxiv preprint 

https://doi.org/10.1101/544445
http://creativecommons.org/licenses/by/4.0/


 12 

 373 

To investigate the presence of multiple independently associated variants at each of the eight 374 

loci, we performed stepwise conditional multivariate meta-analysis. Three loci (SERPINE2, 375 

VEGFA, and PCSK6) exhibited evidence of multiple independent signals (Table S2). In 376 

addition to the lead variants (rs6722871, rs7767396, rs11639051) at each of these three loci, 377 

we identified additional association signals (rs55864163; SERPINE2, meta-Pcond. = 9.03 × 10-378 

29; rs112215592, SERPINE2, meta-Pcond = 2.10 × 10-12; rs4714729; VEGFA, meta-Pcond = 7.49 379 

× 10-10; rs6598475, PCSK6, meta-Pcond = 2.63 × 10-17), which were independently associated 380 

with the cytokine network. We also performed conditional univariate analysis that adjusted for 381 

the lead multivariate SNPs, which were either the same lead univariate SNPs or in high LD (r2 382 

= 0.99). This univariate analysis also uncovered the same secondary signal at the VEGFA locus 383 

in association with VEGFA cytokine levels (rs4714729; meta-Pcond = 8.8 × 10-13) (Table S2). 384 

 385 

Colocalisation of cytokine variants with cis-eQTLs in whole blood  386 

To characterise the regulatory effects of the multivariate cytokine-associated loci, we queried 387 

the largest publicly-available set of results for whole blood cis-eQTLs from a meta-analysis of 388 

31,684 individuals, which was obtained from the eQTLGen Consortium database (46). We 389 

found SNPs, lead or LD-proxy (r2>0.5), at seven of the eight cytokine loci (ABO, F5, PCSK6, 390 

PDGFRB, SERPINE2, VEGFA, VLDLR) with cis-regulatory effects (P-value < 1 × 10−6) on 391 

gene expression (a total of 17 unique genes) in blood (Table S3). Using Bayesian 392 

colocalisation analysis, we further demonstrated that associations at three of these loci 393 

colocalised with cis-eQTLs for ABO, PCSK6, and SERPINE2 expression (Figure 3A – C; 394 

Table S4).  395 

 396 

Colocalisation of cytokine variants with immune cell-specific cis-eQTLs 397 

Next, we investigated the cell type- or context-dependent regulatory effects of genetic variants 398 

associated with the cytokine network by interrogating previously published cis-eQTLs specific 399 

to resting B-cells (47), resting monocytes (48), stimulated monocytes with interferon-γ or 400 

lipopolysaccharide (48), resting neutrophils (56), naive CD4+ T-cells (49,56) and CD8+ T-cells 401 

(49), all isolated from healthy donors of European ancestry (Table S5). Three out of the eight 402 

cytokine network loci harboured cis-eQTLs (P-value < 1 × 10−6) in at least one immune cell 403 

type, in either stimulated or non-stimulated state (Table S6). For example, SNPs at the 404 
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SERPINE2 locus were reported to have cis-eQTL effects across multiple immune cell types, 405 

including B-cells, CD4+ and CD8+ T-cells (Table S6). 406 

 407 

Further, colocalisation analysis showed that the cytokine network variants at SERPINE2 had 408 

strong evidence of sharing a causal variant with SERPINE2 cis-eQTLs in CD4+ T-cells and B-409 

cells, similar to the colocalisation we observe in whole blood (Figure 3B; Table S7). 410 

 411 

Colocalisation of cytokine variants with plasma protein QTLs 412 

To investigate protein-level effects of cytokine network variants, we utilised plasma protein 413 

QTLs (pQTLs) from the INTERVAL study (17). Colocalisation analysis, considering only 414 

pQTLs with association P-value < 1 × 10-6, showed all the eight cytokine network loci had 415 

strong evidence of shared causal variants with plasma levels of a total of 146 proteins (out of 416 

the 215 tested) (Table S8). Of these, the ABO and ZFPM cytokine network loci strongly 417 

colocalised with pQTL signals for 55 (out of 81) and 87 (out of 98) proteins, respectively 418 

