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Abstract

Background.
Digital health metrics have the potential to advance the monitoring and
understanding of impaired body functions, for example in persons with
neurological disorders. However, their integration into clinical research
and practice is challenged by insufficient validation of the vast amount
of existing and often abstract metrics. Here, we propose a data-driven
framework to select and validate a clinically-relevant core set of digital
health metrics extracted from a technology-aided assessment. As a use-
case, this framework is applied to metrics extracted from the Virtual Peg
Insertion Test (VPIT), a sensor-based assessment of upper limb sensori-
motor impairments.
Methods.
The framework builds on a use-case specific pathophysiological motiva-
tion of digital health metrics to represent clinically-relevant impairments,
models the influence of confounds from participant demographics, and
evaluates the most important clinimetric properties (discriminant valid-
ity, structural validity, test-retest reliability, measurement error, learning
effects). This approach was applied to 77 kinematic and kinetic metrics
extracted from the VPIT, using data from 120 neurologically intact con-
trols and 89 subjects with neurological disorders (post-stroke, multiple
sclerosis, or hereditary ataxia). An exploratory factor analysis to discuss
the initially proposed pathophysiological hypotheses was performed and
the sensitivity of the metrics to clinically-defined disability levels was in-
vestigated.
Results.
Applied to the VPIT, the framework selected 10 (13.0%) clinically-relevant
core metrics. These assess the severity of multiple sensorimotor impair-
ments in a valid, reliable, and informative manner for all three disorders
while being least susceptible to measurement error and learning effects.
The digital health metrics of the VPIT provided additional clinical value
by detecting impairments in neurological subjects that did not show any
deficits according to conventional scales, and by covering several sensori-
motor impairments of the arm and hand with a single assessment.
Conclusions.
The proposed framework could help to address the insufficient evaluation,
standardization, and interpretability of digital health metrics. In the pre-
sented use-case, it allowed to establish validated core metrics for the VPIT,
paving the way for its integration into clinical neurorehabilitation trials.
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1 Introduction

Assessments of impaired body functions, as observed in many diseases and dis-
orders, are a fundamental part of the modern healthcare system [1]. Specifi-
cally, these assessments are essential to provide documentation for insurances,
to individualize therapeutic interventions, and to shed light on the often un-
known mechanisms underlying the impairments and their temporal evolution.
An exemplary application scenario of assessments are neurological disorders, in-
cluding stroke, multiple sclerosis (MS), and hereditary ataxic conditions, where
impairments in the sensorimotor system are commonly present, for example
when coordinating arm and hand during goal-directed activities [2-5]. In re-
search studies, such deficits are often assessed by healthcare practitioners, who
subjectively evaluate persons with impairments during multiple standardized
tasks (referred to as conventional scales) [6-8]. While most of these scales are
validated and their interpretation fairly well understood and documented, they
often have a limited ability to detect fine impairments because of limited knowl-
edge about behavioral variability, low resolution, and ceiling effects, leading to
bias when attempting to model and better understand longitudinal changes in
impairment severity [9-12].

Digital health metrics, herein defined as discrete one-dimensional metrics
that are extracted from health-related sensor data, promise to overcome these
shortcomings by proposing objective and traceable descriptions of human be-
haviour without ceiling effects and with high resolution [13]. This offers the
potential to more sensitively characterize impairments and significantly reduce
sample sizes required in resource-demanding clinical trials [14]. In the context
of assessing sensorimotor impairments, a variety of digital health metics rely-
ing on kinematic or kinetic data have been successfully applied to characterize
abnormal movement patterns [13,15,16]. However, the integration of digital
health metrics into clinical routine and research is still inhibited by an insuf-
ficient evaluation of the vast amount of existing measures and the need for
core sets of validated and clinically-relevant measures for the targeted impair-
ments [13,17-20]. Indeed, recent reviews reported the use of over 150 sensor-
based metrics for quantifying upper limb sensorimotor impairments and high-
lighted a clear lack of evidence regarding their pathophysiological motivation
and clinimetric properties [13,21]. Especially the ability of a metric to de-
tect impairments (discriminant validity) as well as the dependency to other
metrics and the underlying information content (structural validity) are often
not evaluated. Similarly, test-retest reliability, measurement error arising from
intra-subject variability, and learning effects are only rarely considered, but their
evaluation is fundamental to reliably and sensitively quantify impairments in an
insightful manner [22]. Further, the influence of participant demographics, such
as age, sex, and handedness, on the metrics is often not accurately modeled,
but needs to be taken into account to remove possible confounds and provide
an unbiased assessment. Most importantly, the high variability of clinimetric
properties across behavioral tasks and sensor-based metrics motivates the need
for a methodology to select metrics for a specific assessment task, starting from
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a large set of potential metrics that should be narrowed down to a clinically-
relevant core set [13,17,23]. Unfortunately, existing approaches to select core
sets often do not consider the pathophysiological interpretation of metrics or
are rarely tailored to the specific requirements of digital health metrics (e.g,.
sufficient clinimetric properties) [17,24-28].

Hence, the objective of this work was to propose and apply a data-driven
framework to select and validate digital health metrics, aimed at providing ev-
idence that facilitates their clinical integration. The approach relies on i) a
use-case specific pathophysiological motivation for sensor-based metrics to rep-
resent clinically-relevant impairments, considers ii) the modeling of confounds
arising through participant demographics, and implements iii) data processing
steps to quantitatively evaluate metrics based on the most important clinimet-
ric properties (discriminant validity, structural validity, test-retest reliability,
measurement error, and learning effects). Herein, we present this framework
in the context of a use-case with the Virtual Peg Insertion Test (VPIT), an
instrumented assessment of upper limb sensorimotor impairments consisting of
a goal-directed manipulation task in a virtual environment [29-34]. For this
purpose, 77 kinematic and kinetic metrics were extracted from VPIT data from
a cohort of neurologically intact and affected subjects (stroke, MS, and hered-
itary ataxia). We hypothesized that the presented methodology would be able
to reduce a large set of metrics to a core set with optimal clinimetric properties
that allows assessing the severity of the targeted impairments in a robust and
insightful manner.

Targeting this objective is important, as the proposed data-driven frame-
work can easily be applied to metrics gathered with other digital health tech-
nologies. This will help addressing the lacking evaluation, standardization, and
interpretability of digital health metrics, a necessary step to address their still
limited clinical relevance [19,20,35]. Further, the presented use-case establishes
a validated core set of metrics for the VPIT, paving the way for its integration
into clinical trials in neurorehabilitation.

2 Methods

To objectively reduce a large set of digital health metrics to a clinically-relevant
subset, we implemented a three-step process (Figure 1) considering the most
important statistical requirements to sensitively and robustly monitor impair-
ments in a longitudinal manner. These requirements were inspired from the
COSMIN guidelines for judging the quality of metrics based on systematic re-
views and related work on digital health metrics [13,22,36-38]. Further, two
additional validation steps were implemented to improve the understanding of
the selected core metrics (Figure 1). While this selection and validation frame-
work is independent of a specific assessment platform (i.e., the initial set of
metrics to be evaluated), the manuscript defines the framework in the context
of the VPIT with the goal to provide specific instructions including a hands-on
example, starting from the initial motivation of metrics to the selection of a
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validated core set.

2.1 Virtual Peg Insertion Test

The VPIT is a digital health assessment combining a commercial haptic end-
effector (PHANTOM Omni/Touch, 3D Systems, CA, USA), a custom-made
handle with piezoresistive force sensors (CentoNewton40, EPFL, Switzerland),
and a virtual reality (VR) environment, implemented in C++ and OpenGL on
a Microsoft (Redmond, WA, USA) Windows laptop (Figure 1). The assessment
features a goal-directed pick-and-place task that requires arm and hand move-
ments while actively lifting the arm against gravity, thereby combining elements
of the Nine Hole Peg Test (NHPT) and the Box and Block Test [39,40]. The VR
environment displays a rectangular board with nine cylindrical pegs and nine
corresponding holes arranged as a 3x3 matrix with the same dimensions as the
NHPT (31.1x26.0x4.3cm) [39]. The objective is to transport the virtual pegs
into the holes by controlling a cursor through the 6D-movements (3D-position
and 3D-angular orientation) of the haptic device, which provides up to 3.3N
of haptic feedback to render the virtual pegboard. A peg can be picked up by
aligning the position of a cursor with the peg (alignment tolerance: 3.0 mm) and
applying a grasping force above a 2N threshold. The peg needs to be trans-
ported towards a hole while maintaining a grasping force of at least 2 N, and can
be inserted in the hole by releasing the force below the threshold, once properly
aligned with a hole. The holes in the board of the VR environment are rendered
through reduced haptic impedance compared to other parts of the board. The
pegs cannot be picked up anymore upon insertion in a hole and are perceived as
transparent throughout the test (i.e., no collisions between pegs are possible).
The default color of the cursor is yellow and changes after spatially aligning
cursor and peg (orange), during the lifting of a peg (green), or after applying
a grasping force above the threshold while not being spatially aligned with the
peg (red). During the execution of the task, 6D-endpoint position, grasping
forces, and interaction forces with the VR environment are recorded at 1kHz.

2.2 Participants & procedures

The analysis presented in this work builds on data from different studies that
included assessments with the VPIT [30,41-43]. In addition, age-matched ref-
erence data was based on 120 neurologically intact subjects. Their handedness
was evaluated using the Edinburgh Handedness Inventory and potential stereo
vision deficits that might influence the perception of a virtual environment were
screened using the Lang stereo test [44]. Sixty of these subjects were further
tested a second time one to three days apart to evaluate test-retest reliability.
Additionally, 53 post-stroke subjects, 28 MS subjects, and 8 subjects with auto-
somal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) were tested.
Each subject was tested with the VPIT on both body sides if possible. The
administered conventional assessments were dependent on the disease and the
specific study. Commonly applied assessments were the Fugl-Meyer upper ex-
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tremity (FMA-UE) [9], the Nine Hole Peg Test (NHPT) [39], and the Action
Research Arm Test (ARAT) [45]. Detailed exclusion criteria and ethical ap-
proval references are listed in the supplementary material (SM). All subjects
gave informed written consent.

To perform the VPIT, participants were seated in a chair with backrest and
without armrests in front of a personal computer with the haptic device being
placed on the side of the tested limb. The initial position of the subjects (i.e.,
hand resting on the handle) was defined by a shoulder abduction angle of ~45°,
a shoulder flexion angle of ~10°, and an elbow flexion angle of ~90°. Subjects
were familiarized with the task and subsequently performed five repetitions (i.e.,
inserting all nine pegs five times) per body side. Participants were instructed
to perform the task as fast and accurately as possible.

