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Abstract1

1. Evidence-based management of natural populations under strong human in-2

fluence frequently requires not only estimates of survival but also knowledge3

about how much mortality is due to anthropogenic versus natural causes.4

This is the case particularly when individuals vary in their vulnerability to5

different causes of mortality due to traits, life-history stages, or locations.6

2. Here, we estimated harvest and background (other cause) mortality of a7

landlocked migratory salmonid over half a century. In doing so, we quanti-8

fied among-individual variation in vulnerability to cause-specific mortality9

resulting from differences in body size and spawning location relative to a10

hydropower dam.11

3. We constructed a multistate mark-recapture model to estimate harvest and12

background mortality hazard rates as functions of a discrete state (spawning13

location) and an individual time-varying covariate (body size). We further14

accounted for among-year variation in mortality and migratory behavior and15

fit the model to a unique 50-year time-series of mark-recapture-recovery data16

on brown trout (Salmo trutta) in Norway.17

4. Harvest mortality was highest for intermediate-sized trout, and outweighed18

background mortality for most of the observed size range. Background mor-19

tality decreased with body size for trout spawning below the dam and in-20

creased for those spawning above. All vital rates varied substantially over21

time, but a trend was evident only in estimates of fishers’ reporting rate,22

which decreased from over 50% to less than 10% throughout the study pe-23
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riod.24

5. We highlight the importance of body size for cause-specific mortality and25

demonstrate how this can be estimated using a novel hazard rate parameter-26

isation for mark-recapture models. Our approach allows estimating effects of27

individual traits and environment on cause-specific mortality without con-28

founding, and provides an intuitive way to estimate temporal patterns within29

and correlation among different mortality sources.30

Keywords31

Bayesian statistics, dam, harvesting, hazard rate, mark-recapture, mortality, NIM-32

BLE, trout.33

Introduction34

Population dynamics – particularly of long-lived species – are often highly sensi-35

tive to changes in mortality (Sæther and Bakke 2000). Mortality can have a wide36

variety of causes (e.g. starvation, predation, disease, harvest), and vulnerability to37

cause-specific mortality may depend on individual factors such as age or life stage38

(Ronget et al. 2017). As a consequence, population-level responses to changes in39

mortality may vary greatly depending on the underlying cause, and disentangling40

different causes of mortality may provide insights crucial for population manage-41

ment and conservation (Williams et al. 2002). This is particularly important in42

populations where a significant portion of mortality is linked to human activity;43

in such cases, knowledge about the relative impact of human-induced mortality44
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and its effects on other mortality sources is crucial for developing sustainable and45

successful management strategies (Hilborn and Walters 2013, Koons et al. 2014).46

Studies of marked individuals constitute a highly valuable source of demo-47

graphic data for wild animal populations and are essential for estimating survival,48

as well as cause-specific mortality. The recovery of a dead marked animal often pro-49

vides information on the cause of death. However, unless animals are marked with50

radio- or satellite transmitters, most dead individuals will not be found, and this51

imperfect detection needs to be accounted for when estimating mortality parame-52

ters. Moreover, when considering multiple mortality causes, detection probability53

frequently depends on the cause of mortality, and some causes of mortality may54

not be observable at all. This is usually the case for natural mortality when dead55

recoveries are exclusively based on the reports of hunters or fishers (e.g. Servanty56

et al. 2010, Koons et al. 2014).57

Schaub and Pradel (2004) developed a multistate mark-recapture-recovery frame-58

work that allows separately estimating mortality from different causes while ac-59

counting for cause-dependent detection probabilities. Specifically, cause-specific60

mortalities are estimated as transitions from an “alive” state to several “dead from61

cause of interest” states. When this framework is extended to also include mul-62

tiple “alive” states, it becomes possible to estimate differences in vulnerability to63

cause-specific mortality depending on, for example, an individual’s life-stage (e.g.64

juveniles vs. adults, Schaub and Pradel 2004) or location (Fernández-Chacón et al.65

2015). Such group-level differences in mortality can be tremendous and accounting66

for them is crucial for modelling population dynamics (Ronget et al. 2017). How-67

ever, in addition to that, vital rates and population dynamics are often strongly68

affected by individual differences in continuous, dynamic traits such as body size69
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(De Roos et al. 2003, Vindenes and Langangen 2015). Particularly in species that70

are harvested and/or have indeterminate growth (e.g. fish species), cause-specific71

mortality is expected to depend strongly on body size. Fernández-Chacón et al.72

(2017) demonstrated this by estimating cause-specific mortalities for different sizes73

of Atlantic cod (Gadus morhua). However, they did so by lumping individuals74

into either of two size classes (“small” or “large”), thus foregoing the possibility of75

investigating the continuous relationship between body size and mortality from76

different causes. Knowledge about the relationships between continuous traits and77

vital rates is, however, invaluable for studying population-level trait dynamics (e.g.78

using integral projection models Ellner and Rees 2006).79

Migratory salmonid fishes are extensively studied due to their ecological, cul-80

tural and economical value (Drenner et al. 2012). Nonetheless, studies at the pop-81

ulation level are frequently hindered by a lack of knowledge about the mortality82

of adults residing in the sea or large lakes (Piccolo et al. 2012). Many salmonid83

