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Abstract 

• In mountain regions average temperatures decrease at higher altitudes. In addition, 

microenvironmental conditions can strongly affect microclimate and may counteract 

average effects of altitude.  

 

• We investigated winter frost hardiness of Arabidopsis thaliana accessions originating from 

13 sites along altitudinal gradients in the Southern Alps during three winters on an 

experimental field station on the Swabian Jura and compared levels of frost damage with the 

observed number of frost days (<1°C) in eight collection sites.  

 

• We found that frost-hardiness increased with altitude in a log-linear fashion. This is 

consistent with adaptation to higher frequency of frost conditions, but also indicates a 

decreasing rate of change in frost hardiness with increasing altitude. Moreover, the number 

of frost days measured with temperature loggers at the original collection sites correlated 

much better with frost-hardiness than the altitude of collection sites, suggesting that 

populations were adapted to their local microclimate. Notably, the variance in frost days 

across sites increased exponentially with altitude.  

 

• Together, our results suggest that strong microclimate heterogeneity of high alpine 

environments may preserve functional genetic diversity in small populations. This 

challenges the suitability of habitat predictions based on large scale climatic variables (or 

proxies, such as altitude) for topographically complex areas. 
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Introduction 

In sessile organisms like plants local adaptation along environmental gradients such as aridity or 

temperature gradients may lead to clinal trait variation. For example, seed dormancy increases 

linearly with decreasing rainfall in many annual dryland species (Hacker, 1984; Hacker & Ratcliff, 

1989; Volis et al., 2002; Kronholm et al., 2012; Wagmann et al., 2012; Tielbörger et al., 2012; 

Lampei et al., 2017). Mostly, environmental gradients result from geographic or geological 

conditions (e.g. altitude differences or rain shadow) that influence local climatic conditions. 

However, while geography may cause gradual changes in environmental variables at large spatial 

scale, microtopography may confound it at small spatial scale, resulting in a heterogeneous 

microclimate landscape. Exposure, snow cover, soil type and soil depth are just a few potential 

confounding factors which often vary on a local scale. For these reasons, geographic gradients such 

as latitudinal or altitudinal gradients are often poor proxies for the continuous change of single 

environmental factors (Körner, 2007; Graae et al., 2012; De Frenne et al., 2013). These effects of 

microtopography may severely complicate the modeling of climate change effects for the prediction 

of species distribution ranges (Dobrowski, 2011a; Graae et al., 2012; Oldfather & Ackerly, 2018). 

For example, migration to higher altitude may not be sufficient to follow the climatic niche because 

soil temperatures may be decoupled from air temperatures. On the other hand, a heterogenous 

microclimate landscape may allow species to follow their climatic niche by migrating just “around 

the corner” (i.e. change exposition) instead of moving at larger geographical scales. Thus, it is 

important to understand how microclimate changes along altitudinal gradients and how this affects 

the adaptation and distribution of plants.  

One factor that changes with higher altitude is temperature. On average, atmospheric temperature 

drops by 5.5 K per 1000 m altitude (Körner, 2007). This results in a shift of growing season with 

vegetative growth starting later at higher altitudes, which partly offsets the average temperature 

difference for plants. Nevertheless, at high altitudes frequent and quick weather changes may lead 

to sudden frost periods. This explains why the ability to survive frost events is a typical adaptation 

to climate at higher altitudes (Sakai & Otsuka, 1970). For instance, in the central European Alps 

species with a higher upper distribution boundary showed increased summer frost resistance 

(Taschler & Neuner, 2004). Also, Andean forbs and grasses from a high-altitude site at 3600 m 

showed higher frost resistance than conspecifics from a lower site at 2800 m (Sierra-Almeida et al., 

2009). However, higher altitude populations are not always more resistant to frost. In Sweden, 

Pinus sylvestris showed higher frost resistance with higher latitude, but not with higher altitude 

(Sundblad & Andersson, 1995). We previously showed that Southern Alpine A. thaliana 

populations from 2,200-2,350 m were not better adapted to frost experience than valley populations 
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from 600-1,000 m altitude despite significant variation in frost-hardiness among populations 

(Günther et al., 2016). In this study we argued that microclimatic effects together with a delayed 

start of the growing season may reduce the risk of frost damage at higher altitude sites. According 

to the “law of the relative constancy of habitat” a species would shift its habitat niche towards 

warmer micro-sites when the climate is cold in relation to its core habitat (Walter & Walter, 1953). 