2.3 Data preprocessing

Data preprocessing steps are required to optimize the quality of the sensor
data and dissect the complex recorded movement patterns into distinct move-
ment phases that can be related to specific sensorimotor impairments. First,
temporal gaps larger than 50 samples in the recorded position, force, and hap-
tic time-series were linearly interpolated. Such gaps can stem from a delayed
communication between the soft- and hardware components during the data
recordings. Subsequently, a 1D distance trajectory d(¢) was estimated from the
3D cartesian position trajectories p,, py, and p, by summing up their absolute
first time-derivatives until timepoint ¢:

d(t) = Y 1Pl + 1Byll + 1= (1)

Afterwards, velocity (first time-derivative) and jerk (third time-derivative)
signals were derived from d(t). Also, single grasping force and grip force rate
(first time-derivative) trajectories were generated by averaging across the signals
of the three piezoresistive sensors. All time-series were low-pass filtered initially
and after each derivation using a zero-phase Butterworth filter (4"¢ order, cut-
off frequency 8 Hz). Data from an entire peg were removed if it was dropped
and not inserted into a hole before another peg was picked up.

To isolate rapid ballistic movements, the trajectories of each peg were seg-
mented into the transport (i.e., ballistic movement while transporting the peg
to a hole) and return (i.e., ballistic movement while returning the cursor to the
next peg) phases (Figure SM1). The transport phase started at the last occasion
the velocity exceeded a threshold 0, ¢, after the peg was picked up and before
maximum velocity Umag,tp was reached. The threshold 6,e, was set to 10%
of Vpmaz,tp that occurred before the insertion of the peg into the next hole. The
end of the transport was defined as the first time the velocity dropped below
Ovel,tp after Vpmqqp. To ensure a robust segmentation, the transport phase of
a peg was discarded in case the peg was taken at vy,aqe.tp, the velocity never
dropped below yer,p after vpaz,ip before releasing the peg, or the length of the
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phase was below 0.1s. The same criteria were applied to segment the return
phase, which was defined as the main ballistic movement component between
releasing a peg and picking up the next peg, given the maximal velocity vmaz,rt
during return and 6,¢; +. For segmenting the transport and return phases, only
the horizontal component of d(t) was used [46].

To isolate the overshoot when reaching for a target as well as the precise
position adjustments related to virtual object manipulations, the trajectories
were additionally segmented into the peg approach and hole approach phases.
The former was defined from the end of the return until the next peg was picked
up. The latter was defined from the end of the transport until the current peg
was inserted into a hole.

Further, grasping forces were additionally segmented into the force buildup
(i.e., behaviour during the most rapid production of force) and force release
phases (i.e., behaviour during the most rapid release of force), by first identifying
the position of the maximum and minimum value in grip force rate between
approaching and inserting each peg (Figure SM1). Subsequently, the start and
end of the force buildup phase was defined as the last and first time the grip force
rate was below 10% of its maximum before and after the maximum, respectively.
Similarly, the start and end of the force release phase was determined based on
the last and first time the grip force rate was above 10% of its minimum value
before and after the minimum, respectively.

2.4 Pathophysiological motivation of digital health met-
rics

To facilitate the pathophysiological interpretation of sensor-based metrics for
each use-case, it is of importance to describe the mechanisms underlying a spe-
cific disease, their effect on the assessed behavioral construct, and how met-
rics are expected to capture these abnormalities. Within the use-case of the
VPIT, this pathophysiological motivation is implemented using the computa-
tion, anatomy, and physiology model as well as the clinical syndromes ataxia
and paresis that are commonly present in neurological disorders [47,48]. Lever-
aging these concepts allows to especially connect how inappropriately scaled
motor commands and an inability to voluntarily activate spinal motor neurons
affect upper limb movement behaviour. As the VPIT strives to capture multiple
heterogeneous and clinically-relevant sensorimotor deficits, a variety of different
movement characteristics were defined to describe commonly observed upper
limb sensorimotor impairments in neurological disorders. Subsequently, an ini-
tial set of 77 metrics (Table 1 and 2) for the VPIT were proposed with the
aim to describe these movement characteristics and the associated sensorimotor
impairments. These metrics were preselected based on the available sensor data
(i.e., end-effector kinematic, kinetics, and haptic interactions), recent system-
atic literature reviews as well as evidence-based recommendations [13,21,49],
and the technical and clinical experience of the authors.
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2.4.1 Movement smoothness

Goal-directed movements are executed by translating parameters such as tar-
get distance into neural commands of certain amplitude, which are transferred
to peripheral muscles performing a movement [50]. The signals’ amplitudes
are chosen to minimize movement endpoint variance, which leads to smooth
behaviour (i.e., bell-shaped velocity trajectories) [51]. These velocity trajec-
tories can be modeled using a superposition of submovements and minimize
the magnitude of the jerk trajectory [52]. In neurological subjects, more sub-
movements with increased temporal shift and higher jerk magnitudes have been
observed [53,54], potentially due to disrupted feedforward control mechanisms.
The temporal shift between subcomponents and the jerk magnitude was shown
to reduce after receiving rehabilitation therapy [53], thereby highlighting their
relevance to track recovery. We used the integrated jerk (referred to as jerk)
normalized with respect to movement duration and length leading to a dimen-
sionless metric to represent the intrinsic minimization of jerk [53]. The same
metric was used with an additionally applied log transformation (log jerk) [55].
Additionally, the spectral arc length (i.e., metric describing spectral energy con-
tent) of the velocity trajectory should reflect the energy induced by jerky move-
ments [55,56]. Further, the number of peaks in the velocity profile (number of
velocity peaks; MATLAB function findpeaks) was established as an inidicator
for the number of submovements. Lastly, we calculated the time (time to maz.
velocity) and distance (distance to max. velocity) covered at peak velocity nor-
malized with respect to the totally covered distance and time, respectively, to
captures deviation from the typically observed bell-shaped velocity profile [57].
We calculated these metrics separately for transport and return as the transport
requires precise grip force control, which could further affect feedforward control
mechanisms.

2.4.2 Movement efficiency

Ballistic movements in healthy subjects tend to follow a trajectory similar to
the shortest path between start and target [58]. Previous studies suggested that
neurologically affected subjects instead perform movements less close to the
optimal trajectory compared to healthy controls [59] and that this behaviour
correlates with impairment severity, as measured by the FMA-UE [60]. This
suboptimal movement efficiency results in general from abnormal sensorimo-
tor control, for example due to from erroneous state estimates for feedforward
control, abnormal muscle synergy patterns (e.g., during shoulder flexion and
abduction), weakness, and missing proprioceptive cues [47,59,61]. We used the
path length ratio (i.e., shortest possible distance divided by the actually covered
distance) to represent inefficient movements [59]. Additionally, the throughput
(ratio of target distance and target width divided by movement time) was used
as an information theory-driven descriptor of movement efficiency [62,63]. The
metrics were extracted from the start of the transport phase until the current
peg was released and from the start of the return phase until the next peg was
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taken, as not only ballistic movements but also the endpoint error is of interest
when describing the efficiency of movements.

2.4.3 Movement curvature

While movement efficiency describes the overall deviation from the shortest
path, it does not account for the direction of the spatial deviation. This might,
however, be relevant to better discriminate abnormal feedfoward control from
flexor synergy pattern or weakness, as in the latter two cases the movements
might be especially performed closer to the body. We therefore selected five
additional metrics to analyze the spatial deviation from the optimal trajectory
in the horizontal plane [31,32]. The initial movement angle was defined as the
angular deviation between the actual and optimal trajectory [61]. As this metric
requires the definition of a specific timepoint in the trajectory to measure the
deviation, and as multiple approaches were used in literature [57,61,62,64], we
explored three different ways to define the timepoint. This included the time at
which 20% of the shortest distance between peg and hole was covered (initial
movement angle 61), the time at which 20% of the actually covered distance
between peg and hole was reached initial movement angle 05, and the time at
which peak velocity was achieved (initial movement angle 03). Additionally, the
mean and mazimal trajectory error with respect to the ideal, straight trajectory
were calculated. All metrics were estimated separately for transport and return.

2.4.4 Movement speed

The speed of ballistic movements in healthy subjects is mostly controlled by the
tradeoff between speed and accuracy as described by Fitt’s law, which is indi-
rectly imposed through the concept of velocity-dependent neural noise [51,63].
In neurologically affected subjects, increased speed can, for example, result from
inappropriately scaled motor commands and disrupted feedforward control [47].
On the other hand, reduced speed can also stem from weakness (i.e., reduced
ability to active spinal motor neurons leading to decreased strength) or spastic-
ity (i.e., velocity-dependent increase in muscle tone), the latter resulting from
upper motor neuron lesions, abnormally modulated activity in the supraspinal
pathways, and thereby increased hyperexcitability of stretch reflexes [47, 65].
We calculated the mean (velocity mean) and maximum (velocity maz.) values
of the velocity trajectory to represent movement speed during the transport and
return phases.

2.4.5 Endpoint error

To fully characterize the speed-accuracy tradeoff, we additionally analyzed the
position error at the end of a movement. In neurological disorders, increased
endpoint error (i.e., dysmetria) was commonly observed and can, for example,
result from inappropriately scaled motor commands and thereby disrupted feed-
forward control [66,67], but also from cognitive and proprioceptive deficits [68].
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Dysmetria was found especially in post-stroke subjects with lateral-posterior
thalamic lesions [68], is a common manifestation of intention tremor in MS [69],
and is typically observed in subjects with cerebellar ataxia [70]. In the VPIT,
the cumulative horizontal Euclidean distance between the cursor position and
targeted peg or hole (position error) were calculated during the peg approach
and hole approach phases, respectively. Further, the jerk, log jerk, and spectral
arc length metrics were calculated during both phases, as a jerk index was shown
previously to correlate with the severity of intention tremor in MS [71].

2.4.6 Haptic collisions

Haptic collisions describe the interaction forces between a subject and the vir-
tual pegboard rendered through the haptic device. Haptic guidance can be
used to ease inserting the virtual pegs into the holes, which have reduced
haptic impedance. Previous studies indicated increased haptic collision forces
in multiple neurological disorders and especially stroke subjects with sensory
deficits [29,72]. We additionally expected that collision forces during transport
and return (i.e., phases during which haptic guidance is not required) could be
increased due to arm weakness. In particular, neurological subjects can have a
limited capability to lift their arm against gravity, leading to increased vertical
haptic collisions [73]. The mean and max. vertical collision force (haptic col-
lisions mean and haptic collisions maz.) was calculated during ¢ransport and
return to quantify haptic collision behaviour.

2.4.7 Number of successful movements

Subjects without neurological deficits can start and end goal-directed move-
ments with ease. On the contrary, persons with neurological disorders can have
a reduced ability to initiate and terminate ballistic movements with potentially
heterogeneous underlying impairments including abnormal feedforward control,
sensory feedback, spasticity, weakness, and fatigue [13,47,57]. Therefore, the
metric number of movement onsets was defined based on the number of valid
pegs, using the defined segmentation algorithm, when identifying the start of the
transport and return phases. Analogously, number of movement ends was based
on the sum of correctly segmented ends for the transport and return phases.