populations are heavily impacted by human activity, not only in the form of har-84

vesting, but also through pollution, fish farming, habitat fragmentation, and hydro-85

electrical power production (dams) in rivers (Aas et al. 2010), making the study86

of population-level consequences of such impacts a priority.87

Here we study a population of migratory brown trout (Salmo trutta, hereafter88

“trout”) which inhabits a river-lake system in Eastern Norway and has been a pop-89

ular target for fishing for decades due to its large body size. The spawning river is90

dammed, and trout migrating to spawning grounds above the dam face additional91

risks linked to dam passage on their up- and downriver migrations. Trout spawning92

below the dam, on the other hand, completely avoid these risks but may, in turn,93

incur costs related to poor river condition and crowding on the spawning grounds94
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below the dam. Mortality risks are thus likely associated with spawning location95

in addition to individual body size and environmental conditions. To account for96

this heterogeneity, we re-parameterized mark-recapture models for cause-specific97

mortality in terms of mortality hazard rates (Cox 1972, Quinn 2003, Ergon et al.98

2018) and extended the framework to include a continuous individual- and time-99

varying trait (body size) as a predictor of vulnerability within groups of individuals100

with different migration patterns. Fitting the resulting model to a unique 50-year101

time-series of recaptures and recoveries of marked trout enabled us to investigate102

the effects of individual (size, spawning location, origin) and environmental (river103

discharge) factors on, and temporal variation in, several key vital rates: the vul-104

nerability of adult trout to mortality due to harvest, dam passage, and natural105

causes, and the probability of using a fish ladder within the dam to access upriver106

spawning areas.107

Materials and methods108

STUDY SYSTEM AND DATA109

The studied population of landlocked migratory (potamodromous) brown trout110

inhabits the lake Mjøsa and its main inlet river, Gudbrandsdalslågen, in Eastern111

Norway. Eggs are deposited in the river in fall and develop over winter. After112

hatching in spring, juvenile trout remain in the river for an average of 4 years113

before smolting and migrating to the lake. They typically mature after 2 - 3 years114

of piscivorous diet and fast growth in the lake, and from that point on migrate up115

the river to spawn every other year (usually in August/September, Figure 1). See116

Aass et al. (1989) for a more detailed description of the life history. The population117
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consists of wild-hatched trout and stocked (first-generation hatchery-reared) trout,118

which are recognizable by their clipped adipose fin. Stocked trout are released into119

the river and lake as smolts but then follow the same general life history as wild-120

hatched individuals (Aass 1993).121

Shortly after the river was dammed in the 1960’s, a fish ladder was installed to122

restore connectivity to the spawning grounds above the dam. Depending on body123

size and hydrological conditions, trout may either pass the dam by using the fish124

ladder on their upriver spawning migration, or reproduce below the dam (Aass125

et al. 1989, Haugen et al. 2008). Trout spawning above the dam have to pass the126

dam again on their return migration to the lake (in October/November or in the127

following spring). Since the fish ladder cannot be used for moving downriver, these128

trout must pass either through the floodgates or the turbine shaft. Whether or not129

an individual uses the fish ladder thus determines not only its spawning location,130

but also the potential risks it encounters during the return to the lake.131

From 1966 to 2016 a trap was operated within the fish ladder, allowing for132

all trout passing the ladder to be captured, measured, and individually marked.133

Thus, all adult trout were marked with Carlin tags (Carlin 1955) when they used134

the fish ladder on an upriver spawning migration for the first time, and could be135

recaptured on subsequent spawning migrations given that they passed the ladder136

again. Subsequent spawning runs occur two years later for the majority of fish137

(98.5%), which adhered to a strictly biennial spawning cycle (Figure 1). Over138

the 50-year time period, 13,975 adult trout were marked and 2,106 of these were139

recaptured in the ladder later. Since the population has been exposed to fishing140

over the entire time period, an additional 2,322 marked trout were reported dead by141

fishers. For more details on the marking scheme, sampling protocol, and resulting142
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data from the mark-recapture-recovery study, see Moe et al. (2019).143

In the present study we performed mark-recapture analyses over intervals of144

two years, as estimating parameters for spawning and non-spawning years sepa-145

rately was not possible (due to trout being unobservable in non-spawning years,146

Figure 1). We thus summarised the data into individual capture histories yi,t, in147

which each time index t corresponds to a two-year time step (interval from current148

spawning year to next spawning year). For each time step, we coded three types149

of observations: 1 = alive and captured in the ladder, 2 = dead from harvest and150

reported, and 3 = not observed. We set yi,t = 1 when an individual was captured in151

the fish ladder in any month during time interval t. Harvest of trout happens year-152

round (Figure S1.1) and if an individual was harvested and reported at any point153

during interval t we set yi,t = 2, unless (a) the individual had also been caught154

in the fish ladder during interval t or (b) the harvest happened after August of155

the second year within the interval t. If either (a) or (b) was the case, we moved156

the harvest observation to the next interval such that yi,t+1 = 2. Furthermore, we157

excluded all individuals that did not follow a strictly biennial spawning cycle (1.5%158

of all individuals), did not have a single size measurement taken (<1%), or were of159

unknown origin (wild vs. stocked, <1%). The analyses presented here are based on160

the remaining 13,003 capture histories containing 1,498 trap recaptures and 2,252161

harvest recoveries from both wild-hatched and stocked (hatchery-reared) trout.162
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MODEL FORMULATION163