(Table 3; Table S8). Of these, 14 and 75 proteins shared the same causal lead pQTLs with the 419 

lead cytokine network variants at the ABO (rs550057) and ZFPM2 (rs6993770) loci, 420 

respectively, suggesting these variants have widespread effects. 421 

 422 

The ABO locus colocalised with pQTLs for several membrane proteins (B3GN2, endoglin, 423 

GOLM1, OX2G, TPST2) and cell surface receptors (IL-3RA, LIFR, IGF-I R, HGF receptor). 424 

ABO colocalisation was also observed with pQTLs for adhesion and immune-related molecules 425 

involved in leukocyte recruitment, cell adhesion, and transmigration, including sGP130, 426 

sICAM-1, sICAM-2, LIRB4, and P-selectin (Table 3; Table S8). At the ZFPM2 locus, 427 

colocalisation was seen with pQTLs for proteins generally found in platelet granules (e.g. 428 

VEGFA, PDGF-AA, PDGF-BB, PDGF-D, angiopoietin, P-selectin). At the SERPINE2 locus, 429 

we observed that in addition to colocalising with the cis-eQTL signal for SERPINE2 430 

expression, the cytokine network-associated variants colocalised with the cis-pQTL variants 431 

for SERPINE2 protein levels (Table S8). Likewise, the VEGFA locus colocalised with a cis-432 

pQTL for VEGFA, and the PDGFRB locus with a cis-pQTL for PDGFRB. 433 

 434 

Relationships of cytokine network variants with complex traits and diseases  435 

Using the NHGRI GWAS Catalog (57,58), we found that, across all eight cytokine network 436 

loci, 55 SNPs matched SNPs previously associated with quantitative traits and diseases. (Table 437 

S9). The lead cytokine network variant at ZFPM2 (rs6993770) has previously been associated 438 
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with various platelet traits, including platelet count, distribution width, plateletcrit (total 439 

platelet mass) and mean volume (17,59) (Table S9).  440 

 441 

Next, GWAS summary statistics from a broad range of traits and diseases (Table S10), 442 

including hematopoietic traits, circulating metabolites, immune- and cardiometabolic-related 443 

diseases were compiled for colocalisation analysis with the cytokine network loci. The two 444 

cytokine network-associated loci, ABO and ZFPM2, exhibited strong evidence of 445 

colocalisation for several traits and diseases. The ZFPM2 locus not only colocalised with 446 

signals for several platelet trait associations, but also with other haematological trait-associated 447 

signals including white blood cell counts, and specifically neutrophil and basophil counts 448 

(Table 3; Table S11). The ABO locus showed colocalisation with various QTLs for 449 

haematological traits including red blood cell traits (haemoglobin concentration, red blood cell 450 

count, and hematocrit) and white blood cell counts, including granulocyte count and 451 

specifically eosinophil count (Table 3; Table S11). This is consistent with the ABO locus being 452 

identified as a pQTL for proteins involved in leukocyte activation as identified previously. 453 

Cytokine network variants at the ABO locus colocalised with those of intermediate density, 454 

low density, and very low-density lipoprotein subclasses as well as glycosylated haemoglobin 455 

(HbA1c) (Table 3; Table S11), suggesting both inflammatory and metabolic effects. Notably, 456 

the same cytokine network variants at the ABO locus also strongly colocalised with signals 457 

associated with coronary artery disease (CAD), pulmonary embolism, ischemic stroke, and 458 

type 2 diabetes (T2D) (Table 3, Table S11).  459 

 460 

 461 

 462 

 463 

 464 

Discussion 465 

In this study, we first identified a network of 11 correlated cytokines which are known to 466 

participate in a broad array of immune responses in circulation. These cytokines include those 467 

involved in the classical TH1 (IL-12, IFN-γ), TH2 (IL-4, IL-6, and IL-10), TH17 (IL-6, IL-17, and 468 

G-CSF), and Treg (IL-10) responses (51,52) as well as the promotion of angiogenesis, tissue 469 

repair and remodelling typically coinciding with inflammatory and post-inflammatory states 470 

(VEGF-A, FGF-basic and PDGF-BB) (53). Although previous in vitro challenge studies 471 

(20,21) indicate antagonistic relationships amongst selected cytokines in the network, our 472 
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analyses in >9,000 individuals are consistent with previous study utilising similar data (19), 473 

showing that these 11 circulating cytokines are positively correlated in the general population. 474 