2.4.8 Object drops

Neurologically intact subjects can precisely coordinate arm movements and fin-
ger forces to transport objects. This ability can be reduced in neurological dis-
orders and can potentially lead to the drop of an object during its transport [74].
Underlying mechanisms include for example distorted force control due to incor-
rectly scaled motor commands or distorted sensory feedback as well as reduced
spatio-temporal coordination between arm and hand movements [47,74]. In the
VPIT, the number of virtual pegs that were dropped (dropped pegs) should rep-
resent object drops and thereby grip force control as well as the spatio-temporal
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coordination of arm and hand movements. The metric was defined based on
how often the grasping force dropped below a 2N threshold (i.e., subjects still
holding the handle) while lifting a virtual peg [32].

2.4.9 Grip force scaling and coordination

The precise scaling and spatio-temporal coordination of grasping forces is a key
requirement for successful object manipulation and leads, in neurologically in-
tact subjects, to single-peaked bell-shaped grip force rate profiles when starting
to grasp objects [75]. Abnormal grip force scaling and decreased grip force coor-
dination have been reported in neurological subjects, resulting in multi-peaked
grip force rate profiles, and were attributed to, for example, distorted feedfor-
ward control, abnormal somatosensory feedback and processing, as well as the
presence of the pathological flexor synergy [75-82]. Also, a reduction in applied
grip force levels due to weakness can be expected depending on the neurological
profile of a subject [47]. Further, a slowness of force buildup [77] and force re-
lease [78] has been reported, even though other studies showed that the ability
to produce and maintain submaximal grip forces was preserved [74,78]. Addi-
tionally, there is evidence suggesting that force buildup and force release have
different neural mechanisms and that force control can further be decomposed
into force scaling and motor coordination [78,79].

To describe grip force scaling, we applied four metrics separately to the
transport, return, peg approach, and hole approach phases. We calculated the
mean (grip force mean) and maximum (grip force maz.) value of the grasping
force signal during each phase. Additionally, we estimated the mean absolute
value (grip force rate mean) and absolute maximum (grip force rate maz.) of the
grip force rate time-series. Similarly, we characterized grip force coordination
during the transport, return, peg approach, hole approach, force buildup and
force release phases, for which we calculated the number of positive and nega-
tive extrema (grip force rate number of peaks) and the spectral arc length (grip
force rate spectral arc length). For the force buildup and force release phases,
which contain only the segments of most rapid force generation and release,
respectively, we additionally calculated their duration (force buildup/release du-
ration).

2.4.10 Overall disability

A single indicator expected to describe the subject-specific overall disability
level was defined based on the task completion time (i.e., duration from first
transport phase until insertion of last peg).

2.5 Data postprocessing

To reduce the influence of intra-subject variability, the grand median across
pegs and repetitions was computed for each metric. Subsequently, the influence
of possible confounds, which emerge from subject demographics not related to
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neurological disorders, was modeled based on data from all neurologically intact
subjects. This should allow to compensate for these factors when analyzing data
from neurologically affected subjects. In more detail, the impact of age (in yrs),
sex (male or female), tested body side (left or right), and handedness (perform-
ing the test with the dominant side: true or false) were used as fixed effects (i.e.,
one model slope parameter per independent variable) in a linear mixed effect
model generated for each sensor-based metric [83]. Additionally, the presence of
stereo vision deficits (true or false) was used as a fixed effect, as the perception
of depth in the VR environments might influence task performance [84,85]. A
subject-specific random effect (i.e., one model intercept parameter per subject)
was added to account for intra-subject correlations arising from including both
tested body sides for each subject. A Box-Cox transformation was applied on
each metric to correct for heteroscedasticity, as subjectively perceived through
non-normally distributed model residuals in quantile-quantile plots [86]. Addi-
tionally, this transformation allows to capture non-linear effects with the linear
models. The models were fitted using maximum likelihood estimation (MAT-
LAB function fitlme) and defined as:

y;’j}t‘m = Bio + Bi1age; + Bi2sex; + B 3 tested body side;+
Bi,a handedness; + ;5 stereo vision deficits; + W; ; + €,

(2)

where:  y{"f*“*  value of a metric i of neurologically intact subject j
B; model parameters
Wi subject-specific intercept
€; residual error.

For any subject being analyzed, the effect of all confounds on the sensor-
based metric was removed based on the fitted models. This generated the value
¥i,; of a metric without confounds arising from subject demographics:

Uij = Yij — Bi1age; — Piz2sex; — P 3 tested body side;— 3)
Bi,4 handedness; — f; 5 stereo vision deficits;.

Furthermore, the corrected values g; ; were then expressed relative to all neuro-

logically intact subjects (g,""*“!) with the goal to standardize the range of all

metrics, which simplifies their physiological interpretation and enables the direct

comparison of different metrics. Therefore, the normalized value g; ; was defined

relative to the median and variability d; of all neurologically intact subjects:
¥i,j — median (g;ee)
dl )

(4)

Yij =

with the median absolute deviation (MAD) of all neurologically intact subjects
being used as a variability measure [87]:

d; = median (Hyi?tad — median (?immd') H) ; (5)

The MAD was preferred over the standard deviation, as the former allows a
more robust analysis that is independent of the underlying distribution of a
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metric [87]. Lastly, the values g; ; were divided by the maximal observed value
in the included neurological population, such that the subject currently showing
worst task-performance receives a score of 100%. In order to discriminate normal
from abnormal behaviour based on the normalized values, a cut-off was defined
based on the 95" percentile (i.e., imposed false positive detection rate of 5%)

of each metric 7%t across all neurologically intact subjects.

2.6 Data-driven selection and validation of sensor-based
metrics

The sensor-based metrics were reduced to a subset with optimal clinimetric
properties based on three selection steps, followed by two additional validation
steps. To evaluate the ability of this selection process to discriminate between
physiologically-relevant information and random noise, the selection steps were
additionally applied to a simulated random metric (simulated Gaussian noise)
containing no physiologically relevant information. This metric was constructed
by randomly drawing data from a log-normal distribution (mean 46.0, standard
deviation 32.2, mimicking the distribution of the total time for the reference
population) for each subject and tested body side.

Metric selection & validation: step 1

With the goal to better understand the influence of subject demographics on the
sensor-based metric, simulated likelihood ratio tests (1000 iterations) between
the full model and a reduced model without the fixed effect of interest were used
to generate p-values that were interpreted based on a 5% significance level [88].
This allowed to judge whether a fixed effect influenced the sensor-based metric
in a statistically significant manner. We removed metrics that were significantly
influenced by stereo vision deficits, as we expected that the influence of stereo
vision deficits can not always be compensated for, for example if their presence
is not screened in a clinical setting.

As the performance of the presented confound correction process depends
on the fit of the model to the data, we additionally removed metrics with low
model quality according to the criteria C'1 and C2, which describe the mean
absolute estimation error (MAE) of the models and its variability [89]:

MAE;
cl,: ———* < 15% (6)
range (yzntact)
and MAE; +3
02, ——— 2% <959 (7)
range (y;n tac )
where: MAFE = % > “eﬁ"tQCt"
n = number of data points from neurologically intact subjects
o —sta (Jee]
std = standard deviation.
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Fulfilling both criteria leads to the selection of models with moderate and good
quality according to the definition of Roy et al. [89]. Before the calculation of
C1 and C2, data points with the 5% highest residuals were removed [89]. The
criteria C1 and C2 were preferred over the more commonly used coefficient of
determination R?, because the magnitude of this metric is highly dependent on
the distribution of the dependent variable, which prohibits the definition of a
model quality threshold that is valid across metrics [89,90].

Metric selection & validation: step 2

Receiver operating characteristic (ROC) analysis was used to judge the potential
of a metric to discriminate between neurologically intact and affected subjects,
which is a fundamental requirement to validate that the proposed metrics are
sensitive to sensorimotor impairments [22,91]. In more detail, a threshold was
applied for each metric to classify subjects as being either neurologically intact
or impaired. The threshold was varied across the range of all observed values for
each metric and the true positive rate (number of subjects correctly classified
as neurologically affected divided by the total number of neurologically affected
subjects) and false positive rate (number of subjects incorrectly classified as
neurologically affected divided by the total number of neurologically intact sub-
jects) were calculated. The area under the curve (AUC) when plotting true
positive rates against false positive rates was used as a quality criterion for each
metric (Figure 2).

For metrics to be responsive to intervention-induced physiological changes
and allow a meaningful tracking of longitudinal changes, it is fundamental to
have low intra-subject variability, high inter-subject variability, and yield re-
peatable values across a test-retest sessions. Therefore, the data set with 60
neurologically intact subjects performing the VPIT protocol on two separate
testing days was used to quantify test-retest reliability. Specifically, the intra-
class correlation coefficient (ICC) was calculated to describe the ability of a
metric to discriminate between subjects across multiple testing days (i.e., inter-
subject variability) [92,93]. The agreement ICC based on a two-way analysis of
variance (ICC A k) was applied while pooling data across both tested body sides.
Further, the smallest real difference (SRD) was used to define a range of val-
ues for that the assessment cannot distinguish between measurement error and
an actual change in the underlying physiological construct (i.e., intra-subject
variability) [94]. For each metric 4, the SRD was defined as

SRD; = 1.96- /2 xintect .\ /1 — ICC; (8)

where: Y; = std across repetitions, subjects, and testing days.

To directly relate the SRD to the distribution of a metric, it was further
expressed relative to a metrics’ range:
SRD;

D%; =100 - ——F—.
SR %l 00 range (gz@ntact)

(9)
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Lastly, to distinguish task-related learning from physiological changes when
testing subjects before and after receiving an intervention, the presence and
strength of learning effects was calculated for each metric. For this purpose, a
paired t-test was performed between data collected at test- and retest to check
for a statistically significant difference between the days. Then, the strength
(i.e., slope) of the learning effect was estimated by calculating the mean differ-
ence between test and retest and normalizing it with respect to the range of

observed values:

mean (Aintact ~intact )

yi,j,ret(zst - yi,j,test

i = 100 (10)

range (gzintact)

Metrics passed this second selection step if the AUC did indicate acceptable,
excellent, or outstanding discriminant ability (AUC>0.7) and they had at least
acceptable reliability (i.e., ICC values above 0.7) [22,91]. As no cutoff has been
defined for the interpretation of the SRD% [95], we removed the metrics that
had the 20% worst SRD% values. Hence, metric passed the evaluation (i.e.,
small measurement error relative to other metrics) if the SRD% was below 30.3
(80*"-percentile). Similarly, no cutoff for the interpretation of learning effects
was available. Hence, metrics passed the evaluation (i.e., no strong learning
effects) if 7 was above -6.35 (20""-percentile) of observed values.