General model structure164

We analysed the trout mark-recapture-recovery data in a multistate mark-recapture165

framework (Lebreton et al. 1999) with both “alive” and cause-specific “newly dead”166

states (Figure 2). Since trout are marked in the fish ladder while passing the dam167

on an upriver spawning migration, all individuals are in state 1, “spawning upriver”,168

at the start of their first 2-year time interval. State 1 individuals i may survive169

from the current (t) to the next (t+ 1) spawning migration with probability S1,i,t170

and will then either use the fish ladder (probability pi,t+1) to spawn above the dam171

again, or remain below the dam for spawning (probability 1 − pi,t+1). Individuals172

using the ladder and thus remaining in state 1 are guaranteed to be observed,173

while individuals not using the ladder transition to state 2, “spawning downriver”,174

and are unobservable. Since spawning location may have a considerable effect on175

mortality, state 2 individuals have their own survival probability S2,i,t, but we as-176

sume that their probability of using the fish ladder during the next spawning run177

(pi,t+1) does not differ from that of state 1 individuals.178

When deaths of marked individuals can be observed and attributed to a cause,179

multistate mark-recapture models can be used to estimate the probability of dying180

from cause X as the transition from an “alive” state to “newly dead from cause181

X” state (Schaub and Pradel 2004, Servanty et al. 2010). For the studied trout182

population, deaths due to harvest are clearly distinguishable from deaths due to183

other causes since fishers may report catching marked trout. Extending the model184

with the state “newly dead from harvest” (state 3) thus allows us to include the185

probability of an individual i in state n (n = 1 for above-dam spawners, n = 2 for186
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below-dam spawners) dying due to harvest, ΨH
n,i,t, and dying due to other causes187

ΨO
n,i,t over the time interval t to t + 1. Individuals that have recently died due to188

harvest (state 3) may be reported by fishers with reporting rate rt. Individuals189

that die due to other causes are not observable and therefore transition directly to190

the “dead” state (state 4; see Figure 2).191

The resulting multistate model for the trout mark-recapture-recovery data can192

be expressed with the following state transition matrix and associated observation193

probabilities:194

state (t+ 1)

st
a
te

(t
)

1 2 3 4

1 S1,i,tpi,t+1 S1,i,t(1 − pi,t+1) ΨH
1,i,t ΨO

1,i,t

2 S2,i,tpi,t+1 S2,i,t(1 − pi,t+1) ΨH
2,i,t ΨO

2,i,t

3 0 0 0 1

4 0 0 0 1

obs. (t)

1

0

rt

0

Parameterisation by mortality hazard rates195

Different cause-specific mortality probabilities (Ψ) are not independent of one an-196

other; if a certain cause of mortality becomes more prevalent (e.g. due to some197

event or change in the environment), not only will the probability of dying from198

that cause increase, but the probability of dying from any other cause will decrease199

at the same time. This confounding complicates inference (e.g. Cooch et al. 2014),200

but Ergon et al. (2018) have recently re-emphasized that this can be avoided – also201

in the context of discrete-time mark-recapture analyses – by parameterising with202
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mortality hazard rates instead of probabilities (Cox 1972, Quinn 2003). Assuming203

that the intensities of mortality from different causes remain proportional within204

time intervals, we can define the survival- and mortality probabilities in the trout205

model using harvest (mH) and other-cause (hereafter “background”) mortality haz-206

ard rates (mO):207

Sn,i,t = exp(−(mH
n,i,t +mO

n,i,t))

ΨH
n,i,t = (1 − Sn,i,t)

mH
n,i,t

mH
n,i,t +mO

n,i,t

ΨO
n,i,t = (1 − Sn,i,t)

mO
n,i,t

mH
n,i,t +mO

n,i,t

(see derivation in Ergon et al. (2018))208

In the present implementation, we further constrained harvest mortality to be209

the same for trout spawning above and below the dam: mH
1,i,t = mH

2,i,t = mH
i,t.210

This constraint was necessary to obtain an identifiable model, but also biologically211

reasonable because most harvest happens in the lake and fishing in the river is212

restricted during the spawning season (which is also short relative to the two-year213

interval of analysis).214

MODEL IMPLEMENTATION215

Individual and temporal variation in vital rate parameters216

Body size and hydrological conditions are often key determinants of vital rate217

variation in freshwater fish, including our study population (e.g. Carlson et al. 2008,218

Letcher et al. 2015, Haugen et al. 2008). We thus used individual body size (length;219

mm) at the beginning of the time-interval and average river discharge during the220

11

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 28, 2020. ; https://doi.org/10.1101/544742doi: bioRxiv preprint 

https://doi.org/10.1101/544742
http://creativecommons.org/licenses/by-nd/4.0/


relevant season as covariates for mortality and ladder usage in our model. We221

further accounted for potential effects of hatchery origin and additional among-year222

variation in all parameters x using intercept offsets for stocked individuals (βx
stock)223

and temporal random effects (εxt ), respectively. Random effects on all parameters224

were assumed to be independently normally distributed on the link scale (but225

see Supporting Information (SI) S6 for a model extension with correlated random226

effects).227

Harvest in our study system has been done mostly using fishing rods or gillnets;228

the selectivity of the former is often positively correlated with body size (Lewin229

et al. 2006) while the latter typically have bell-shaped selectivity curves (Hamley230