Therefore, at the population level, it is more likely that an equilibrium in circulating levels of 475 

disparate cytokines exists, possibly maintained by counter-regulatory mechanisms. 476 

 477 

Our multivariate GWAS meta-analysis identified eight loci associated with the cytokine 478 

network; confirming six previously-reported associations for circulating cytokine levels 479 

(14,16,19) as well as uncovering two additional signals (PDGFRB and ABO), empirically 480 

demonstrating the statistical power of multivariate approaches. Further, integrative genetic 481 

analyses revealed evidence for shared genetic influences between these loci, molecular QTLs, 482 

and complex trait and disease associations. This study identified several regions harbouring 483 

cytokine-associated signals that colocalise with whole blood and/or immune cell-specific cis-484 

eQTLs for a number of genes, including SERPINE2, ABO, and PCSK6, suggesting these genes 485 

are possible candidates underlying the collective expression of cytokines in the cytokine 486 

network – or vice versa. Our findings also highlight that the cytokine network associations at 487 

the pleiotropic loci, ABO and ZFPM2, overlap with signals associated with multiple traits, 488 

including cardiometabolic diseases, immune-related proteins, and platelet traits.  489 

 490 

SERPINE2 encodes protease nexin-1, an inhibitor of serine proteases such as thrombin and 491 

plasmin, and is therefore implicated in coagulation, fibrinolysis and tissue remodelling (60). It 492 

shares similar functions with its better-known homolog SERPINE1, or plasminogen activator 493 

inhibitor-1 (PAI-1), the elevation of which is associated with thrombosis and cardiovascular 494 

risk (60). However, there is also evidence that SERPINE2 has pleiotropic roles in immune and 495 

inflammatory regulation, that could be either dependent or independent of its function as a 496 

serine protease. It is expressed in many tissue types, and its expression can be induced by pro-497 

inflammatory cytokines such as IL-1α (61,62). Conversely, SERPINE2 can itself influence 498 

inflammatory status: SERPINE2 is a candidate susceptibility gene for chronic obstructive 499 

pulmonary disease, and SERPINE2-knock-out mice exhibited extensive accumulation of 500 

lymphocytes in the lungs, through a mechanism linked to thrombin and NFκB activation (62). 501 

We observed in our data that the cytokine network associations overlapped with the SERPINE2 502 

pQTL signal. Moreover, using immune cell-specific cis-eQTL data, we further demonstrated 503 

colocalisation between the cytokine network and SERPINE2 cis-eQTL signals specifically in 504 

CD4+ T-cells and B-cells. This suggests that the association between SERPINE2 and the 505 

cytokine network at this locus is at least partially-driven by lymphocytic expression – 506 
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consistent with SERPINE2 itself influencing chemotaxis and recruitment of lymphocytes (62). 507 

Our analyses demonstrate that the importance of SERPINE2 in regulating immune and 508 

inflammatory processes is potentially greater than previously anticipated, and warrants further 509 

targeted research. 510 

 511 

Like SERPINE2, the ABO locus has widespread pleiotropic effects. The most well-known 512 

function of ABO is its determination of blood group. The human ABO gene has three major 513 

alleles (A, B, and O) that determine ABO blood type. The A and B alleles encode for distinct 514 

“A” versus “B” glycosyltransferases that add specific sugar residues to a precursor molecule 515 

(H antigen) to form A versus B antigens, respectively (63). The O allele results in a protein 516 

without glycosyltransferase activity (63). The lead cytokine-associated variant rs550057 and 517 

its proxies in moderate LD (r2 = 0.6; rs507666, rs687289) have been previously shown to 518 

determine the ABO allele (64), but they have also been associated with circulating levels of 519 

inflammatory proteins such sICAM-1, P-selectin , and ALP (17,65,66). Our study showed that 520 

cytokine network associations at the ABO locus share colocalised signals with a host of other 521 

proteins and traits, including lipoproteins (IDL, LDL, VLDL), proteins of immune function, 522 

immune cell subsets, and cardiometabolic diseases (Table 3), highlighting the potential for 523 

shared molecular etiology amongst these traits. Our analyses highlight the potential genetic 524 

basis for numerous previous observations linking ABO blood group to an array of similar traits 525 