Metric selection & validation: step 3

The correlations between the metrics were analyzed with the goal to identify
a set of metrics that contains little redundant information to simplify clinical
interpretability. Therefore, a correlation matrix was constructed using partial
Spearman correlations. This technique allows to describe the relation between
two metrics and to simultaneously model all other metrics that could poten-
tially influence the relationship between the two metrics of interest [96, 97].
Hence, this approach can help to exclude certain non-causal correlations. A
pair of metrics with an absolute partial correlation p, of at least 0.5 was con-
sidered for removal [98]. From this pair of metric, the one that had inferior
psychometric properties (AUC, ICC, and SRD%) or was less accepted in lit-
erature was removed. To simplify the interpretation of the correlation results,
we applied the analysis only to metrics that passed all previous selection steps.
Additionally, this analysis was applied in an iterative manner, as the removal of
certain metrics, which were previously modeled, can change the remaining inter-
correlations. The correlation coefficients were interpreted according to Hinkle
et al.: very high: p, >0.9; high: 0.7< p, <0.9; moderate: 0.5< p, <0.7; low:
0.3< p, <0.5; very low: p, <0.3 [98].

Further validation of metrics: step 1

To better identify the pathophysiological correlates of the metrics that passed
all previous evaluation steps, exploratory factor analysis was applied [99-101].
This method tries to associate the variability observed in all metrics with &
unobserved latent variables via factor loadings, which can be interpreted in light
of the initial physiological motivation of the metrics. Exploratory factor analysis
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was implemented using maximum likelihood common factor analysis followed by
a promaz rotation (MATLAB function factoran). For the interpretation of the
emerged latent space, we only considered strong (absolute value>0.5) factor
loadings [99]. The number of factors k was estimated in a data-driven manner
using parallel analysis (R function fa.parallel) [102]. This approach simulates a
lower bound that needs to be fulfilled by the eigenvalue associated to each factor
and has been shown to be advantageous compared to other more commonly used
criteria, such as the Kaiser condition (i.e., eigenvalues>1 are retained) [100,101].
Also, the Kaiser-Meyer-Olkin value (KMO) was calculated to evaluate whether
the data was mathematically suitable for the factor analysis.

Further validation of metrics: step 2

An additional clinically-relevant validation step evaluated the ability of the met-
rics to capture the severity of upper limb disability. For this purpose, each pop-
ulation was grouped according to their disability level as defined by commonly
used clinical scores. Subsequently, the behaviour of the metrics across the sub-
populations and the reference population were statistically analyzed. Stroke sub-
jects were grouped according to the FMA-UE score (ceiling: FMA-UE=66; mild
impairment: 54<FMA-UE<66; moderate impairment: 35<FMA-UE<54) [103].
MS subjects were split into three groups based on their ARAT score (full
capacity: 55<ARAT<57; notable capacity: 43<ARAT<55; limited capacity:
22<ARAT<43) [104]. ARSACS subjects were divided into three different age-
groups (young: 26<age<36; mid-age: 37<age<47; older-age: 48<age<58) due
to the neurodegenerative nature of the disease [4]. A Kruskal-Wallis omnibus
test followed by post-hoc tests (MATLAB functions kruskalwallis and mult-
compare) were applied to check for statistically significant differences between
groups. Bonferroni corrections were applied in both cases.

3 Results

Data from 120 neurologically intact subjects of age 51.1 [34.6, 65.6] yrs (median
[25th-percentile, 75"-percentile]; 60 male; 107 right hand dominant; 12 with
stereo vision deficits) was acquired with 60 of them performing a test-retest
session (age 48.8 [40.2, 60.2]; 34 male; 48 right hand dominant; time between
sessions 5.0 [4.0, 6.5] days). Eighty-nine neurologically affected subjects (53
post-stroke with affected side FMA-UE 57 [49, 65], 28 MS with ARAT 52.0 [46.5,
56.0], 8 ARSACS with NHPT 43.5 [33.1, 58.7] s) were used for the selection
and validation of the metrics. Their age was 56.2 [42.1, 65.3] yrs, 52 were
male, 75 were right hand dominant, and for 35 stroke subjects, the right body
side was most affected. In total, data from 43350 individual movements were
recorded. Detailed demographic and the available clinical information for each
neurologically affected subject can be found in Table SM1.

Selection of metrics: step 1
The influence of all potential confounds and the model quality for each sensor-
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Table 1: Results for the data-driven selection of kinematic metrics.
The area under the curve (AUC, optimum at 1), intraclass correlation coeffi-
cient (ICC, optimum at 1), the smallest real difference (SRD%, optimum at 0),
and 7 value (optimum at 0, worst at — inf) were used to describe discriminative
validity, test-retest reliability, measurement error, and learning effects, respec-
tively. Metrics in bold fulfilled all evaluation criteria (AUC>0.7, ICC>0.7,
SRD%<30.3, and 1 >-6.35). Metrics with insufficient model quality accord-
ing to selection step 1 are annotated with a 1 and reported for completeness.
mov: movement; TP: transport; RT: return; SPARC: spectral arc length; num:

number.
Movement characteristic Sensor-based metric Validity: AUC Reliability: ICC Error: SRD% Learning: n
Mov. smoothness TP Jerk TP 0.80 0.69 23.10 -4.41
Log jerk TP 0.78 0.74 26.11 -4.82
SPARC TPf 0.84 0.83 23.78 -7.16
Num. velocity peaks TPt 0.82 0.79 21.30 -6.36
Distance to max. velocity TP 0.44 0.74 33.64 2.42
Time to max. velocity TP 0.45 0.78 28.70 3.93
Mov. smoothness RT Jerk RT 0.84 0.68 20.83 -4.70
Log jerk RT 0.73 0.75 25.33 -6.08
SPARC RT 0.71 0.76 28.93 -1.57
Num. velocity peaks RTT 0.76 0.70 23.27 -3.28
Distance to max. velocity RT 0.43 0.65 41.39 3.67
Time to max. velocity RT 0.48 0.73 33.99 2.43
Mov. efficiency TP Path length ratio TP 0.89 0.76 24.24 -2.17
Throughput TP* 0.92 0.81 24.07 -12.18
Mov. efficiency RT Path length ratio RT 0.83 0.79 17.30 -3.61
Throughput RT 0.90 0.78 27.43 -13.21
Mov. curvature TP Trajectory error mean TP 0.55 0.86 17.14 -0.60
Trajectory error max. TP 0.57 0.86 15.84 -0.37
Initial mov. angle TP ;" 0.67 0.90 13.56 -1.50
Initial mov. angle TP 6,f 0.67 0.90 13.29 -1.52
Initial mov. angle TP 63 0.61 0.88 14.37 -2.06
Mov. curvature RT Trajectory error mean RT 0.56 0.84 20.00 1.24
Trajectory error max. RT 0.55 0.84 18.58 1.22
Initial mov. angle RT 6, 0.51 0.75 33.90 3.18
Initial mov. angle RT 6, 0.51 0.71 28.65 2.92
Initial mov. angle RT 63 0.60 0.79 23.99 1.53
Mov. speed TP Velocity mean TP 0.83 0.88 20.61 -9.99
Velocity max. TP 0.83 0.87 18.57 -9.14
Mov. speed RT Velocity mean RT 0.75 0.87 19.01 -7.60
Velocity max. RT 0.76 0.86 19.41 -6.27
Endpoint error peg approach — Position error peg approach 0.86 0.64 29.54 -4.66
Jerk peg approach 0.74 0.72 27.65 -2.94
Log jerk peg approach 0.69 0.75 30.20 -8.36
SPARC peg approach 0.78 0.64 46.55 -10.29
Endpoint error hole approach  Position error hole approach 0.94 0.76 31.29 -5.36
Jerk hole approach 0.57 0.68 30.63 -4.84
Log jerk hole approach 0.66 0.83 23.25 -6.53
SPARC hole approach 0.86 0.81 24.81 -5.72
Haptic collisions TP Haptic collisions mean TP 0.61 0.85 24.55 -3.99
Haptic collisions max. TP 0.63 0.84 20.54 -1.08
Haptic collisions RT Haptic collisions mean RT 0.61 0.72 25.32 -0.07
Haptic collisions max. RT* 0.46 0.79 27.02 4.37
Number of movements Number of mov. onsets 0.22 0.22 61.34 -0.82
Number of mov. ends 0.09 0.29 57.01 0.00
Object drops Number of dropped pegs 0.65 0.50 41.11 -3.20
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Table 2: Results for the data-driven selection of kinetic metrics. The
area under the curve (AUC, optimum at 1), intraclass correlation coefficient
(ICC, optimum at 1), the smallest real difference (SRD%, optimum at 0), and 7
value (optimum at 0, worst at — inf) were used to describe discriminative valid-
ity, test-retest reliability, measurement error, and learning effects, respectively.
The task completion time and the simulated Gaussian noise metrics were eval-
uated in addition to the kinetic metrics. Rows in bold fulfilled all evaluation
criteria (AUC>0.7, ICC>0.7, SRD%<30.3, and 1 >-6.35). Metrics with insuf-
ficient model quality according to selection step 1 are annotated with a T and
reported for completeness. GF: grip force; TP: transport; RT: return; SPARC:
spectral arc length; num: number.

Movement characteristic Sensor-based metric Validity: AUC Reliability: ICC Error: SRD% Learning: n
GF scaling TP GF mean TP 0.40 0.84 14.46 0.39
GF max. TP 0.40 0.86 15.19 0.07
GF rate mean TP 0.25 0.87 12.14 2.07
GF rate max. TP 0.25 0.79 20.53 3.93
GF scaling RT GF mean RT 0.49 0.76 27.62 0.17
GF max. RT 0.45 0.66 37.61 2.80
GF rate mean RT 0.07 0.82 27.79 5.87
GF rate max. RT 0.29 0.48 34.05 7.19
GF scaling peg approach GF mean peg approach 0.45 0.83 18.09 1.10
GF max. peg approach 0.39 0.84 19.40 -0.72
GF rate mean peg approach 0.18 0.88 14.76 3.54
GF rate max. peg approach 0.32 0.84 19.52 0.74
GF scaling hole approach GF mean hole approach 0.36 0.81 15.34 0.76
GF max. hole approach 0.37 0.82 16.43 0.50
GF rate mean hole approach 0.15 0.82 14.18 2.73
GF rate max. hole approach 0.28 0.77 21.41 1.82
GF coord. TP GF rate num. peaks TP 0.74 0.81 20.59 -6.11
GF rate SPARC TP 0.74 0.82 22.48 -5.71
GF coord. RT GF rate num. peaks RT 0.60 0.83 20.17 -4.16
GF rate SPARC RT 0.64 0.78 23.81 -6.35
GF coord. peg approach GF rate num. peaks peg approach 0.90 0.78 25.60 -12.25
GF rate SPARC peg approach 0.90 0.83 22.99 -8.19
GF coord. hole approach GF rate num. peaks hole approach 0.91 0.81 24.29 -6.14
GF rate SPARC hole approach 0.84 0.82 26.38 -5.94
GF coord. buildup GF rate num. peaks buildup' 0.15 0.44 57.70 0.77
GF rate SPARC buildup® 0.56 0.79 28.62 -3.22
GF buildup duration 0.70 0.82 21.36 -6.97
GF coord. release GF rate num. peaks releasel 0.44 0.48 56.80 1.78
GF rate SPARC release 0.91 0.86 18.63 -6.78
GF release duration 0.67 0.81 21.63 -2.78
Overall disability Task completion time 0.91 0.78 26.16 -11.34
Simulated Gaussian noise 0.37 -0.07 117.04 0.25
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based metric including p-values can be found in Table SM2 (example in Fig-
ure 2). For all metrics, 69.7%, 44.7%, 27.6%, 6.6%, and 7.9% were significantly
influenced by age, sex, tested side, hand dominance, and stereo vision deficits,
respectively. In more detail, initial movement angle transport 61, 02, 03, num-
ber of movement ends, number of dropped pegs, grip force rate number of peaks
buildup were the metrics being altered by stereo vision deficits. The required
quality of the models, according to the C1 and C2 criteria, were not fulfilled by
thirteen (16.9%) of all metrics (including the simulated Gaussian noise, see SM
for a detailed list).