This raises the question to which extent climatic conditions at higher altitude select for higher 

freezing tolerance and to which extent plants use sites with a warm microclimate, or “microrefugia” 

(Dobrowski, 2011b), to avoid freezing damage.  

 

To study this question, we tested frost-hardiness of A. thaliana plants from Southern Alps in the 

provinces Bolzano and Trento, collected from sites ranging in altitude from 280 to 2,355 meters 

above sea level. Plants were subjected to winter freezing under near natural conditions during three 

winters on the Swabian Jura. Additionally, we monitored top soil temperatures over two years at 

eight sites with data loggers. Combining these data sets, we compared the effect of altitude with the 

pure effect of freezing probability on the evolved frost-hardiness of plants. As annual species A. 

thaliana is part of an underrepresented category in the high alpine flora. Nevertheless, A. thaliana 

was found up to an altitude of 4,200 m a.s.l. (Al-Shehbaz & O’Kane, 2002; Zeng et al., 2017). 

There is some evidence that A. thaliana populations can adapt to high altitudes. In a genome scan, 

Kubota et al. (2015) found convergent differentiation of genomic regions that were associated with 

ecological relevant parameters in A. thaliana plants from altitude transects on two independent 

mountains. Also, in a common garden study, high-altitude populations of the Eastern Pyrenees 

showed higher aboveground biomass and increased fecundity, suggesting selection for higher vigor 

(Montesinos-Navarro et al., 2011). In contrast, accessions from high-altitude populations in 

Switzerland were smaller and showed a reduced vigor across three common gardens at different 

altitudes (Luo et al., 2015), although a dwarf accession showed increased fitness at high altitudes. 

Vidigal et al. (2016) found that seed dormancy decreased, seed size increased and plants flowered 

later with higher altitude of the collection site on the Iberian Peninsula. In populations from the 

North Italian Alps, a high differentiation of genomic regions with annotations related to ecological 

relevant parameters such as soil conditions, pathogen response or soil and light response was 

observed (Günther et al., 2016). However, geographic patterns of the traits frost resistance, UV-B 

and light stress response did not suggest adaptation to high altitude (Günther et al., 2016). So far, 

we are not aware of any other study that studied frost-hardiness of A. thaliana population from 

different altitudes. Tests with low altitude accessions of A. thaliana suggest that the species avoids 

freezing via super cooling (Reyes-Díaz et al., 2006), although freezing tolerance also plays an 

important role. Zhen and Ungerer (2008) showed that accessions varied in their freezing tolerance 
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in a clinal fashion with increased freezing tolerance at high latitudes. In our study we tested the 

following predictions: (1) Frost-hardiness of A. thaliana increases with altitude. (2) The average 

frequency of frost explains frost-hardiness better than altitude. (3) Altitude is a better predictor of 

frost frequency at low-altitude sites than at high altitudes. To test these hypotheses, we included a 

larger number of populations from the Southern Alps collected at different altitudes and microsites 

to compare the role of different spatial scales in adaptation to altitude.  

 

Materials and Methods 

 

Plant material  

We collected and geotagged seeds of Arabidopsis thaliana accessions in the Southern Alpine 

provinces of Bolzano and Trento during summers from 2006 to 2008 (Fig. 1, Table 1). Also, we 

collected accessions from new micro-sites within the Finail site in summer 2011 to increase the 

sample size from this location. Local populations at the collection sites differed considerably in 

size, which is mirrored in our experiments (Table 1). We reared and self-fertilized plants under 

standard greenhouse conditions to produce S1 seeds for the experiments.  
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Fig. 1. Map of the A. thaliana collection sites in the Southern Alpine provinces of Bolzano and 
Trento with heat color indicating the altitude of each site. Map source: 
http://maps.stamen.com/terrain/?request=GetCapabilities&service=WMTS&version=1.0.0#11/46.5
223/10.9980. 
 