and phenotypes (18,67–71).  526 

 527 

It could therefore be speculated that the ABO gene influences the risk of cardiometabolic 528 

disease due to its involvement in multiple inflammatory, haemostatic and metabolic processes; 529 

however, our current understanding of the mechanisms behind this remains unclear. For 530 

instance, non-O blood groups have been associated with increased risk of both cardiovascular 531 

disease, venous thromboembolism, stroke, and T2D (68,72). However, the O blood group has 532 

itself been linked to elevated IL-10 and worse outcomes given existing coronary disease (risk 533 

of cardiovascular death, recurrent myocardial infarction and all-cause mortality) (64). Other 534 

studies have suggested a role for von Willebrand factor (VWF), a coagulative factor which also 535 

expresses ABO antigens – in particular, the O phenotype is associated with lower VWF, which 536 

may explain reduced thrombotic and cardiovascular risk (64,73). It has been suggested that the 537 

link between ABO blood group type and venous thromboembolism (VTE) is potentially driven 538 

by VWF and Factor VIII – non-O blood group individuals presented a higher risk of venous 539 

thromboembolism and had elevated levels of both VWF and Factor VIII (74,75). Also relevant 540 
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is the link between ABO and adhesion molecules such as E-selectin and sICAM-1 which are 541 

overexpressed in inflammatory states (18,66,70,71). sICAM-1 is a known positive correlate 542 

with cardiovascular disease; however, it is the A blood group, not O, that is associated with 543 

reduced sICAM-1 levels, again complicating the picture (70). Inferring the exact causal 544 

relationships amongst all these entities will require intricate follow-up experimental 545 

investigation, involving simultaneous examination of all key players. It is particularly unclear 546 

whether the link with cardiometabolic diseases may be due to its direct modification of H 547 

antigen, or on the glycosyltransferase activity of the encoded enzyme on other proteins, or 548 

some combination of both. In our study, formal causal inference (e.g. with Mendelian 549 

Randomisation) was not possible because the corresponding multivariate beta-coefficients and 550 

standard errors are not currently calculable and the locus itself has extensive pleiotropy.  551 

 552 

The ZFPM2 locus has been associated with platelet traits (59), and our findings highlight its 553 

importance as a determinant of platelet and angiogenic cytokine activity. ZFPM2 encodes a 554 

zinc finger cofactor that regulates the activity of GATA4, a transcription factor reported to play 555 

a critical function not only in heart development (76) but also modulation of angiogenesis. In 556 

particular, GATA4 directly binds to the promoter of angiogenic factor VEGFA and regulates 557 

its expression (77), and it has been shown that disruption of ZFPM2-GATA4 interaction alters 558 

the expression of VEGFA and other angiogenesis-related genes (78). VEGFA and PDGFR-BB, 559 

which are part of the cytokine network, have been found to be released via alpha granules of 560 

activated platelets, and serum VEGFA levels correlate closely with blood platelet counts (79–561 

81). In our study, we show that the cytokine-associated signal at the ZFPM2 locus colocalised 562 

with GWAS signals for platelet traits and platelet proteins. The lead cytokine network SNP 563 

rs6993770 has been reported to be a trans-eQTL in whole blood for gene products typically 564 

found in platelets and their receptors (e.g. CXCL5, GP9, MYL9, VWF) (46). Collectively, 565 

these findings suggest that this locus regulates the number and/or cytokine activity of 566 

circulating platelets, and that this potentially occurs via interaction with GATA4 and regulation 567 

of VEGFA.  568 

 569 

In conclusion, our study illustrates the utility of multivariate analysis of correlated immune 570 

traits and highlights potentially fruitful avenues of biological investigation for multivariate 571 

genetic signals. Our results highlight that certain gene loci drive the expression of a cytokine 572 

network with immune, inflammatory and tissue repair functions; and, simultaneously, these 573 

loci are implicated in the regulation of other haemostatic and metabolic functions, with 574 
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relevance to human health and disease. This stresses the fact that the processes of inflammation, 575 

haemostasis and repair often run concurrent with each other after injury, and that biological 576 

systems often feature ample redundancy and feedback loops within individual effectors. 577 

 578 

 579 

 580 

 581 
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Figures 831 

Figure 1: Overview of the study populations, design, and the analyses conducted. 832 