Selection of metrics: step 2

Thirteen (16.9%) out of 77 metrics fulfilled the criteria of the validity, reliability,
measurement error, and learning analysis (Figure 2, Table 1, and Table 2). The
median AUC, ICC, SRD%, and n values of the 12 metrics that passed step 1
and step 2 were 0.77 [0.74, 0.85], and 0.80 [0.75, 0.82], 24.6 [21.5, 26.2], and
-5.72 [-6.09, -3.27] respectively. The simulated Gaussian noise metric did not
pass this evaluation step (AUC 0.37, ICC -0.07, SRD% 117.04, n 0.25).

Selection of metrics: step 3

The constructed partial correlation matrices can be found in Figure 3. Among
the remaining metrics, grip force rate number of peaks hole approach was re-
moved as it correlated (p, > 0.5) with grip force rate spectral arc length approach
hole and the latter metric is less influenced through confounds as it is indepen-
dent of movement distance. Additionally, spectral arc length hole approach was
discarded as it correlated with grip force rate spectral arc length hole approach
and the latter metric is more directly related to hand function, which was not
yet well covered by the other metrics. The remaining 10 metrics yielded abso-
lute partial inter-correlations of 0.14 [0.06 0.24] (zero very high, zero high, zero
moderate, six low, and 39 very low inter-correlations).

Further validation of metrics: step 1

The Kaiser-Meyer-Olkin value was 0.82, which indicated that the application of
the factor analysis was suitable [105,106]. According to the parallel analysis,
the most likely number of underlying latent factors k& was five (Figure SM2).
The factor loadings can be found in Table 3. The metrics path length ratio
transport/return and jerk peg approach had strong loadings on factor 1. The
metrics log jerk transport, log jerk return, and spectral arc length return loaded
strongly on factor 2. The metrics grip force rate number of peaks transport
and grip force rate spectral arc length transport had strong loadings on factor
3, whereas welocity maz. return and grip force rate spectral arc length hole
approach loaded strongly on factor 4 and 5, respectively.

Further validation of metrics: step 2
The behaviour of all metrics across subject subpopulations with increasing dis-
ability level can be found in Figure 4, 5, and 6. All metrics indicated statistically
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Table 3: Structural validity: exploratory factor analysis. Loadings of
metrics on underlying latent factors extracted with exploratory factor analysis.
The interpretation of each metric was physiologically motivated initially. Larger
absolute loadings indicate a stronger contribution to a factor. Bold font indicate
strong loadings (i.e., absolute loading of at least 0.5). Abbreviations: F1-5:
data-driven latent factors. GF: grip force; coord: coordination; num: number;
SPARC: spectral arc length.

Expected interpretation Sensor-based metric F1 F2 F3 F4 F5
Movement smoothness transport  Log jerk transport 0.09 0.73 021 -0.19 -0.05
Movement smoothness return Log jerk return -0.08 0.86 -0.11 0.02 0.02
SPARC return 0.10 0.59 -0.10 0.23 -0.03
Movement efficiency transport Path length ratio transport 0.83 0.08 -0.17 0.06 0.11
Movement efficiency return Path length ratio return 0.79 -0.06 0.08 -0.14 0.04
Movement speed transport Velocity max. return -0.02 0.01 016 0.90 0.01
Endpoint error peg approach Jerk peg approach 0.72 -0.04 0.12 0.07 -0.14
GF coord. transport GF num. peaks transport 0.00 -0.06 0.93 0.11 -0.03
GF rate SPARC transport -0.08 0.19 0.62 0.00 0.11
GF coord. hole approach GF rate SPARC hole approach 0.11 -0.02 0.02 0.01 0.94

significant differences between the neurologically intact and at least one of the
neurologically affected subpopulations for each disorder, with the exception of
jerk peg approach in MS subjects. Additionally, significant differences between
subpopulations were found for log jerk transport in stroke subjects. Consis-
tent trends (i.e., monotonically increasing medians across subpopulations) were
found for all metrics except for spectral arc length return, force rate spectral arc
length approach hole, and force rate num. peaks approach hole.

4 Discussion

In this work, we aimed to propose and apply a data-driven framework to select
and validate digital health metrics, with the objective to facilitate their still lack-
ing clinical integration. The approach considers i) the targeted impairments, ii)
the influence of participant demographics, and iii) important clinimetric proper-
ties. As an example use-case, we implemented this framework with 77 kinematic
and kinetic metrics extracted from the VPIT, a previously proposed sensor-
based assessment of arm and hand sensorimotor impairments. For this purpose,
the VPIT was administered to 120 neurologically intact and 89 neurologically
affected subjects, yielding data from 43350 individual movements.

This objective methodology to identify a core set of validated metrics based
on pathophysiological hypotheses and quantitative selection criteria can com-
plement currently applied paradigms for selecting digital health metrics [17,24—
28,38]. While consensus-based recommendations from groups of experts are in-
dispensable for constructing high-level hypothesis (e.g., which body functions to
assess in a given context), the selection of specific sensor-based metrics should
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solely be implemented based on objective and data-driven evaluation criteria to
avoid selection bias. Also, guidelines to pool data within systematic reviews,
often intended for the selection of conventional assessments, need to be consid-
ered carefully in the context of digital health metrics. Compared to conventional
assessments that often provide a single, intuitively understandable, task-specific
metric (e.g., FMA-UE score), a plethora of abstract digital health metrics exists
and the same metric (e.g., log jerk) can be extracted from all technologies shar-
ing similar sensor data. However, for a meaningful interpretation of sensor-based
metrics, it is essential to consider them in light of the assessment context, as data
processing steps (e.g., filter design), assessment platform type (e.g., end-effector
or camera-based system), task type (e.g,. goal-directed or explorative move-
ments), and target population (e.g, neurological or muscoskeletal impairments)
strongly influences the anticipated hypotheses and clinimetric properties [13].
This emphasizes the importance of a validation of each metric in its specific con-
text (i.e., assessment platform, task, and target population). While objective
metric selection algorithms leveraging on the nowadays existing big data sets
are already well established in the machine learning domain (therein referred
to as feature selection algorithms) [24], these usually rely on accurate ground
truth (i.e., supervised learning) about the targeted impairment, which is un-
fortunately often not available in the healthcare domain. Hence, the proposed
approach should be seen as an unsupervised metric selection framework aimed
to provide a solid foundation of evidence that is required to better transfer
research findings into clinical healthcare environments [20, 35].

4.1 Specific methodological contributions

In line with literature [39,40,57], the mixed effect model analysis (Table SM2)
revealed that a high amount of all metrics were significantly modulated by age
(69.7% of all metrics) and sex (44.7%), whereas a more selective influence was
found for tested side (27.6%) and hand dominance (6.6%). For an accurate as-
sessment of sensorimotor disability without confounds, it is therefore essential
to account for these factors when comparing between neurologically intact and
affected subjects with different demographics. The presented analysis adds an
important methodological contribution to previous work that used linear mod-
els to compensate for confounds by additionally evaluating the quality of these
models [37,107-109]. This allowed to discard metrics for which the confounds
could not be accurately modeled (16.8% of all metrics). Especially metrics that
have mathematical support with two finite boundaries (e.g., 0% and 100%)
received low model quality, which can result from skewness and heteroscedastic-
ity that can not be corrected using variance-stabilizing transformations, such as
the Box-Cox method. Such metrics should therefore be considered carefully and
other modeling approaches, for example based on beta distributions, might be
required to accurately compensate for the effect of measurement confounds [110].

Eighty-three percent of all metrics (Table 1) were discarded through the sec-
ond selection step. It is fundamental to understand that these evaluation criteria
(AUC, ICC, SRD%, n) are complementary to each other, focusing on different
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components of intra-subject and inter-subject variability, which are all essen-
tial to sensitively monitor impairments. It is therefore not sufficient to solely
consider a subset of these criteria, as often done in literature. Evaluating the
validity of sensor-based metrics using a reference population and ROC analysis
is superior to the more commonly applied correlations with conventional scales
(concurrent validity) [21,22]. A reason for this is that sensor-based approaches
are being expected to provide complementary information to conventional scales
that improves upon their limitations, thereby challenging the definition of ac-
curate hypothesis about the correlation between conventional and sensor-based
scales. Nevertheless, comparisons between metrics and conventional scales can
help to better interpret sensor-based metrics or to test their sensitivity to im-
pairment severity, as attempted in the last validation step. This analysis was
not used as a criteria for metric selection as, to expect trends across subgroups,
each sensor-based metric would require a carefully selected clinical counterpart
that captures a similar physiological construct. Also, stepwise regression ap-
proaches that model conventional scales in order to select metrics have been
extensively applied even though they have been considered bad practice due to
statistical shortcomings [111-114].

Lastly, a simulated metric without relevant information content (simulated
Gaussian noise) was rejected in the first and second selection step, thereby
providing evidence that the framework allows to discard certain physiologically-
irrelevant metrics.