1975). Since we here pooled harvest by all gear types, we modelled linear and231

quadratic effects of size on harvest hazard rate on the log-scale:232

log(mH
i,t) = log(µH) + βH

stock ∗ origini + βH
S ∗ sizei,t + βH

SS ∗ size2i,t + εHt

where µH is the median harvest hazard rate, βH
S and βH

SS are slope parameters233

for linear and quadratic size effects respectively. sizei,t is the individual length at234

spawning and origini is a binary variable taking values of 1 for stocked fish and 0235

for wild-hatched fish.236

Background mortality, is expected to depend not just on body size but also237

on spawning location and river discharge, as above- and below-dam spawners en-238

counter different hydrological conditions during/after spawning and only the for-239

mer need to pass the dam on their downriver migration. Mortality associated with240

the spawning migration in general, and passing of the dam in particular, may also241
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depend on body size. We thus modelled background mortality hazard rate as:242

log(mO
n,i,t) = log(µO

n ) + βO
stock ∗ origini + βO

D,n ∗ discFt + βO
S,n ∗ sizei,t + εOt

Here µO
n is the median background mortality hazard rate of state n, discFt is the243

average discharge during the fall when many post-spawned trout are expected to244

migrate downriver (Oct - Nov), and βO
D,n and βO

S,n are slope parameters for dis-245

charge and size effects respectively. Stocking effects (βO
stock) and temporal random246

effects (εOt ) for background mortality are assumed to be shared across states n.247

The probability of using the fish ladder and thus spawning above the dam was248

previously found to depend on a complex interplay of individual body size and249

river discharge (Haugen et al. 2008). We adopted the basic model structure from250

this earlier analysis and extended it by allowing for stocking effects and random251

among-year variation such that252

logit(pi,t) = logit(µp) + βp
stock ∗ origini + βp

D ∗ discSt + βp
S ∗ sizei,t+

βp
DS ∗ discSt ∗ sizei,t + βp

SS ∗ size2i,t + εpt

The discharge covariate used here, discSt, differs from the one used above and253

represents the average discharge over the summer season when trout undertake254

their upriver spawning migration (Jul-Oct).255
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Size imputation under imperfect detection256

Using continuous, time-varying individual traits such as body size as covariates in257

mark-recapture models is problematic due to imperfect detection: information on258

body size will be missing for sampling occasions when an individual is not cap-259

tured (Pollock 2002). There are several ways to approach this problem, including260

integrated growth models (e.g. Bonner et al. 2010) and inter-/extrapolation using261

other available data and/or separate models. Due to the prohibitively large com-262

putational demands of an integrated analysis, we here adopted the latter approach263

and used a detailed growth model previously developed for the study population264

of brown trout (Nater et al. 2018) to impute missing values in the individual size265

covariate. Specifically, we re-fitted the growth model of Nater et al. (2018) to an266

extended set of growth data from 6,843 individuals spanning the years 1952 to 2003267

and used the resulting parameter estimates, plus a correction factor, to calculate268

all missing entries in the body size covariate. The imputation procedure, as well269

as implementation and results of the growth analysis, are described in detail in SI270

S5.271

Autoregressive reporting rate model272

Time-dependent reporting rate rt can be expected to vary considerably over a273

period of 50 years. To accommodate this, we followed the example of Zhao et al.274

(2018) and used a flexible, autoregressive model for time-dependent reporting rates:275

logit(rt) = logit(rt−1) + εrt

where εrt are independently normally distributed random effects. For details on the276
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implementation of the autoregressive model in the context of the overlapping 2-year277

time-intervals in our model, we refer readers to the model code (supplementary278

file nimbleDHMM.R).279

Implementation with NIMBLE280

We implemented the model in a Bayesian framework in NIMBLE (de Valpine281

et al. 2017). Building on the work of Turek et al. (2016), we developed a highly ef-282

ficient custom likelihood function to greatly reduce MCMC runtimes and memory283

load of our analysis (detailed description/evaluation of the custom implementation284

and code are provided in SI S2 and nimbleDHMM.R). To accommodate the 2-year285

interval of our analysis, we split the data into two sets containing only individ-286

uals spawning in even years and in odd years respectively. We then formulated287

the likelihood for both datasets separately, but analysed them jointly under the288

assumption of shared intercept-, slope-, and variance parameters. We used non-289

informative priors for all parameters, and made use of NIMBLE’s default set of290

samplers. The MCMC algorithm was run for 4 chains of 35,000 iterations, dis-291

carding the first 5,000 samples as burn-in. Analyses were run in R 3.5.0 (R Core292