 833 

 834 

Figure 2: Multivariate GWA analysis of a network of 11 correlated cytokines in three 835 

Finnish cohorts. (A) Correlation heatmap of the 18 cytokines in the FINRISK97 cohort. Each 836 

cell presents the pair-wise Pearson’s correlation coefficient between the normalised cytokine 837 

residuals. The cytokines are ordered by hierarchical clustering, using 1 minus the absolute 838 

value of the correlations as the distance matrix. The colour scale denotes the strength of the 839 

correlations, where red is a high positive correlation. The group of 11 tightly correlated 840 

cytokines (black box) was used for multivariate analysis. (B) Manhattan plot for meta-analysis 841 

results from the multivariate GWAS of the cytokine network. The statistical strength of 842 

association (-log10 meta-P-value; y-axis) is plotted against all the SNPs ordered by 843 

chromosomal position (x-axis). The sky-blue horizontal dashed line represents the genome-844 

wide (meta-P-value < 5 × 10-8) significance threshold. The lead SNP (lowest meta-P-value) at 845 

each locus and the nearby genes are shown. 846 

 847 

Figure 3: Regional plots for the cytokine network association, and whole blood and 848 

immune cell cis-eQTL association signals at the ABO, PCSK6 and SERPINE2 locus. (A) 849 

The cytokine network GWAS signal (top) colocalises with the whole blood cis-eQTLs signal 850 

for ABO (bottom) at the ABO locus on chromsome 9; (B) colocalises with whole blood cis-851 

eQTLs for PCSK6 expression (bottom) at the PCSK6 locus on chromosome 15; (C) colocalises 852 

with the cis-eQTL signals for SERPINE2 expression in whole blood (middle), B-cells (middle), 853 

and CD4+ T-cells (bottom) at the SERPINE2 locus on chromosome 2. For each plot, the circles 854 

represent the -log10 association P-values (y-axis) of SNPs plotted against their chromosomal 855 

position (x-axis). The eQTL association plots show the lead cytokine network GWAS SNP 856 

tested in the colocalisation analysis. The lead cytokine network GWAS SNP rs6722871 was 857 

not present in the B-cell and CD4+ T cell eQTL dataset, instead, the next top GWAS SNP 858 

present in each of the eQTL dataset (rs861442, B-cell; rs1438831, CD4+ T-cell) is shown. For 859 

all regional plots, pairwise LD (r2) in the region is coloured with respect to the lead cytokine 860 

network GWAS SNP. LD was calculated from the 1000 Genomes European population.  861 
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Tables  863 

 864 

Table 1: Summary of descriptive characteristics of the three study cohorts. 865 

Abbreviations: BMI, body mass index; YFS, Young Finns Study. The numbers beside the 866 

cohort names refer to the calendar year (collection year) in which the samples and clinical 867 

information were obtained from each cohort.   868 

Characteristics FINRISK97 FINRISK02 YFS07 

Collection year 1997 2002 2007 

Number of individuals with matched 

cytokine & genotype data  

5438 1986 1843 

Number of males (%) 2637 (48.5) 991(49.9) 841 (45.6) 

Mean age in years (and range) 47.6 (24-74) 60.3(51-74) 37.7 (30-45) 

BMI (kg/m2); mean ± SD 26.6 ± 4.6 28.1 ± 4.5 25.9 ± 4.6 

Number of individuals on lipid lowering 

drugs (%) 

174 (3.2) 284 (14.3) 40 (2.2) 

Number of individuals on blood pressure 

treatment drugs (%) 

698 (12.8) 512 (25.8) 127 (6.9) 
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Table 2: Meta-analysed results of multivariate GWAS of cytokine network 869 

The table shows the meta-analysis P-values for the top SNP (lowest P-value) at each locus 870 

associated with the cytokine network in the multivariate analysis at genome-wide significance 871 

threshold (5 x 10-8). The corresponding lowest meta-P-value for the same top SNP in the 872 

univariate analysis with any single cytokine present in the cytokine network, given in brackets 873 

beside the meta-P-value, was also reported. *Instance where the top SNP at a locus crossed 874 

only the univariate significance threshold (P < 4.55 x 10-9), then the corresponding meta-P-875 

value for that SNP in the multivariate was also given. The univariate significance threshold was 876 

calculated from a Bonferroni correction for 11 cytokines tested (5 × 10-8/11). 877 