4.2 A core set of validated metrics for the VPIT

Applying the proposed framework, ten almost independent metrics (Table 3)
were identified as a validated core set for the VPIT and were able to reliably
assess the severity of multiple sensorimotor impairments in arm and hand for
subjects with mild to moderate disability levels (i.e., the target population of
the VPIT). These metrics were related to the movement characteristics smooth-
ness, efficiency, speed, endpoint error, and grip force coordination during specific
phases of the task (transport, return, peg approach, hole approach). While these
characteristics are generally expected to inform on abnormal feedforward con-
trol, impaired somatosensory feedback, increased muscle tone, abnormal flexor
synergies, dysmetria, and weakness, the clustering of the metrics into five factors
allows to further speculate about their interpretation (Table 3). The first fac-
tor was dominated by movement efficiency metrics (path length ratio transport
and return), and the jerk peg approach as a descriptor for the endpoint error
of a movement, thereby fully characterizing the speed-accuracy tradeoff that is
a typical characteristic of goal-directed movements [51,63]. The second factor
contained metrics focusing on movement quality (smoothness) during transport
and return, which is expected to describe impaired feedforward control of arm
movements. Hence, it is unlikely that the first factor also informs on feedforward
control. We therefore expect the movement efficiency metrics (first factor) to
be rather related to flexor synergy patterns, weakness, proprioceptive deficits,
and dysmetria. Among these impairments, weakness and proprioceptive deficits
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are most commonly observed in neurological disorders [2,115]. The third factor
focused on grip force coordination during transport (grip force rate num. peaks
transport and grip force rate spectral arc length transport), which is expected to
be related to abnormal feedforward control and impaired somatosensory feed-
back. The dissociation between factor one and three is interesting, as it suggests
different control schemes underlying the regulation of arm movements and grip
forces. A tight predictive coupling between the modulation of grip forces and
rapid arm movements has been reported in neurologically intact subjects [116].
The factor analysis suggests that this predictive coupling might possibly be
disrupted in neurologically affected subjects, potentially due to altered sensory
feedback (e.g., proprioception) leading to inaccurate predictive internal models
or abnormal neural transmission (e.g., corticospinal tract integrity) [47,50]. Re-
duced corticospinal tract integrity can also lead to weakness and could affect
movement speed, as described by factor four (velocity mazx. return) [47]. This
factor might further be influenced by an altered inhibition of the supraspinal
pathways, often resulting from upper motor neuron lesions, leading to increased
muscle tone and thereby altered movement speed [65]. Lastly, the fifth factor
covered grip force coordination during hole approach, thereby diverging from
the coordination of grip forces during gross movements (transport) as described
by factor 3 and focusing more on grip force coordination during precise position
adjustments. This suggests that the two phases are differently controlled, po-
tentially because the hole approach is more dominated by sensory and cognitive
feedback loops guiding the precise insertion of the peg, whereas gross move-
ments (transport) are more dominated through feedforward mechanisms [50].
Also, the physiological control origin of the two movement phases might differ,
as gross movements are expected to be orchestrated by the reticulospinal tract,
whereas precise control are more linked to the corticospinal tract [117].

Even though the task completion time did not pass the selection procedure
due to strong learning effects, one might still consider to report this metric
when using the VPIT in a cross-sectional manner as its intuitive interpretation
allows to give an insightful first indication about the overall level of impairment
that might potentially be interesting for both clinical personnel and the tested
patient.

The added clinical value of the VPIT core metrics compared to existing
conventional assessments is visible in Figure 4 and 5, as the former allowed
to detect sensorimotor impairments in certain subjects that did not show any
deficits according to the typically used conventional scales. Such a sensitive
identification of sensorimotor impairments might allow to provide evidence for
the potential of additional neurorehabilitation. Further, the identified core set
of metrics can efficiently inform on multiple impairments, both sensory and
motor, in arm and hand with a single task that can typically be performed
within 15 minutes. This advances the state-of-the-art that mainly focused on
the evaluation of arm movements [14, 57, 118], or required more complex or
time-consuming measurement setups (e.g., optical motion capture) to quantify
arm and hand movements while also neglecting grasping function [119]. Such
a fine-grained evaluation covering multiple sensorimotor impairments can help
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to stratify subjects into homogeneous groups with low inter-subject variability.
This is important to reduce the required number of subjects to demonstrate
significant effects of novel therapies in clinical trials [14].

4.3 Limitations and future directions

The proposed methodology should be considered in light of certain limitations.
Most importantly, the framework was especially designed for metrics aimed at
longitudinally monitoring impairments and might need additional refinement
when transferring it to other healthcare applications (e.g., screening of elec-
tronic health record data) with different clinical requirements or data types.
Additionally, the definition of multiple cut-off values for the metric selection
process influences the final core set of metrics. Even though most of the cut-offs
were based on accepted definitions from the research community (e.g., COSMIN
guidelines), we acknowledge that the optimality of these values needs to be fur-
ther validated from a clinical point of view. To evaluate measurement error
and learning effects, novel cut-offs were introduced based on the distribution
of observed values for the VPIT with the goal to exclude metrics that showed
highest measurement error and strongest learning effects. It is important to
note that this only considers the relative and not the absolute level of measure-
ment error. However, this can only be adequately judged using data recorded
pre- and post-intervention, allowing to compare the measurement error (SRD%)
to intervention-induced physiological changes (minimal important clinical differ-
ence) [22]. Hence, the rather high absolute level of observed measurement errors
for the VPIT (up to 57.7% of the range of observed values) warrants further
critical evaluation with longitudinal data. Also, it is important to note that,
even though certain VPIT-based metrics did not pass the selection procedure,
they might still prove to be valid and reliable for other assessment tasks and
platforms, or more specific subject populations. In this context, it should be
stressed that test-retest reliability, measurement error, and learning effects for
the VPIT were evaluated with neurologically intact subjects and might require
additional investigation in neurological populations.

5 Conclusions

We proposed a data-driven framework for selecting and validating digital health
metrics based on the targeted impairments, the influence of participant demo-
graphics, and their clinimetric properties. In a use-case with the VPIT, the
methodology enabled the selection and validation of a core set of ten kinematic
and kinetic metrics out of 77 initially proposed metrics. The chosen metrics were
able to accurately describe the severity of multiple sensorimotor impairments
in a cross-sectional manner and have high potential to sensitively monitor neu-
rorehabilitation and to individualize interventions. Additionally, an in-depth
physiological motivation of these metrics and the interpretation based on an
exploratory factor analysis allowed to better understand their relation to the
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targeted impairments. Hence, this work makes an important contribution to
implement digital health metrics as complementary endpoints for clinical trials
and routine, next to the still more established conventional scales and patient
reported metrics [120]. We urge researchers and clinicians to capitalize on the
promising properties of digital health metrics and further contribute to their
validation and acceptance, which in the long-term will lead to a more thorough
understanding of disease mechanisms and enable novel applications (e.g., per-
sonalized predictions of rehabilitation outcomes) with the potential to improve
healthcare quality.
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Figure 1: Overview of the data-driven framework and the Virtual Peg Insertion Test (VPIT). (a) The
frameworks allows to select a core set of validated digital health metrics. Criteria C'1 and C2 defining
model quality; ROC: receiver operating characteristics; AUC: area under curve; ICC: intra-class correlation;
SRD%: smallest real difference; n strength of learning effects; (b) as a use-case, the framework was ap-
plied to data recorded with the VPIT, a sensor-based upper limb sensorimotor assessment requiring the
coordination of arm and hand movements as well as grip forces. The test combines a commercial haptic
device, a handle instrumented with force sensors, and a virtual pegboard.
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Figure 2: Data-driven selection and validation of metrics: example of task completion time. (a) the
influence of age, sex, tested body side, handedness, and stereo vision deficits on each digital health met-
rics was removed using data from neurologically intact subjects and mixed effect models (model quality
criteria C1 and C2). Models were fitted in a Box-Cox-transformed space and back-transformed for visual-
ization. Metrics with low model quality (C1 >15% or C2 >25%) were removed. (b) The ability of a metric
to discriminate between neurologically intact and affected subjects (discriminant validity) was evaluated
using the area under the curve value (AUC). Metrics with AUC<0.7 were removed. (c¢) Test-retest reliability
was evaluated using the intra-class correlation coefficient (ICC) indicating the ability of a metric to dis-
criminate between subjects across testing days. Metrics with ICC<0.7 were removed. Additionally, metrics
with strong learning effects (n >-6.35) were removed. The long horizontal red line indicates the median,
whereas the short ones represent the 25!~ and 75'"- percentile. (d) Measurement error was defined using
the smallest real difference (SRD%), indicating a range of values for that the assessment cannot discrimi-
nate between measurement error and physiological changes. The distribution of the intra-subject variability
was visualized, as it strongly influences the SRD. Metrics with SRD%>30.3 were removed.
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Figure 3: Partial correlation analysis. The objective was to remove redundant information. Therefore,
partial Spearman correlations were calculated between all combination of metrics while controlling for the
potential influence of all other metrics. Pairs of metrics were considered for removal if the correlation was
equal or above 0.5 The process was done in an iterative manner and the first and the last iterations are
presented.
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1 Supplementary Material: Methods

1.1 Participants

Neurologically intact subjects were recruited at ETH Zurich (Zurich, Switzerland).
Stroke patients were tested at the University Hospital of Zurich (Zurich, Switzer-
land), the cereneo Center for Neurology and Rehabilitation (Vitznau, Switzer-
land), and the Zentrum fiir ambulante Rehabilitation (ZAR, Zurich, Switzerland)
as part of the Study of Motor Learning and Acute Recovery Time Course in
Stroke (SMARTS) or the synergy-based open-source foundations and technolo-
gies for prosthetics and rehabilitation (SoftPro). Multiple sclerosis (MS) patients
were recruited at Hasselt University (Hasselt, Belgium) and at the Rehabilitation
and MS Center Overpelt (Overpelt, Belgium), some of them as part of the indi-
vidualised technology-supported and robot-assisted virtual learning environment(I-
TRAVLE) study. Exclusion criteria involved the inability to lift the arm against
gravity, to flex/extend the fingers, and the presence of any concomitant disease
affecting the upper limb. The studies involving stroke patients additionally used
increased muscle tone, severe sensory deficits, hemorrhagic infarct, traumatic brain
injury as exclusion criteria. MS patients had to be diagnosed according to the Mec-
Donald criteria. All clinical assessments were performed within the same or few
days of the Virtual Peg Insertion Test (VPIT) assessment. Experimental proce-
dures were approved by the local Ethics Committees: neurologically intact subjects
subjects: EK2010-N-40; stroke patients: EKNZ-2016-02075, KEK-ZH 2011-0268;
MS patients: CME2013/314, ML9521 (S55614), B322201318078; ARSACS patients:
2012-012.

2 Supplementary Material: Results

The metrics that did not fullfil the required quality of the models, according to
the C1 and C2 criteria, were spectral arc length transport, number of velocity peaks
transport, distance to max. velocity transport, time to max. velocity transport, num-
ber of velocity peaks return, throughput transport, initial movement angle transport
01, initial movement angle s, collision force mazx. return, grip force rate number of
peaks buildup, grip force rate spectral arc length buildup, grip force rate number of
peaks release, and simulated Gaussian noise.
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Table SM1: Detailed demographics and clinical information for each body
side of each included neurologically impaired subject.