Team 2018) using version 0.6-13 of the nimble package (NIMBLE Development293

Team 2018).294

MODEL IDENTIFIABILITY AND FIT295

With increasing model complexity, and particularly when unobserved states are296

included, it is not obvious whether all parameters within a multi-state mark-297

recapture model can be estimated (Lebreton and Pradel 2002, Gimenez et al.298

2003). Using an extended (hybrid) symbolic method (Cole et al. 2010, Cole 2012,299
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Choquet and Cole 2012) implemented in the computer algebra package Maple, we300

looked at intrinsic parameter redundancy in the above described model including301

different covariate- and random effect structures. Analyses of instrinsic parame-302

ter redundancy, as well as investigation of potential near-redundancy using prior-303

posterior overlap (Garrett and Zeger 2000, Gimenez et al. 2009), are described in304

detail in SI S3. Maple code is provided as supplementary material.305

Subsequently, we tested the fit of our model to the data using posterior predic-306

tive checks (PPCs, Conn et al. 2018). Specifically, we selected 500 evenly spaced307

samples from our posterior distributions and used them to simulate 10 replicate308

mark-recapture-recovery datasets per sample. From each simulated dataset, we309

then extracted several test statistics representing numbers and size distributions310

of recaptured/harvested trout and compared them to the same quantities obtained311

from the real data using visual tools and Bayesian p-values. Methodology and re-312

sults of the PPCs are described in detail in SI S4.313

Results314

MODEL IDENTIFIABILITY AND FIT315

We found that in the absence of random effects, the only model structures that316

were intrinsically identifiable were those where harvest mortality depended on an317

individual time-varying covariate (e.g. body size) and background mortality was318

either constant or dependent on an environmental covariate (Table S3.1). However,319

all models (irrespective of covariate structure) became identifiable when random320

year effects were included on at least harvest hazard or reporting rates (Table S3.1).321

Prior-posterior overlaps were below 35% for all parameters except r1, indicating322
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no major problems with near-identifiability (SI S3.3).323

PPCs indicated that overall, the model produced a decent fit to the data, with324

Bayesian p-values for the majority of considered data properties falling into an325

acceptable range (0.10 - 0.90 for the whole dataset, 0.37 - 0.59 for averages across326

marking cohorts, SI S4.3). We found some evidence for lack of fit for a subset327

of data properties: mean/median size of individuals recaptured two years after328

marking and the number of individuals harvested two to four years after marking.329

In both cases, lack of fit was most pronounced in the beginning the time series330

(Figures S4.3 & S4.7). Graphical tools illustrated that the model’s predictions of331

whole size distributions were generally realistic despite Bayesian p-values for size332

mean, median, and standard deviation sometimes indicating some degree of lack333

of fit (Figure S4.4). For detailed PPC results, refer to SI S4.4.334

SIZE-DEPENDENT FISH LADDER USAGE335

Posterior distributions for all estimated parameters are plotted in Figures S1.2336

to S1.10. Numerical results in the following text are displayed as median [95%337

credibility interval].338

The probability of using the fish ladder – and thus spawning above the dam –339

depended strongly on individual size and, to a lesser degree, on river discharge (Fig-340

ure 3). Intermediate-sized trout (600-700 mm) were most likely to pass the dam341

under any discharge conditions. Small to intermediate-sized trout had a higher342

probability of using the ladder when river discharge was high, whereas the prob-343

ability decreased markedly with size for larger trout irrespective of hydrological344

conditions. Ladder usage probability fluctuated considerably over time (Figure 4c)345

and was predicted to be lower for stocked (0.476 [0.414, 0.546]) than wild-hatched346
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(0.533 [0.477, 0.592]) trout (Figure S1.11).347

CAUSE- AND SIZE-DEPENDENT MORTALITY348

Median mortality hazard rates were estimated at 1.285 [1.090, 1.437] (harvest),349

0.084 [0.021, 0.320] (background above-dam), and 0.115 [0.024, 0.540] (background350

below-dam) per two years for average-sized trout (670 mm). The resulting probabil-351

ities of dying during a 2-year interval due to harvest (ΨH
n ) and due to other causes352

(ΨO
n ) were 0.700 [0.600, 0.752] and 0.045 [0.011, 0.173] for above-dam spawners353

and 0.692 [0.561, 0.751] and 0.063 [0.013, 0.324] for below-dam spawners. Harvest354

hazard rate was predicted to be highest for individuals with a size around 550355

mm (Figure 5a). Background mortality hazard rate, while mostly lower than har-356

vest hazard rate, decreased with size for above-dam spawners and increased with357

size for below-dam spawners (Figure 5a). Consequently, total survival probabil-358

ity increased with size for all trout up to 870 mm, but flattened out for larger359

below-dam spawners (Figure 5b). River discharge was predicted to increase back-360

ground mortality of above-dam spawners only (Figure S1.2). Residual among-year361

random variation was substantial in harvest and especially background mortality,362

with hazard rates at the 97.5 percentile being 1.28- and 69.67-fold higher than363

at the 2.5 percentile respectively, but no temporal trends were evident in either364

mortality cause (Figures 4a & 4b).365

Model results did not support differences in harvest- or background mortality366

due to trout origin: hazard ratios of stocked and wild trout were 0.988 [0.886,367

1.081] and 0.991 [0.617, 1.601] for harvest and background mortality respectively368

(Figure S1.11).369
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TEMPORAL PATTERNS IN REPORTING RATE370

A clear decrease in estimates of reporting rate over the 50-year time-period was371

evident (Figure 4d), with values exceeding 50% in early years but dropping below372