 878 

Locus Locus 

Region 

Top SNP Average 

MAF 

Top 

Multivariate 

Meta-P-value 

Univariate  

Meta-P-value 

(Top Cytokine) 

Detection  

F5 1q24.2 rs9332599 0.294 7.17 × 10-12 9.21 × 10-3 

(SDF1a) 

Multivariate  

SERPINE2 2q36.1 rs6722871 0.311 1.19 × 10-59 3.55 × 10-18 

(PDGF-BB) 

Both 

PDGFRB 5q32 rs2304058 0.379 4.06 × 10-9 1.52 × 10-5  

(IL4) 

Multivariate 

VEGFA 6p21.1 rs7767396 0.471 6.93 × 10-306 3.10 × 10-201 

(VEGF-A) 

Both 

ZFPM2 8q23.1 rs6993770 0.221 4.73 × 10-8 1.01 × 10-7 

(IL12p70) 

Multivariate 

ABO 9q34.2 rs550057 0.306 2.75 × 10-8 4.9 × 10-3  

(IL4) 

Multivariate 

VLDLR 9p24.2 rs7030781 0.413 3.78 × 10-13 6.78 × 10-14 

(VEGF-A) 

Both 

PCSK6 15q26.3 rs11639051 0.255 1.93 × 10-58 1.19 × 10-26 

(PDGF-BB) 

Both 

JMJD1C 10q21.3 rs9787438 0.374 *1.30 × 10-7 *8.96 × 10-12 

(VEGFA) 

Univariate 
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Table 3: Colocalisation of cytokine network-associated variants at the ABO and ZFPM2 loci with those of plasma protein levels, 879 

quantitative traits, and disease risk. Evidence: evidence of colocalisation; Strong: PP3+PP4 > 0.99 and PP4/PP3 > 5; Suggestive: PP3 + PP4 > 880 

0.75 and PP4/PP3 > 3; None: association signal for the trait at the locus, but no evidence of colocalisation.  881 

ABO locus (Chromosome 9) 

Traits/ 

Diseases Group/ Functions Evidence Names 

Diseases 
Cardiometabolic 
diseases  

Strong Pulmonary embolism, ischemic stroke, coronary artery disease, type 2 disease,  

None Deep vein thrombosis 

Blood cell 
traits 

Blood cell counts   

Strong 
White blood cell, granulocytes, basophils + eosinophils, basophils + neutrophils, eosinophils + neutrophils, eosinophils, 
neutrophils, haematocrit (%), haemoglobin, myeloid, red blood cells, platelet distribution width 

Suggestive Basophils, reticulocytes 

None Monocyte, platelet, plateletcrit (%), red cell distribution width 

Metabolites 

IDL particle 
constituents  

Strong 
Total cholesterol (IDL-C), free cholesterol (IDL-FC), total lipids (IDL-L), total particle concentration (IDL-P), phospholipids (IDL-
PL), triglycerides (IDL-TG) 

LDL subclass particle 
constituents 

Strong 

For large particles: total cholesterol (L-LDL-C), cholesterol esters (L-LDL-CE), free cholesterol (L-LDL-FC), total lipids (L-LDL-L), 
total particle concentration (L-LDL-P), phospholipids (L-LDL-PL),  
For medium particles: total cholesterol (M-LDL-C), cholesterol esters (M-LDL-CE), total lipids (M-LDL-L), total particle 
concentration (M-LDL-P), phospholipids (M-LDL-PL) 
For small particles: total cholesterol (S-LDL-C), total lipids (S-LDL-L), total particle concentration (S-LDL-P) 

VLDL subclass particle 
constituents 

Strong 
For small particles: total cholesterol (S-VLDL-C),  
For extra-small particles: total lipids (XS-VLDL-L), phospholipids (XS-VLDL-PL) 

Other Strong HbA1c, Apolipoprotein B, total LDL cholesterol, total serum cholesterol 