Disease Age Sex Tested side Affected sidle Dominant side Chronicity FMA-UE ARAT NHPT EDSS

(yrs) (yrs) (0-66) (0-57) (s) (0-10)
Stroke 67 Male Right Left Right 2.09 66 57 23.25 -
Stroke 55 Male Left Left Right 1.69 54 56 33.25 -
Stroke 55 Male Right Left Right 1.69 66 57 21.85 -
Stroke 55 Male Left Right Right 2.01 65 57 22.82 -
Stroke 55 Male Right Right Right 2.01 49 55 29.28 -
Stroke 52 Male Left Left Right 2.74 55 52 35.36 -
Stroke 52 Male Right Left Right 2.74 65 57 20.99 -
Stroke 73 Male Left Right Right 0.89 62 - - -
Stroke 69 Female Right Left Right 0.86 61 57 20.32 -
Stroke 67 Male Left Left Right 2.42 50 - - -
Stroke 67 Male Right Left Right 2.42 66 - - -
Stroke 40 Female Left Right Right 0.77 56 45 - -
Stroke 40 Female Right Right Right 0.77 49 49 - -
Stroke 71 Male Left Left Left 4.49 40 35 196.69 -
Stroke 71 Male Right Left Left 4.49 65 57 15.03 -
Stroke 59 Female Left Left Right 4.35 50 47 17.70 -
Stroke 59 Female Right Left Right 4.35 66 57 12.57 -
Stroke 88 Female Left Left Right 1.65 37 39 42.17 -
Stroke 88 Female Right Left Right 1.65 63 - 14.33 -
Stroke 69 Female Left Right Right 0.58 63 57 19.81 -
Stroke 69 Female Right Right Right 0.58 44 39 49.16 -
Stroke 59 Female Left Right Right 1.94 66 57 21.50 -
Stroke 59 Female Right Right Right 1.94 57 56 21.63 -
Stroke 50 Female Right Left Right 4.83 64 - - -
Stroke 61 Male Left Right Right 8.70 66 56 24.51 -
Stroke 61 Male Right Right Right 8.70 38 42 34.95 -
Stroke 59 Male Left Left Right 1.64 46 40 40.84 -
Stroke 59 Male Right Left Right 1.64 63 57 14.85 -
Stroke 69 Male Left Left Right 0.51 53 51 23.08 -
Stroke 69 Male Right Left Right 0.51 63 56 13.67 -
Stroke 55 Male Left Left Right 1.45 59 57 28.08 -
Stroke 55 Male Right Left Right 1.45 66 57 18.50 -
Stroke 42 Male Left Left Right 0.48 39 30 - -
Stroke 42 Male Right Left Right 0.48 65 57 20.47 -
Stroke 51 Female Left Right Right 0.97 66 57 21.01 -
Stroke 51 Female Right Right Right 0.97 61 57 25.70 -
Stroke 58 Male Left Right Right 0.48 62 57 23.33 -
Stroke 58 Male Right Right Right 0.48 42 53 26.00 -
Stroke 46 Male Left Left Right 1.05 57 42 24.03 -
Stroke 46 Male Right Left Right 1.05 66 57 23.09 -
Stroke 76 Male Left Right Right 2.74 66 55 39.73 -
Stroke 76 Male Right Right Right 2.74 60 54 29.19 -
Stroke 53 Female Left Right Right 2.98 66 57 22.99 -
Stroke 53 Female Right Right Right 2.98 58 55 20.67 -
Stroke 62 Male Left Right Right 14.65 66 57 19.58 -
Stroke 62 Male Right Right Right 14.65 34 33 154.00 -
Stroke 62 Male Left Right - - - 57 24.60 -

Stroke 62 Male Right Right - - - 43 86.00 -
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Disease = Age Sex Tested side  Affected side Dominant side Chronicity FMA-UE ARAT NHPT EDSS

(yrs) (yrs) (0-66) (0-57) (s) (0-10)
Stroke 54 Female Left Left Right 1.00 66 57 - -
Stroke 54 Female Right Left Right 1.00 66 57 - -
Stroke 67 Male Left Left Right 0.46 66 57 - -
Stroke 67 Male Right Left Right 0.46 66 57 - -
Stroke 52 Male Left Left Right 0.23 66 57 - -
Stroke 52 Male Right Left Right 0.23 66 57 - -
Stroke 46 Male Left Right Right 0.23 66 57 - -
Stroke 71 Male Left Left Right 0.23 64 57 - -
Stroke 71 Male Right Left Right 0.23 66 57 - -
Stroke 48 Male Left Right Right 0.02 57 57 - -
Stroke 48 Male Right Right Right 0.02 66 47 - -
Stroke 45 Female Right Left Right 0.02 66 57 - -
Stroke 55 Female Right Left Right 0.08 66 57 - -
Stroke 65 Male Left Left Right 0.23 60 - - -
Stroke 65 Male Right Left Right 0.02 62 53 - -
Stroke 43 Male Left Right Right 0.46 66 57 - -
Stroke 43 Male Right Right Right 0.46 66 56 - -
Stroke 41 Female Right Left Right 0.02 64 - - -
Stroke 35 Male Left Left Right 0.46 61 57 - -
Stroke 35 Male Right Left Right 0.02 64 57 - -
Stroke 76 Male Right Left Left 0.23 66 57 - -
Stroke 86 Male Right Left Right 0.02 62 56 - -
Stroke 50 Male Left Left Left 1.00 65 57 - -
Stroke 49 Male Right Left Left 0.23 66 57 - -
Stroke 74 Male Left Right Right 0.02 66 57 - -
Stroke 81 Female Left Right Right 0.23 66 57 - -
Stroke 65 Female Left Left Right 0.23 66 56 - -
Stroke 65 Female Right Left Right 0.23 66 57 - -
Stroke 21 Male Left Right Right 0.02 63 57 - -
Stroke 21 Male Right Right Right 0.02 66 56 - -
Stroke 87 Female Left Right Left 0.02 66 57 - -
Stroke 87 Female Right Right Left 0.02 50 29 - -
Stroke 54 Male Left Right Left 0.46 66 57 - -
Stroke 54 Male Right Right Left 0.46 54 57 - -
Stroke 57 Male Left Left Right 0.02 66 57 - -
Stroke 57 Male Right Left Right 0.02 61 57 - -
Stroke 70 Female Right Left Right 0.53 66 - 16.46 -
Stroke 57 Male Right Right - 0.48 66 - 22.61 -
Stroke 73 Male Left Left Right 0.53 63 - 28.55 -
Stroke 56 Male Left Left Right 0.03 25 - 60.81 -
Stroke 63 Male Left Right Right 0.48 66 - 14.33 -
ARSACS 41 Female Left Both Right - - - 28.59 -

ARSACS 41 Female Right Both Right - - - 37.14 -



https://doi.org/10.1101/544601
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/544601; this version posted December 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Page 4 of 8

Disease Age Sex Tested side  Affected side Dominant side Chronicity FMA-UE ARAT NHPT EDSS

(yrs) (yrs) (0-66) (0-57) (s) (0-10)
ARSACS 29 Male Left Both Right - - - 56.98 -
ARSACS 29 Male Right Both Right - - - 40.34 -
ARSACS 56 Female Left Both Left - - - 83.59 -
ARSACS 56 Female Right Both Left - - - 95.20 -
ARSACS 37 Male Left Both Left - - - 36.36 -
ARSACS 37 Male Right Both Left - - - 46.72 -
ARSACS 26 Female Left Both Right - - - - -
ARSACS 26 Female Right Both Right - - - - -
ARSACS 37 Female Left Both Right - - - - -
ARSACS 37 Female Right Both Right - - - - -
ARSACS 31 Male Left Both Right - - - 29.88 -
ARSACS 31 Male Right Both Right - - - 23.52 -
ARSACS 58 Male Left Both Right - - - 60.43 -
ARSACS 58 Male Right Both Right - - - 47.33 -
MS 52 Female Left Both Right 29.00 - 37 45.25 7.0
MS 52 Female Right Both Right 29.00 - 47 24.75 7.0
MS 69 Male Right Both Right 19.00 - 44 140.27 7.5
MS 25 Female Left Both Right 6.00 - 52 29.35 6.0
MS 25 Female Right Both Right 6.00 - 53 29.62 6.0
MS 42 Female Left Both Right 1.00 - 56 27.81 4.0
MS 42 Female Right Both Right 1.00 - 54 20.48 4.0
MS 59 Female Left Both Left 5.00 - 49 27.76 7.0
MS 56 Female Left Both Right 10.00 - 49 33.72 7.0
MS 56 Female Right Both Right 10.00 - 29 89.79 7.0
MS 65 Male Left Both Left 19.00 - 52 39.90 8.0
MS 63 Female Left Both Right 8.00 - 57 20.84 4.5
MS 63 Female Right Both Right 8.00 - 54 35.04 45
MS 76 Female Left Both Right 38.00 - 43 27.01 5.0
MS 76 Female Right Both Right 38.00 - 34 34.46 5.0
MS 60 Male Left Both Right 21.00 - 52 31.48 7.0
MS 60 Male Right Both Right 21.00 - 53 25.29 7.0
MS 42 Female Right Both Right 21.00 - 39 74.39 7.5
MS 46 Male Left Both Right 11.00 - 55 30.58 5.5
MS 46 Male Right Both Right 11.00 - 56 23.23 55
MS 70 Female Left Both Right 37.00 - 53 29.86 6.0
MS 70 Female Right Both Right 37.00 - 45 53.21 6.0
MS 36 Female Right Both Right 6.76 61 56 22.87 7.5
MS 40 Male Right Both Left 12.55 53 44 56.17 7.5
MS 35 Male Left Both Right 0.97 65 57 22.90 45
MS 35 Male Right Both Right 0.97 65 52 24.90 45
MS 52 Female Left Both Right 9.66 62 56 35.13 55
MS 52 Female Right Both Right 9.66 65 56 29.31 5.5
MS 65 Female Right Both Both 14.48 61 52 55.37 7.5
MS 53 Male Right Both Right 9.66 62 56 23.93 25
MS 59 Male Left Both Right 1.93 63 56 28.70 4.0
MS 59 Male Right Both Right 1.93 63 55 47.49 4.0
MS 35 Female Left Both Right 14.48 62 51 50.17 7.5
MS 38 Male Left Both Right 2.90 - - - 35
MS 38 Male Right Both Right 2.90 - - - 35
MS 66 Female Left Both Left 16.42 - - - 7.5
MS 66 Female Right Both Left 16.42 - - - 7.5
MS 22 Male Left Both Right 3.86 - - - 6.5
MS 22 Male Right Both Right 3.86 - - - 6.5
MS 38 Female Left Both Right 8.69 - - - 7.0
MS 38 Female Right Both Right 8.69 - - - 7.0
MS 61 Male Left Both Right 5.79 - - 20.00 5.0
MS 61 Male Right Both Right 5.79 - - 26.27 5.0
MS 63 Female Right Both Right 6.76 - - 28.00 6.0