Experiments 

In August 2010 we sowed seeds onto frost-hardiness testing tables situated on the experimental 

station “Oberer Lindenhof” of University Hohenheim on the Swabian Jura (48°28’24 N, 9°18’18 E, 

720 m a.s.l.). The tables were 22 cm deep, 70 cm wide and 2.5 m long and their bottom was about 

60 cm above the ground (Fig. 2a,b). We filled the tables with compost (pH=6.9, P=31.0 mg/100g, 

K=48.0 mg/100g, MgCaCl2=5.6 mg/100g, humus=5.18 %) till about 5 cm below the top.  
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Site 
Altitude  

(m) 

Exposition 

 

Disturbance  

(human) 

Grazing/ 

trampling 

Accessions 

2010/2012 

Collection 

year 

Temperature 

Logged 

Altenburg (BZ) 625 Flat strong non 8/4 2008 - 

Guntschnaberg (BZ) 730 SE little non 8/4 2006 - 

Bozen-Train (BZ) 280 Flat strong non 3/3 2006 - 

Castelfeder (BZ) 390 SE-SW intermediate non 12/4 2008 2012-15 

Cima Vioz (TN) 2355 S undisturbed chamois 1/4 2007, 2012 2012-13 

Coronaccia (TN) 2210 SSW undisturbed chamois 4/4 2007 2013-15 

Finail (BZ) 2166 SE undisturbed chamois 6/4 2007, 2011 2012-15 

Laatsch (BZ) 990 SE undisturbed non -/4 2007 2012-15 

Mitterberg (BZ) 565 S-SE undisturbed non 8/4 2008 2012-15 

Roverè della Luna (TN) 315 Flat intermediate non 1/1 2008 
- 

Schnatz (BZ) 1709 SE intermediate Sheep 1/1 2008 2012-15 

Vetzan (BZ) 880 S little non 10/4 2008 2012-15 

Vorderkaser (BZ) 1770 SE intermediate cows 3/3 2007 2012-13 

Table 1 Characterization of sites, numbers of A. thaliana accessions tested and period of logged 
temperatures. In brackets province codes (BZ = Bolzano, TN = Trento). 
 

Then we watered the soil extensively before adding another layer of moist humus that filled the 

tables to the top. Rows of seeds were parallel to the short edge of each table, 15 cm apart. We 

sowed each accession to two random rows (Fig. 2c), and number labeled them for blinded 

evaluation. Seeds were watered regularly to induce germination. After germination, we left plants to 

natural rainfall and irrigated only during dry periods to prevent plant loss by drought. On days with 

predicted snowfall during winter, a transparent cover that allowed air flow was put over the plants 

to keep them free of snow for direct frost-exposure (Fig. 2a, b). 

 

In August 2012, we installed a second experiment on the frost-hardiness testing tables. This 

experiment was similar to the first one, but this time we used a more balanced experimental design, 

because in the first year, the number of accessions differed strongly among populations (Table 1). 

For a more even representation, we sowed four random accessions from each site of origin, if 

available, each with two replicates. If the number of available accessions was below four, the 

available accessions were replicated more often to reach eight replicates for each site.  
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Fig. 2. Frost testing boxes on the Swabian Jura and A. thaliana plants at the time of frost damage 
evaluation. (a) Transparent covers keep the snow from plants and poles ensure exposure to frost 
from all sides. (b) The plants appear unharmed when temperatures are below or close to zero. (c) 
The damages are visible after thawing of the damaged tissue. Here the left row was completely 
damaged while the right row survived almost unharmed.  
 

In August 2013 we set up a third experiment on the frost-hardiness testing tables. This time, space 

was limited. Therefore, we used population replicates instead of individual accessions. We mixed 

equal amounts of seeds of four accessions for each site before sowing. Only in the sites Vorderkaser 

(n=3) and Schnatz (n=1) we had fewer accessions available. In this design, each of the six replicate 

rows resembled a true replicate for the collection site. 

 

For each of the three experiments the daily minimum and maximum temperatures were obtained by 

the weather station of the experimental site (Fig. S1).  

 

Assessing frost damage 

After the exposure of plants to natural winter frosts on the Swabian Jura, we evaluated the percent 

frost damaged tissue visually, while the accession identity was hidden from the monitoring person. 

Because frost damage is not visible while plants are still frozen, we let the plants recover and 

monitored frost damage some weeks after a period with strong frost (Fig. S1). At this time the 

affected tissue showed clear signs of decay (Fig. 2c). This time lag between frost damage and its 
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evaluation is unlikely to bias our estimates due to the low growth rates during this time. A similar 

approach for assessing frost damage was used by Zhen and Ungerer (2008).  