10% towards the end of the time series.373

Discussion374

Individuals can differ greatly in their vulnerability to mortality from different375

causes depending on traits like body size and variation in exposure to mortality376

risk (e.g. as a consequence of reproductive state or location). Particularly when377

some mortality causes are directly linked to human activity, understanding and378

accounting for such individual differences in vulnerability can be crucial for man-379

agement and conservation. In this study, we combined recent advances in mark-380

recapture methodology and Bayesian modelling to investigate factors determining381

vulnerability of large migratory brown trout to harvest- and background mortality382

in a system heavily impacted by fishing and hydropower production.383

SIZE-DEPENDENCE OF CAUSE-SPECIFIC MORTALITY384

Size-dependent survival is well documented for salmonid fishes like brown trout,385

but direction and strength of size effects vary widely across habitats, populations,386

years, and life history stages (Carlson et al. 2008, Drenner et al. 2012). Here,387

we were able to not only reproduce previous findings of positively size-dependent388

survival for the studied trout population (Figure 5b, Haugen et al. 2008), but to389

disentangle the underlying contributions from mortality due to harvest and other390

causes.391
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Model results supported our initial expectation of non-linear dependence of392

vulnerability to harvest and body size : harvest mortality was highest for trout393

with sizes of around 550 mm and decreased for both smaller and larger individu-394

als (Figure 5a). Bell-shaped selectivity curves such as this are typical for gillnets395

(Hamley 1975), which have been commonly used in our study area. The low har-396

vest mortality of large trout, however, may seem surprising given that 44% of the397

reported harvests were due to angling, which often targets larger fish (Lennox et al.398

2017). This may indicate that large trout escape harvest either through their in-399

dividual behavior (e.g. different foraging habitats and prey preferences, learning,400

Lewin et al. 2006, Arlinghaus et al. 2008) or because cohort selection favours more401

cautious fish, allowing them to survive and grow to large sizes (Lennox et al. 2017).402

Effects of body size on background mortality were predicted to be markedly403

different for trout spawning above and below the dam, in particular for larger trout404

(Figure 5a). Trout spawning above the dam generally had low background mortal-405

ity, possibly indicating limited mortality risk associated with dam passage for adult406

fish. Nonetheless, smaller individuals were slightly more vulnerable to dying from407

non-harvest causes than larger ones (92% of posterior samples indicated a negative408

effect of size on background mortality, Figure S1.2). Two mechanisms that may409

be (partially) responsible for this are turbine mortality and energetic costs of dam410

passage. During downriver migration after spawning above the dam, trout have to411

pass through the floodgates or the turbine shaft to return to the lake. As on many412

hydroelectric dams, racks are installed in front of the Hunderfossen power plant’s413

turbine intake to prevent fish from entering, but small fish may slip through the414

grid and subsequently suffer severe injury and die passing the turbine (e.g. Fjeld-415

stad et al. 2018). Alternatively, smaller fish may have reduced survival following416
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dam passage due to large energy expenditures resulting from dam passage (on up-417

and/or downriver migration) itself (e.g. Roscoe et al. 2011) or as a consequence of418

migration delays, particularly if these force individuals to overwinter in the river419

(Fjeldstad et al. 2018). Both of these mechanisms are plausible here when also420

considering that background mortality of above-dam spawners was predicted to421

increase at higher levels of river discharge (Figure S1.2): stronger water flow could422

increase both the risk of being swept into the turbine shaft and the energetic costs423

of passage.424

Unlike trout spawning above the dam, trout spawning below the dam were425

predicted more vulnerable to background mortality at larger sizes (Figure 5a).426

Many mechanisms may be responsible for this; one possibility is related to trout427

density downriver of the dam, which can be very high during the spawning season428

(Kraabøl 2006) and likely results in elevated levels of stress, aggressive interaction,429

and disease transmission. Mortality below the dam could increase with body size430

if larger individuals (due to their size, age, or other traits correlated with large431

body size) were less able to cope with these challenges and/or increased their432

investment into reproduction at the cost of survival under adverse conditions. At433

the same time as having higher background mortality below the dam, large trout434

were also much more likely to spawn below the dam in the first place (Figure435

3), and thus incur the resulting higher mortality. The hydropower dam therefore436

has the potential to function as an ecological trap (Schlaepfer et al. 2002) via its437

size-selective fish ladder and adverse conditions on downriver spawning grounds,438

particularly when considering that the reproductive output of large fish is often439

central to the viability of salmonid populations (Jonsson and Jonsson 2011).440

A second, more practical consequence of the selectivity of the fish ladder is441
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that it substantially limited comparisons of background mortality of above- and442

below-dam spawning trout of the same size in the present study. With small and443

large trout predominantly spawning above and below the dam respectively, direct444

comparisons are only informative for a relatively narrow size range (∼ 700 - 850445

mm). Within this range, predictions for above- and below-dam spawners mostly446

overlap, with the exception of the largest sizes (Figure 5). Additional data – par-447

ticularly on the fates of individuals spawning below the dam – would be necessary448

for a more detailed assessment of the interactive effects of hydropower production449

and spawning location on mortality and for investigating potential mechanisms450

explaining higher mortality large fish below relative to above the dam. What our451

approach did allow, however, was an unbiased quantitative comparison of size-452

dependent harvest and background mortality: the risk of dying due to fishing was453

higher than the risk of dying due to any other cause for almost the entire size454

range, suggesting fishing as the main source of adult mortality in this population455