MS 63 Male Right Both Right 29.93 - - 16.00 3.0
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Sensor-based metric Fixed effects Subject-specific effects R? Model quality
(Intercept) Age Sex Tested Hand dominance Stereo vision (Intercept)
Estimate (SE)  p-value Estimate (SE)  p-value Estimate (SE)  p-value Estimate (SE)  p-value Estimate (SE)  p-value Estimate (SE)  p-value sb C1 (%), C2 (%)
ions mean transport -1.50 (0.32) 0.001 0.01 (0.00) 0.001 -0.17 (0.12) 0.177 -0.14 (0.11) 0.215 0.12 (0.11) 0.307 0.23 (0.21) 0.289 0.54 0.55 7.05, 24.00
ions max transport -0.47 (0.26) 0.079 0.01 (0.00) 0.001 -0.25 (0.10) 0.020 -0.09 (0.09) 0.317 -0.01 (0.09) 0.888 0.20 (0.17) 0.198 0.42 0.52 6.91, 21.97
ons mean return 0.25 (0.00) 0.001 0.00 (0.00) 0.019 0.00 (0.00) 0.070 0.00 (0.00) 0.702 0.00 (0.00) 0.027 0.00 (0.00) 0.915 0.00 0.50 6.07, 20.78
ions max return 0.57 (0.41) 0.197 0.00 (0.00) 0.786 -0.51 (0.15) 0.002 -0.34 (0.16) 0.039 0.10 (0.16) 0.573 -0.11 (0.26) 0.679 0.60 0.35 7.64, 26.05
Force mean transport 2.34 (0.20) 0.001 -0.01 (0.00) 0.012 -0.27 (0.08) 0.003 0.03 (0.05) 0.558 0.09 (0.05) 0.078 -0.05 (0.14) 0.716 0.39 0.80 4.21, 15.86
Force max. transport 2.59 (0.21) 0.001 -0.01 (0.00) 0.012 -0.29 (0.08) 0.001 0.04 (0.05) 0.444 0.06 (0.05) 0.237 -0.06 (0.14) 0.688 0.42 0.81 3.73, 14.13
Force rate mean transport 3.30 (0.36) 0.001 -0.01 (0.00) 0.002 -0.50 (0.14) 0.001 0.18 (0.09) 0.053 0.06 (0.09) 0.528 -0.16 (0.24) 0.485 0.68 0.80 2.70, 10.44
Force rate max. transport 5.72 (0.38) 0.001 -0.01 (0.00) 0.001 -0.65 (0.15) 0.001 0.14 (0.09) 0.125 0.16 (0.09) 0.082 -0.24 (0.25) 0.374 0.74 0.84 2.98, 10.49
Force mean return 0.34 (0.22) 0.139 0.01 (0.00) 0.001 0.03 (0.08) 0.755 0.25 (0.11) 0.035 0.09 (0.11) 0.458 -0.03 (0.13) 0.823 0.16 0.17 5.58, 18.73
Force max. return 0.26 (0.00) 0.001 0.00 (0.00) 0.002 0.00 (0.00) 0.790 0.00 (0.00) 0.122 0.00 (0.00) 0.448 0.00 (0.00) 0.747 0.00 0.47 4.14, 14.57
Force rate mean return 0.97 (0.20) 0.001 0.00 (0.00) 0.563 -0.10 (0.08) 0.203 0.18 (0.07) 0.017 0.08 (0.07) 0.225 0.01 (0.13) 0.955 0.35 0.53 6.48, 22.78
Force rate max. return 1.55 (0.11) 0.001 0.00 (0.00) 0.001 -0.11 (0.04) 0.008 0.14 (0.04) 0.002 0.02 (0.04) 0.546 -0.04 (0.07) 0.523 0.18 0.61 4.98, 18.57
Force mean peg approach 1.96 (0.21) 0.001 -0.01 (0.00) 0.026 -0.27 (0.08) 0.002 -0.10 (0.07) 0.110 0.08 (0.07) 0.245 -0.16 (0.14) 0.228 0.37 0.65 3.54, 12.43
Force max. peg approach 2.64 (0.22) 0.001 0.00 (0.00) 0.130 -0.24 (0.08) 0.006 0.01 (0.05) 0.791 0.04 (0.05) 0.469 -0.12 (0.15) 0.444 0.42 0.80 3.84, 14.20
Force rate mean peg approach 3.68 (0.28) 0.001 -0.02 (0.00) 0.001 -0.52 (0.11) 0.001 -0.08 (0.07) 0.267 0.07 (0.07) 0.312 -0.27 (0.19) 0.159 0.54 0.83 3.13, 11.09
Force rate max. peg approach 5.17 (0.31) 0.001 -0.01 (0.00) 0.009 -0.44 (0.12) 0.001 0.00 (0.08) 0.955 0.07 (0.08) 0.403 -0.13 (0.21) 0.540 0.61 0.82 3.13, 10.87
Force mean hole approach 1.82 (0.15) 0.001 0.00 (0.00) 0.064 -0.17 (0.06) 0.006 -0.01 (0.04) 0.843 0.06 (0.04) 0.160 -0.07 (0.10) 0.467 0.28 0.76 4.84, 18.59
Force max. hole approach 1.99 (0.16) 0.001 0.00 (0.00) 0.204 -0.17 (0.06) 0.012 0.01 (0.04) 0.870 0.08 (0.04) 0.067 -0.10 (0.11) 0.361 0.30 0.75 5.33, 20.21
Force rate mean hole approach 30.63 (4.59) 0.001 -0.21 (0.05) 0.001 -6.80 (1.78) 0.001 0.92 (1.15) 0.427 3.91 (1.15) 0.002 -3.56 (3.06) 0.253 8.89 0.83 4.57, 15.92
Force rate max. hole approach 5.25 (0.36) 0.001 -0.01 (0.00) 0.011 -0.48 (0.14) 0.001 0.01 (0.10) 0.951 0.26 (0.10) 0.010 -0.16 (0.24) 0.524 0.67 0.73 5.81, 21.28
Force rate number of peaks transport 1.17 (0.19) 0.001 0.02 (0.00) 0.001 0.12 (0.07) 0.069 -0.07 (0.08) 0.421 0.09 (0.08) 0.259 -0.14 (0.12) 0.256 0.25 0.47 7.11, 23.64
Force rate spectral arc length transport 0.42 (0.02) 0.001 0.00 (0.00) 0.001 0.00 (0.01) 0.627 -0.02 (0.01) 0.075 -0.01 (0.01) 0.297 -0.01 (0.02) 0.606 0.04 0.42 6.97, 23.19
Force rate number of peaks return 1.86 (0.12) 0.001 0.00 (0.00) 0.002 -0.15 (0.04) 0.002 -0.06 (0.04) 0173 0.02 (0.04) 0.722 -0.12 (0.07) 0.116 0.18 0.48 7.53, 23.94
Force rate spectral arc length return 0.63 (0.04) 0.001 0.00 (0.00) 0.001 -0.03 (0.02) 0.075 0.02 (0.02) 0.176 0.02 (0.02) 0.155 -0.02 (0.03) 0.513 0.06 0.43 8.11, 24.87
Force rate number of peaks peg approach 1.24 (0.01) 0.001 0.00 (0.00) 0.001 0.02 (0.00) 0.001 0.01 (0.00) 0.007 0.00 (0.00) 0.941 0.01 (0.01) 0.275 0.01 0.66 3.30, 14.23
Force rate spectral arc length peg approach 0.80 (0.01) 0.001 0.00 (0.00) 0.001 0.02 (0.00) 0.001 0.01 (0.00) 0.237 0.00 (0.00) 0.563 0.01 (0.01) 0.182 0.01 0.48 3.86, 15.46
Force rate number of peaks hole approach 0.82 (0.10) 0.001 0.01 (0.00) 0.001 0.13 (0.04) 0.006 0.02 (0.04) 0.702 -0.01 (0.04) 0.851 0.02 (0.06) 0.772 0.16 0.57 2.17, 9.08
Force rate spectral arc length hole approach 0.26 (0.03) 0.001 0.00 (0.00) 0.001 0.04 (0.01) 0.001 0.00 (0.01) 0.781 -0.01 (0.01) 0.376 -0.01 (0.02) 0.594 0.05 0.62 2.28, 11.56
Force rate number of peaks buildup 0.00 (0.02) 0.987 0.00 (0.00) 0.008 0.00 (0.01) 0.494 0.02 (0.01) 0.062 0.02 (0.01) 0.032 -0.03 (0.01) 0.012 0.02 0.12 4.58, 35.23
Force rate spectral arc length buildup 0.04 (0.00) 0.001 0.00 (0.00) 0.001 0.00 (0.00) 0.006 0.00 (0.00) 0.733 0.00 (0.00) 0.262 0.00 (0.00) 0177 0.00 0.40 6.64, 25.87
Force buildup duration -2.66 (0.19) 0.001 0.01 (0.00) 0.002 0.26 (0.07) 0.001 -0.01 (0.06) 0.878 0.01 (0.06) 0.904 -0.16 (0.12) 0.223 0.33 0.61 6.16, 19.68
Force rate number of peaks release 0.00 (0.01) 0.795 0.00 (0.00) 0.226 0.00 (0.00) 0.819 0.01 (0.00) 0.207 0.00 (0.00) 0.748 0.00 (0.01) 0.687 0.00 0.02 6.87, 71.30
Force rate spectral arc length release 1.04 (0.04) 0.001 0.00 (0.00) 0.001 0.05 (0.01) 0.001 -0.02 (0.01) 0.214 0.00 (0.01) 0.882 0.02 (0.02) 0.325 0.05 0.56 3.53, 12.34
Force release duration -2.32 (0.18) 0.001 0.00 (0.00) 0.170 0.17 (0.07) 0.012 0.12 (0.07) 0.124 -0.04 (0.07) 0.617 -0.13 (0.11) 0.279 0.25 0.31 8.05, 24.38
Task completion time 1.13 (0.01) 0.001 0.00 (0.00) 0.001 0.02 (0.00) 0.001 0.01 (0.00) 0.033 0.00 (0.00) 0.665 0.00 (0.01) 0.633 0.01 0.73 4.13,17.21
Simulated Gaussian noise 4.42 (0.12) 0.001 0.00 (0.00) 0.851 0.04 (0.04) 0.302 -0.10 (0.06) 0.118 -0.02 (0.06) 0.784 0.03 (0.07) 0.651 0.10 0.03 12.00, 35.29
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Figure SM1: Temporal segmentation of kinematic and kinetic trajectories. Repre
sentative example from one neurologically intact subject (49yrs, female, tested hand
left, dominant hand right).
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Figure SM2: Scree plot for estimating the number of latent variables & in the fact

=

analysis. Parallel analysis was used to simulate a lower bound of an eigenvalue

w0

magnitude that each eigenvalue in the observed data needs to fulfill. The chosen
number of factors was set to five accordingly.
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