 

Logging on-site soil temperature 

In each site, we logged temperature using waterproof Hobo® 8K Pendant® Temperature Loggers 

from Onset® (470 MacArthur Blvd., Bourne, MA 02532, USA). We submerged two temperature 

loggers in each site 3 cm in the ground to record the topsoil temperature with a 2 h resolution for the 

whole year. This way we exposed the data loggers to the same top-soil temperature that the plants 

experienced. Top-soil temperature is probably the most relevant temperature for plant survival 

because winter-annual Arabidopsis thaliana plants remain ground-bound rosettes until they start to 

reproduce in spring (Ågren & Schemske, 2012). We attached the data loggers to a nylon cord of 50-

100 cm length which we covered by soil and tied to a nail that was fixed in the soil nearby a color 

marked shrub or rock, to facilitate recovery in the next summer. We recorded temperatures in nine 

sites that represent the altitudinal range covered by this study. For most sites we measured 

temperatures over a period of 2.5 years from July 2012 until January 2015, except for Cima Vioz 

and Vorderkaser (winter 2012/2013 only) and Coronaccia (July 2013 until January 2015). We also 

recorded micro-habitat specific temperatures in the two highest sites, Cima Vioz and Coronaccia. 

Here, A. thaliana plants grew underneath steep rock walls and in cracks in these rocks. We installed 

data loggers both below the rocks and in rock cracks that were large enough to support soil 

accumulation to ensure that soil temperature was measured.   

 

Analysis of temperature records 

We trimmed temperature data from each data logger to cover two years starting and ending in mid-

summer. For each data logger, we counted the number of days with temperatures below 1 °C, 

because our sample included sites in the valley where soil temperatures did not decrease below zero 

during winter. We averaged over all data loggers and recorded winters for each site to obtain an 

estimate for frost exposure of winter-annual plants. This estimate could be biased if the two winters 

were very different because we did not have records from both winters for all sites. Using the sites 

with full records, we fitted a generalized linear model with Poisson error family (corrected for 

overdispersion), to test if years differed across sites in their counts for days with temperatures below 

1 °C (frost days). The model contained the dependent variable frost days and the independent 

variables year, site and their interaction. As expected, the number of frost days differed strongly 

between sites (F=125, df=5/14, p<0.001). However, there was no significant difference among 

years (F=1.29, df=1/19, p=0.28) and no interaction between sites and years (F=0.7, df=5/9, p=0.64). 

We concluded that the two winters were similar enough and required no correction.  
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Frost damage 

We evaluated frost damage as an average over all plants in a row (Fig. 2b, c). The estimated frost 

damage is then a measure of central tendency. This explains why binomial models fitted to the odd 

ratio of damaged over undamaged tissue showed very large overdispersion (dispersion parameter = 

35.5) and the distribution of the residuals deviated strongly from normality. The central limit 

theorem states that the distribution of means quickly approaches normality with increasing sample 

size of each mean, independently of the distribution of the data. We therefore used percentage frost 

damage as dependent variable with a Gaussian error distribution instead, which considerably 

improved the fit of residuals with a normal distribution. To test if frost damage correlates with the 

altitude of collection sites, we fitted a linear mixed effects model with the following equation: 

 

frost damage𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜇𝜇 + ln(𝒂𝒂𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝑖𝑖 + 𝒚𝒚𝑙𝑙𝑒𝑒𝑒𝑒𝑖𝑖 + ln(𝒂𝒂) × 𝒚𝒚𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑎𝑎𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖   Eqn 1 

 

where µ is the overall intercept, ln(altitude)i the fixed effect of the natural logarithm of altitude of 

population i, yearj the fixed effect of year j and ln(a)×yij their interaction. With the random effect 

ack of accession k we accounted for the non-independence of replicates of the same accession. The 

term εijk is the residual associated with the replicate of accession k from altitude i in the year j. We 

computed the model using the R package lme4 (version: 1.1-17; Bates et al. 2015). To test whether 

altitude or days below 1° C explained more variance in frost damage, we included this variable in 

the fixed effects part according to the following equation:  

 

frost damage𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜇𝜇 + ln(𝒂𝒂𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝑖𝑖 + 𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓𝑙𝑙_𝑙𝑙𝑒𝑒𝑑𝑑𝑓𝑓𝑖𝑖 + 𝑑𝑑𝑙𝑙𝑒𝑒𝑒𝑒𝑖𝑖 + 𝑒𝑒𝑎𝑎(𝑑𝑑𝑙𝑙𝑒𝑒𝑒𝑒)𝑖𝑖(𝑖𝑖) +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 Eqn 2 

 

with the overall intercept µ, the logarithmic altitude effect of population i, the effect of the number 

of frost days of population i, and the random effects of year j and of accession k nested in year j. 