(see Kleiven et al. 2016, for a similar result on Atlantic cod).456

TEMPORAL VARIATION OVER 50 YEARS457

The present analysis extended over half a century, in which the river-lake system458

experienced variation in abiotic and biotic factors due to river regulation, lake459

restoration, and changes in climate and human activities (Hobæk et al. 2012). It is460

therefore unsurprising that we found high among-year variation in cause-specific461

mortality and fish ladder usage over the course of the 50-year study period (Figure462

4a-c). Background mortality in particular was subject to large fluctuations and463

displayed a marked increase during the period 1997-2001 (also visible in overall464

mortality and survival, Figure S1.12). This coincides with a documented outbreak465
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of a fungal disease in the study population (Saprolegnia spp. infections, possibly466

in combination with ulcerative dermal necrosis, Johnsen and Ugedal 2001). This467

suggests that disease may be a key driver of changes in adult trout mortality468

and has the potential to substantially affect population viability (Hudson et al.469

2002). Since freshwater ecosystems are particularly vulnerable to infectious diseases470

(Okamura and Feist 2011), studying fungal disease dynamics and how are affected471

by harvest, river regulation, and other environmental factors (e.g. temperature,472

Letcher et al. 2015) represents an important venue for future research.473

Unlike cause-specific mortality and ladder usage, which displayed strong fluctu-474

ations but no obvious trends, fisher’s reporting rate decreased clearly and rapidly475

over time: from over 50% of catches being reported in the beginning of the study476

period to less than 10% in the last two decades (Figure 4d). Declining fisher en-477

gagement over time is a known problem in tagging studies without reward tags478

(Piccolo et al. 2012), and highlights the importance of maintaining volunteer par-479

ticipation in long-term studies by providing appropriate feedback and keeping up480

with technological development of tools and platforms for reporting (Dickinson481

et al. 2012).482

MODEL LIMITATIONS483

When analysing long-term ecological data even complex hierarchical models, like484

the ones used here, can fail to sufficiently capture heterogeneity (overdispersion)485

in the data, resulting in lack of model fit (Richards 2008). PPCs (Conn et al. 2018)486

showed that overall our final model fit the data reasonably well, but also revealed487

that goodness-of-fit varied substantially across the study period. Particularly the488

early years in the data, which correspond to the first two decades following dam489
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construction, were characterized by relatively poorer model fit (Figures S4.3 &490

S4.7) Many individuals present during this period were hatched while the river was491

still free flowing and prior to implementation of the stocking programme. They may492

have experienced environmental conditions vastly different from individuals later493

in the time series, possibly resulting in long-lasting cohort effects not uncommon494

for salmonid fishes (e.g. Vincenzi et al. 2016). Furthermore, given the profound495

changes in harvest practices (gradual shift from gillnet to rod fishing, Aass and496

Kraabøl 1999), river regulation (flow regimes, turbine intake grid sizes, etc.), and497

disease prevalence during the 50-year study period, it is also not unlikely that498

size-dependence of mortality and migratory behavior itself has changed over time.499

Overdispersion in our data could thus be related to changes in selection pressures,500

something that may warrant attention in future studies.501

Both parameter estimates and resulting model fit were sensitive to the way we502

imputed body size, illustrating that covariate imputation remains the main chal-503

lenge of mark-recapture models with continuous individual time-varying covariates504

like body size (Pollock 2002, Bonner et al. 2010). Imputing body size using mean505

estimates from an externally run growth model, as we have done here, comes with506

several limitations. First, data used to estimate growth may not be representative507

of the individuals contained in the mark-recapture data. In our case, most data508

on growth in the lake pertains to the subadult life stage (prior to maturation) and509

resulting growth estimates may thus be less well suited for the mature, spawning510

trout that make up the mark-recapture data. Second, growth data is only avail-511

able for 53% of individuals and 74% of years (only up to 2003) contained in the512

mark-recapture data. Size imputation for a non-random sample of individuals was513

thus lacking estimates of year and individual random effects. Finally, and per-514
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haps most importantly, by directly imputing size using mean estimates of growth515

model parameters, we omitted all uncertainty in size estimates arising from residual516

variation in growth (stochasticity) and parameter uncertainty. Since the reduced517

growth model we used matched well with observations (Figure S5.1) and fit of the518

mark-recapture-recovery model was overall decent, it is unlikely that the results519

we present here are biased to a degree as to invalidate any of the main conclusions.520

However, as a result of direct size imputation and likely related lack of model fit,521

some of the patterns and effects may be estimated with inflated precision and this522

has to be considered when interpreting the presented relationships.523

OUTLOOK: DATA INTEGRATION AND POPULATION PERSPECTIVE524

The fundamental issues arising from imputing missing individual covariate values525

can be addressed through integrated analysis of growth and survival/state transi-526

tion processes (Bonner et al. 2010, Letcher et al. 2015), which allows imputation527

of the “true” latent body size and estimation of its effects on vital rates without528

bias and under full consideration of uncertainty. In our case, not just one but529

two distinct data sources provide information on growth: length measurements530

from trout captured in the fish ladder (mark-recapture data) and lengths back-531

calculated from scale year rings of a subset of marked individuals. This provides a532

unique opportunity for integrated analysis of multiple data sets which is likely to533

result in more precise estimates of vital rates, more comprehensive understanding534

of variation therein, and insights into potential discrepancies among different types535

of data (Plard et al. 2019b, Saunders et al. 2019).536

The large drawback of Bayesian integrated analysis is its high computational537

costs, and in the case of the present data and model, computational demands538
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precluded a fully integrated analysis. However, in SI S2 we have shown how imple-539

menting the mark-recapture-recovery model with a custom distribution in NIM-540

BLE can lead to dramatic increases in computational efficiency (32-times faster541