Proteins 

Chemokine activity 
Strong FAM3B, FAM3D, MIP-5, TECK,  

Suggestive CCL28 

Chemokine receptors 
Strong IL-3RA, HGF receptor, sGP130, VEGF-R2, VEGF-R3 

None TCCR 

Receptor function 
and/or signalling 

Strong F177A, GP116, IGF-1R, IR, JAG1, MBL, PEAR1, PYY, SECTM1, SEMA6A, TLR4 

Suggestive PLXB2 

None CD109, CD209, GFRAL, GPIV, LIF-R, Notch-1, PEAR1, sTIE1, sTIE2 

Cell adhesion 
Strong Cadherin-1, E-selectin, Endoglin, ICAM-4, ISLR2, Laminin, NCAM-L1, OX2G, P-selectin, sICAM-1, sICAM-2, sICAM-5 

None ADAM23, BCAM, Cadherin-5, Desmoglein-2, ESAM 

Enzyme function 
Strong 

B3GN2, B4GT1, B4GT2, Cathepsin-S, CLIC5, DPEP2, FA20B, FUT10, GLCE, GNS, IAP, LPH, MA1A2, NDST1, QSOX2, ST4S6, 
TPST2, XXLT1 

None ATS13, BGAT, CEL, CHSTB, DYR, MINP1, TLL1 

Miscellaneous 
Strong C1GLC, CASC4, GOLM1, KIN17, THSD1, TUFT1, 

None Factor VIII, OBP2B 
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 882 

ZFPM2 locus (Chromosome 8) 

Traits/ 

Diseases Group/ Functions Evidence Names 

Blood cell 
traits 

Blood cell counts   Strong 
White blood cells, granulocytes, basophils + neutrophils, neutrophils + eosinophils, basophils, neutrophils, myeloid, 
platelets, plateletcrit (%), platelet distribution width, mean platelet volume 

Proteins 

Cytokine/chemokine 
activity  

Strong EDA, IL-7, PDGF-AA, PDGF-BB, PDGF-D, VEGF-A, NAP-2, RANTES, TARC 

Immune response Strong CLM2, COCH, CYTF, DB119 

Receptor function 
and/or signalling 

Strong 
ANG-1, APP, BDNF, CD44, CGB2, CRIM1, Dkk-1, Dkk-4, EDAR, EPHB2, EPHB3, GI24, GRP, LIRB4, Mammaglobin-2, OBP2A, 
P2RX6, PAP1, PTPRD, RGS10, RGS3, RHOG, THA, MESD2 

Suggestive Ephrin-A3 

None UNC5H4, sRAGE 

Cell adhesion  Strong Galectin-7, KIRR2, MAdCAM-1, MFGM, ON, P-Selectin, PCDG8, SCF, SPARCL1, (CDHR3, OBCAM) 

Enzyme activity 
Strong 

Arylsulfatase A, ASM3A, B4GT7, Cathepsin A, CHSTB, CPXM1, FUT8, GSTM1-1, INP5E, MMEL2, MYSM1, PAI-1, PDIA5, RIFK, 
SIRT5, SPTC1, UD2A1 

None PDE3A, ZFP91, LAML2, HECW1 

Enzyme inhibitor  Strong SERPINE2, SPINK5, TICN3, WFD13 

Transcription/ 
translation 

Strong APBB1, CENPW, HIF-1a, PAIP1 

Suggestive ID2 

Miscellaneous 
Strong 

4EBP2, APLP2, ARL1, ASIC4, CA063, Coactosin-like protein, CQ089, DJB11, MPP7, NSG2, PROL1, RBM28, SATB1, SYT11, 
SYT17, TXNDC4 

None CNA2 

Refer to Table S8 for full descriptions of the proteins.883 
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Figures  884 

 885 

 886 

Figure 1: Overview of the study populations, design, and the analyses conducted. 887 
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Figure 2: Multivariate GWA analysis of a network of 11 correlated cytokines in three 930 

Finnish cohorts 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 

 942 

 943 

 944 

 945 

 946 

 947 

 948 

 949 

 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 

 958 

 959 

 960 

 961 

 962 

 963 

 964 

 965 

 966 

 967 

 968 

 969 

 970 

 971 

 972 

 973 

 974 

  975 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 8, 2019. ; https://doi.org/10.1101/544445doi: bioRxiv preprint 

https://doi.org/10.1101/544445
http://creativecommons.org/licenses/by/4.0/


 31 

Figure 3: Cytokine network-associated loci colocalise with whole blood and immune cell 976 

cis-eQTLs  977 

 978 
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