The term εijk is the residual defined like in Eqn 1. The random effects were tested for models fitted 

with restricted maximum likelihood (REML) using either likelihood ratio tests by comparing two 

nested models or using the function ranova from the R package lmerTest (version: 3.01; 

Kuznetsova et al. 2017). For the fixed effects we refitted the models using maximum likelihood and 

applied Bayesian inference with a flat prior using the nsim-function in the R package arm (version: 

1.10-1; Gelman and Yu-Sung 2018). As a measure of statistical significance, we present the 

Bayesian 95% credible interval (CrI 95%) for each estimate.  
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Further, we tested for a linear relationship between soil temperature (frost days) and altitude of the 

collection site using the lme function from the r-package nlme package in R (version: 3.1-137; 

Pinheiro et al. 2016), because it includes functions to account for heterogeneous variances. We 

fitted a mixed effects model of the form:  

 

frost days𝑖𝑖𝑖𝑖 =  𝜇𝜇 + 𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 + 𝑑𝑑𝑙𝑙𝑒𝑒𝑒𝑒𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖       Eqn 3 

 

The model contained the overall intercept µ, the fixed effect of the altitude of site i and the random 

effect of year j. The term εij is the residual of the replicate in altitude i and year j. To model the 

variance proportionally to altitude we used the varPower function with the weights argument in the 

lme function. This means that the residuals had the form:  

 

𝜀𝜀𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎2 × |𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖|2𝐶𝐶)        Eqn 4 

 

Here N is a normal distribution with mean zero and variance σ2 multiplied with the power of the 

absolute value of the altitude of site i. The variance function coefficient C is estimated from the data 

(Zuur et al., 2009).  

 

Results 

Accessions from higher altitude are more frost resistant 

Our common garden experiment showed that frost damage significantly decreased with increasing 

altitude of the collection site if values were averaged across all three experiments (b=-19.2, CrI 

95%: -32.8; -5.8). The three years differed strongly in frost damage, which was mostly due to strong 

variation in frost damage of the low altitude populations (Table 2). The variance of predicted frost 

damage across experiments at 280 m (σ2=827) was ten times the variance of frost damage estimates 

from 2,355 m altitude (σ2=80.4). Frost damage was strongest in the first winter (2010/2011; Fig. 

3a), lower in the second winter (2012/13; Fig. 3b) and lowest in the third winter (2013/14; Fig. 3c). 

These differences between experiments match the number of relevant deep frost events (below -7 

°C), in each winter. In a previous freezing experiment we found that the exothermic peak of 

freezing plant material of South Tyrolian A. thaliana plants was around -7 °C (Günther et al., 

2016). The number of days with temperatures below -7 °C in the respective winters before frost 

damage was 18 in the first, 14 in the second and 2 in the last winter (Fig. S1). Consistent with the 

general frost damage the regression slope changed strongly between experiments (Table 2). Frost 

damage reduced dramatically with altitude of the collection site in the first winter, the slope was 

less steep in the second winter and insignificant in the last winter (Table 2). Notably, the model had 
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been significantly improved by fitting frost damage to the natural logarithm of altitude, instead of 

assuming a simple linear relationship (χ²=4.8, df=0, p<0.001). This indicates that frost-hardiness 

showed a stronger correlation with altitude at the low end of the gradient than at its high end. To 

demonstrate the effect size of this change we calculated the frost damage increment for the lowest 

and the highest 500 m altitude segment (Table 2). The frost hardiness increment was 4.3-fold lower 

for high altitude populations than for populations in the lowest altitude segment. This indicates that 

the altitude difference between populations is less important for variation in frost hardiness at high 

altitude.  

 

 
Fig. 3. Frost damage of A. thaliana populations as a function of the altitude of the collection site. 
Populations from higher altitudes show reduced frost damage especially in (a) winter 2010/11, (b) 
winter 2012/13 and less in (c) winter 2013/14. The regression line is shown together with its 95% 
credible interval. In addition, for each site the averages and standard errors across accession means 
are presented. In the last year (c) the standard error was estimates across samples. 
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Experiment 

(Winter) 

Predicted frost damage Predicted change in frost 

damage 

Predicted frost damage 

increment 

Low altitude  
(280 m a.s.l.) 

High altitude  
(2,355 m a.s.l.) Slope b Lowest 500 m Highest 500 m 

2010/11 92 (84; 99) 26 (18; 34)         -31 (-37; -25) -32 (-35; -28) -7 (-9; -6) 

2012/13 77 (67; 86) 37 (28; 45)         -19 (-34; -4) -19 (-24; -14) -4 (-6; -3) 

2013/14 36 (21; 51) 18 (9; 29)         -  8 (-26; 11)  -8 (-16, 0.33) -2 (-0.3; -4) 

Table 2. Model predictions for the percentage of frost damaged leaf area and the change in frost 
damage with altitude for the high and the low altitude end of the gradient in the 3 experiments. The 
corresponding 95% credible intervals are presented in brackets. 
 