MCMC than with standard JAGS). With the continuing development of both542

computational power and flexible, user-friendly MCMC software, large integrated543

analyses will likely become more feasible in the future.544

More efficient computational solutions are also becoming invaluable when look-545

ing beyond single vital rates (growth, survival) and towards more holistic models546

of population dynamics. Several of the results presented here may have impor-547

tant implications for brown trout management but questions such as whether548

the high harvest mortality of adult trout has consequences for population via-549

bility or whether the dam does indeed function as an ecological trap, can only550

be addressed by adopting a population perspective. The framework of integrated551

population models (Plard et al. 2019b) in general, and recent extensions for pop-552

ulations structured by continuous traits in particular (Plard et al. 2019a), lend553

themselves well to the study of these questions for our system and will follow nat-554

urally from the integration of growth and survival estimation. Fully integrated,555

size-structured population models will further provide new opportunities to study556

the joint impacts of harvesting, stocking, habitat alteration, climate change, and557

disease dynamics (Plard et al. 2019b) and are thus highly relevant for future stud-558

ies aiming to improve understanding and inform management of the trout in lake559

Mjøsa and of animal population inhabiting ecosystems heavily impacted by human560

activity in general.561
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CONCLUSION562

Multi-state mark-recapture models are powerful tools for estimating and under-563

standing survival in animal populations that experience mortality from both natu-564

ral and anthropogenic causes (Schaub and Pradel 2004). We used such a model to565

disentangle harvest- and background mortality of adult brown trout and showed566

that (1) harvest generally outweighed all other sources of mortality and (2) that567

vulnerability to both mortality causes was determined by individual differences in568

body size and migration pattern (dam passage). The use of a novel hazard rate569

parameterization (Ergon et al. 2018) and data from both recaptures and harvest570

recoveries allowed to estimate size-dependence and among-year variation in cause-571

specific mortality, state transition probabilities, and reporting rate without con-572

founding. This framework, including the computationally efficient implementation573

of it, is highly applicable to other studies of cause-specific mortality in populations574

whose vital rates are strongly affected by continuous traits, and may prove particu-575

larly valuable also in the context of estimating correlation among different sources576

of mortality. Finally, we illustrated that the use of an appropriate year random577

effects structure can be a prerequisite to establishing identifiability of complex578

mark-recapture models and is therefore crucial to obtain reliable estimates of vi-579

tal rate parameters. In practice, such random effects can only be estimated when580

data are collected over a sufficient number of years, emphasizing the importance581

of investing in the (continued) collection of individual-based data over long time582

periods (Clutton-Brock and Sheldon 2010).583
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Figures786

Figure 1: Illustration of the biennial spawning cycle and mark-recapture scheme of
the studied trout population. All individuals are marked in the fish ladder while
passing the dam on an upriver spawning migration. Two years later they may be
recaptured on the next spawning migration, but only if they pass the fish ladder
to spawn above the dam (if they spawn below the dam, they are unobservable).
Trout remain in the lake and are unobservable during non-spawning years.
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Figure 2: Design of the trout mark-recapture-recovery model (transitions on two-
year intervals). White states are alive, grey states are dead. Solid borders indicate
states that are at least partially observable, whereas dashed borders indicate un-
observable states. Sn = survival probabilities. ΨH

n / ΨO
n = harvest / background

mortality probabilities (where n indicates the state). p = ladder usage probability.
Indices for individual i and time t are omitted here for simplicity.
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Figure 3: Predictions of the effects of body size on ladder usage probability at
different levels of river discharge. Grey, dashed = low discharge (mean − SD).
Grey-blue, solid = average discharge (mean). Blue, longdashed = high discharge
(mean + SD). Lines represent median prediction, ribbons indicate 95% credibility
intervals. The blue density kernel above the plot visualizes the size distribution of
trout caught in the ladder (data).
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Figure 4: Estimates for time-dependent a) log harvest hazard rate, b) log back-
ground mortality hazard rate (above-dam spawners), c) ladder usage probability,
and d) reporting rate (calculated using random variation and discharge effects).
Lines represent median predictions, ribbons indicate 95% credibility intervals.
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Figure 5: Predictions of the effects of body size on a) harvest and background
mortality hazard rates and b) survival probabilities (under consideration of both
mortality sources). Red and blue curves apply to individuals that have last spawned
above and below the dam respectively. The black curve (harvest) applies to all
individuals irrespective of their last spawning location. Lines represent median
predictions, ribbons indicate 95% credibility intervals. Density kernels above the
panels illustrate the informative data range: red = size distribution of individuals
captured in the fish ladder (above-dam spawners, raw data), blue = simulated size
distribution of unobservable below-dam spawners.
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