Top-soil temperature is a better predictor than altitude 

To compare the effect of altitude with in-situ measured temperature, we reduced the dataset to the 

populations where the temperature was recorded and included the year as a random effect 

component (see methods for details). We found that the number of recorded frost days in the 

collection site (days with minimum temperature below 1° C) was a stronger predictor for 

differences in frost damage than the altitude of the collection site as can be seen from their partial 

regression slopes (Fig. 4). Also, when comparing two models that differed only in their fixed 

effects, the model with frost days was significantly better than the model with altitude (χ²=23.6, 

df=0, p<0.001), and in a model with both variables, frost days explained more variance (F=32.1) 

than altitude (F=4.7). Averaged across the three experiments the partial regression slope suggested a 

reduction in leaf damage of -0.28 (CrI 95%: -0.37; -0.18) with each additional frost day in the 

collection site of a population. In other words, if the number of frost days increased by 10 days from 

one to the next collection site, the frost damage of the respective plants in our common garden 

experiments decreased on average by 3%. The slope for altitude was -7 and was also significant 

(CrI 95%: -15; -0.66). These two slopes are not directly comparable, because altitude was log-

transformed, showing that the change in frost damage was strong between valley populations and 

decreased toward high altitudes, as was found for the individual years (Table 2). As an additional 

test whether altitude or the number of frost days better explained the variation in frost damage we 

use the posterior distribution of 2,000 simulations to ask how likely it is to observe a slope equal to 

or greater than zero. While for altitude non-negative slopes were observed in 2% of the simulations, 

for frost days all slopes were negative, again demonstrating the superiority of frost days in 

explaining the observed differences between populations in frost damage.  
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Fig. 4. Partial regression lines and their 95% credible interval (grey) for frost damage of A. thaliana 
populations regressed on altitude (a) and frost days (b) averaged across the three experiments. 
Points represent population averages with standard error.  
 

Mismatch between altitude and soil temperature increases with altitude 

The observation that the number of frost days explained variation in frost damage better than 

altitude, suggests that the probability to experience ground frost is not a simple function of altitude. 

To better understand how altitude influences the number of frost days we next tested whether there 

is a linear relationship between soil temperature and altitude of collection sites. Altitude indeed had 

a strong positive effect on the number of days below zero (Fig. 5a; F1/24=25.46, p<0.001), however 

the residual distribution was heterogeneous, as indicated by a significant Fligner-Killen test of 

homogeneity of variances (χ2=17.03, df=8, p=0.029). Notably, the variance strongly increased 

together with altitude as can be seen from the population averages displayed in Fig. 5a. We modeled 

this effect with a power function for the variance using the weights argument in the lme function 

(Pinheiro et al., 2016). As a result, the effect of altitude increased (F1/24=40.17, p<0.001) and the 

corrected residuals were distributed evenly. A likelihood ratio test showed that the correction of 

variance heterogeneity improved the model (ΔAICc=-7.5, L=10.5, df=1, p=0.001). The variance 

power function is plotted in Fig. 5b and suggests an exponential increase of residuals with altitude 

with a 15-fold increase in variance from 280 to 2,355 m altitude.  
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Fig. 5 The effect of altitude on top-soil temperature. (a) Regression of frost days on altitude with 
site averages across data loggers and winters and standard errors. (b) Fitted values for the variance 
power function of the form 𝑓𝑓(𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) = |𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖|(2×𝐶𝐶) (C = variance function coefficient) that 
was used to model the increase of residuals with altitude.  
 

To characterize the difference between two closely located microhabitats that harbored A. thaliana 

populations at the highest altitude we compared top-soil temperatures in rock cracks and below 

rocks (Fig. 6). In both sites the two microhabitats differed strongly in number of days with ground 

frost (i.e., days with temperature < 0°C). Here we counted the days with soil temperatures below 

zero because all temperature records included sufficient observations of ground frost. In Cima Vioz, 

we measured 29 ground frost days in the rock crack and 13 in the soil below the rocks during the 

winter 2012/2013. The Coronaccia site experienced 55 frost days in the rock crack and 82 in the soil 

below the rocks in the winter 2013/2014. Although measurements were taken in different winters, 

the daily maximum temperatures showed much higher variance on the ground (Cima Vioz: σ2=53.7; 

Coro: σ2=50.1) than in the rock crack (Cima Vioz: σ2=17.4; Coro: σ2=31.1) at both sites. Taken 

together, these data demonstrate that microsites indeed strongly differ in their temperature regime in 

the high mountains.  
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Fig. 6 Top-soil temperatures across the year in two microhabitats of A. thaliana in the two highest 
populations. (a) A. thaliana plants growing in rock cracks at the site Cima Vioz. (b) Minimum and 
maximum top-soil temperatures of the two microhabitats rock and ground in Cima Vioz with the 
logger positions indicated by colored arrows in (c). (d) Minimum and maximum top-soil 
temperatures in Coronaccia with the logger positions indicated in (e).  
 

Discussion 

Frost-hardiness of Arabidopsis thaliana increases with altitude 

In line with our initial prediction, frost-hardiness increased on average with the altitude of the 

collection site. This result is consistent with the well-documented difference in frost-hardiness 

between low-altitude and high-altitude species (Earnshaw et al., 1990; Taschler & Neuner, 2004). 

However, with respect to intra-specific variation in frost-hardiness the existing literature is more 

ambiguous. Sierra-Almeida et al. (2009) found higher frost resistance of populations from higher 

altitudes in four out of seven studied species from the high Andes. In the three remaining species 

frost-hardiness did not differ between high and low altitudes. Frost-hardiness also increased with 

higher altitude in the fern Blechnum penna marina from New Zealand (Bannister & Lee, 1989) and 

in Solanum acaule from Peru (Li et al., 1980). Trifolium repens, on the other hand, showed no 

differences in frost-hardiness between low- and high-altitude populations in Sweden (Junttila et al., 

1990). These differences between studies and species are surprising given that frost damage entails 

a serious fitness cost (Agrawal et al., 2004). It suggests that altitude of provenance is not 

consistently a good proxy for frost-hardiness. Notably, in our study a log-linear curve greatly 

improved the model, suggesting that frost-hardiness changed rapidly with altitude at lower altitudes, 
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but slowly at high altitudes. Indeed, frost-hardiness did not increase much above 1000 m despite 

strong variation among populations. This observation reflects our results in an earlier study with A. 

thaliana populations from the same region in South Tyrol, in which the differences in frost-

hardiness among populations did not co-vary with the altitude of the five collection sites (Günther 

et al., 2016). In the present study we included more populations from lower altitudes, which 

improved the statistical power of the analysis of the relationship between frost-hardiness and 

altitude. Besides the variation among populations we also observed differences among years. On 

average these differences matched the differences in severe frost days at the common garden site on 

the Swabian Jura between the three experiments. However, beyond these differences also some 

individual populations varied strongly between the first two experiments, for example at Altenburg, 

Bozen-Train, Schnatz or Cima Vioz (Fig. 3). These differences may have several reasons. First, the 

experimental design differed among years, with some populations being represented by different 

accessions in different years (Table 1). However, two populations that were among the group 

showing the strongest variation (Bozen-Train and Schnatz) were always represented by the same 

accessions throughout the experiment. Therefore, we suggest that these changes among years may 

be rather attributable to differences in frost-acclimation. The range of temperatures that precede a 

frost event is very important for plant survival (Thomashow, 1999). Since other populations like 

Castelfeder, Vetzan and Finail showed nearly the same frost damage in the first two experiments 

(Fig. 3), our results indicate that populations vary not only in frost-hardiness, but also in their 

specific requirements for acclimation conditions. This has been observed previously for frost-

hardiness in Trifolium repens (Junttila et al., 1990). Taken together, we observed high variation 

among populations and experiments that was partly associated with altitude. One reason for the 

high tendency of provenances to depart from the linear prediction for their altitude may be that 

frost-hardiness is more closely connected to the local microclimatic conditions than to the general 

climatic conditions at a specific altitude level.  

 

Probability of ground frost explains frost-hardiness better than altitude 

We found that the frequency of ground frost estimated from top soil temperatures at collection sites, 

was superior to altitude as predictor of frost-hardiness differences between A. thaliana populations. 

In contrast to altitude, the frequency of frost days showed a linear relationship with frost-hardiness. 

This is in line with our second prediction and confirms that the microclimate rather than the altitude 

of a site accounts for the frost-hardiness of local populations. Mountains are characterized by a high 

degree of micro-topographic differences that influence the local microclimate 

(Briceño et al., 2014; Lembrechts et al., 2018). In particular, local frost conditions play an 

important role in microclimate adaptation. Wos and Willi (2018) showed that genotypic differences 
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in frost-hardiness of Arabidopsis lyrata were linked to vegetation cover on a scale of a few meters 

in a sand dune landscape. In alpine environments, populations of Aciphylla glacialis from sites with 

early snow melt showed stronger frost-hardiness than populations from sites with later snow melt 

(Briceño et al., 2014). Also, frost damage of flower buds from three mountain wildflower species 

was associated with differences in snow accumulation, snowmelt pattern and cold air drainage on a 

scale of few meters (Inouye, 2008). Together these studies provide substantial evidence that 

microclimatic conditions independently of altitude affect plant growth and fitness. Furthermore, the 

mild microclimate of south exposed sites in alpine ecosystems supports plant growth and 

establishment of species whose core distribution range is at much lower altitude (Lembrechts et al., 

2018). Our focal species, A. thaliana can be seen as a typical example for this phenomenon. As 

annual plant, it shows a life history that is strongly underrepresented in high alpine plant 

communities (Körner, 1995). In the present study A. thaliana populations occupied only SE to SW 

exposed slopes at high altitude (Table 2). In conclusion, microclimatic heterogeneity is strong in 

alpine environments and may allow species to occur at higher altitude than would be expected 

based on their ecological niche.  

 

Ground frost probability increasingly varies with higher altitude 

We observed an increasing variance in top-soil temperature with increasing altitude of the site. 

Some high-altitude sites showed a similar number of frost days as low altitude sites, suggesting that 

at high altitude some A. thaliana populations exist in favorable microrefugia, which is consistent 

with the “law of the relative constancy of habitat” of (Walter & Walter, 1953). Such microrefugia 

are not uncommon in high mountains (Dobrowski, 2011b; Graae et al., 2012). According to Graae 

et al. (2012), the local temperatures in high mountain sites, when measured in-situ, are mostly 

higher than expected from interpolations across weather stations. The authors attributed this effect 

to inverted temperatures in winter, when cold air downdrafts hinder the accumulation of cool air at 

high-altitude sites. In line with this suggestion, all high-altitude sites in our study were situated on 

steep predominantly south-exposed slopes well above the cold air drainage that must be expected in 

the couloirs. Microclimatic conditions may also be influenced by differences in the effective heat 

capacity of soil and base rock. Accordingly, we found strong differences in temperature profiles 

between soil in rock-cracks and the soil below the rocks, which represent two microhabitats that 

were occupied by A. thaliana in the two highest sites. Specifically, the soil temperature in rock 

cracks showed reduced variation in summer, which can serve to buffer extreme heat peaks. 

However, also the most frost-hard population Finail was one of the high-altitude sites, which 

demonstrates that A. thaliana was not restricted to warm microrefugia at high altitudes. Besides 

habitat sorting according to the law of Walter and Walter (1953), also adaptation in frost-hardiness 
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played a role in the successful survival of A. thaliana at high-altitude sites. In this population plants 

were found underneath larch trees which intercept snowfall reducing the snow depth beneath their 

crown. Snow layers are known to function as insulating layers that efficiently reduce frost damage 

(Inouye, 2008). This also matches the observation that frost-hardiness was associated with 

vegetation cover in A. lyrata (Wos & Willi, 2018). The potential reasons for microclimate 

heterogeneity are multifold. Together, our results suggest that at high altitude microclimate effects 

on top-soil temperatures may overcome average altitude effects. This was also suggested by Shreve 

(1924), who compared soil temperatures of north and south slopes at different altitudes. However, 

in contrast to Shreve (1924) who chose representative sites for each altitude, our sites mark actual 

populations of a species and we show that the microclimate had strong effects on local plant 

adaptation. This highlights two aspects that may be important for the survival of some plant species 

in the face of climate change. First, the microclimate heterogeneity of high alpine environments 

may preserve a high functional genetic diversity in small populations. Genomic results from our 

previous study suggested that high and low altitude populations of A. thaliana from South Tyrol 

split before the last glacial maximum, ca. 18.000 years ago (Günther et al., 2016). Second, the 

observed microclimate heterogeneity and its effects on the persistence of differently adapted 

populations at high altitude suggests, that using large scale climatic parameters to predict the fate of 

a species in a global warming scenario, as is common practice in climate-envelope modeling, may 

seriously underestimate the suitable habitat that is available in topographically complex regions.  
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