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Abstract

Recent work has highlighted the scale and ubiquity of subject variability

in observations from functional MRI data (fMRI). Furthermore, it is highly

likely that errors in the estimation of either the spatial presentation of,

or the coupling between, functional regions can confound cross-subject

analyses, making accurate and unbiased representations of functional data

essential for interpreting any downstream analyses.

Here, we extend the framework of probabilistic functional modes

(PFMs) [Harrison et al. 2015] to capture cross-subject variability not only

in the mode spatial maps, but also in the functional coupling between

modes and in mode amplitudes. A new implementation of the inference

now also allows for the analysis of modern, large-scale data sets, and

the combined inference and analysis package, PROFUMO, is available

from git.fmrib.ox.ac.uk/samh/profumo. Using simulated data, resting-state

data from 1,000 subjects collected as part of the Human Connectome

Project [Van Essen et al. 2013], and an analysis of 14 subjects in a variety of

continuous task-states [Kieliba et al. 2019], we demonstrate how PFMs are

able to capture, within a single model, a rich description of how the spatio-

temporal structure of resting-state fMRI activity varies across subjects.

We also compare the new PFM model to the well established inde-

pendent component analysis with dual regression (ICA-DR) pipeline. This

reveals that, under PFM assumptions, much more of the (behaviorally rel-

evant) cross-subject variability in fMRI activity should be attributed to the

variability in spatial maps, and that, after accounting for this, functional

coupling between modes primarily reflects current cognitive state. This has

fundamental implications for the interpretation of cross-sectional studies

of functional connectivity that do not capture cross-subject variability to

the same extent as PFMs.
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1 Introduction

One of the key changes to the landscape of the analysis of functional connectivity
via rfMRI in recent years has been the proliferation of large population-level
studies [Van Essen et al. 2012b; Breteler et al. 2014; Bamberg et al. 2015; Miller et al.
2016] and multi-site data-sharing initiatives [Biswal et al. 2010; Scott et al. 2011;
Mennes et al. 2013; Poldrack et al. 2013; Thompson et al. 2014; Kennedy et al. 2016;
Gorgolewski et al. 2017]1. This has allowed investigations into the population-level
correlates of fine-grained changes in functional connectivity [E. A. Allen et al.
2011; Dubois and Adolphs 2016], with several studies already finding strong links
with a variety of behavioural, genetic and lifestyle factors [Finn et al. 2015; Smith
et al. 2015; Colclough et al. 2017; Elliott et al. 2018]; together, these findings augur
well for the search for clinically relevant, personalised predictions from functional
neuroimaging data [Insel and Cuthbert 2015; Dubois and Adolphs 2016; Abraham
et al. 2017; Stephan et al. 2017]. In sum, there has been a shift in what is required
of analysis techniques, namely that they must be both interpretable and sensitive
to subject-level variability, and at the same time they need to scale to meet the
computational demands posed by large data sets.

1.1 Implications of variability over subjects

In this paper, we are primarily interested in the interpretation of—and character-
isation of the subject variability in—static functional connectivity2. Ultimately,
static functional connectivity is encapsulated by the dense connectome—by which
we mean the time-averaged voxels-by-voxels connectivity matrix, as defined by
the statistical relationships between time courses as extracted from functional data
[Friston et al. 1993; Friston 2011]. However, dense connectomes are cumbersome
computationally, and the natural spatial scale of the functional data is likely to
be much lower than the several hundred thousand voxels present in a typical
fMRI acquisition [Van Essen et al. 2012a]. In practice, what we are seeking is a
parsimonious summary of the static functional connectivity that is both readily
interpretable and captures key forms of variability.

The canonical approach for analyses of static functional connectivity is to
summarise the high-dimensional data in terms of a comparatively small number
of either parcels or functional systems3. These are usually defined in terms of
their spatial configuration, at which point it is possible to extract representative

1For a more complete overview of data sharing initiatives, see the NeuroImage special issues
[Eickhoff et al. 2016].

2For the rest of this paper, when we use the term variability in relation to functional measures, it
can be assumed to relate to variability in static functional connectivity over subjects or sessions.
This does not consider, for example, the moment-to-moment fluctuations characterised as dynamic
functional connectivity [Hutchison et al. 2013; Calhoun et al. 2014; Preti and Van De Ville 2017].
This encodes important within-subject state changes [Tagliazucchi and Laufs 2014], and there is
growing evidence that this captures between-subject trait differences too [Vidaurre et al. 2017].

3Resting-state networks, intrinsic connectivity networks, etc.
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time courses from functional data and analyse these. There will naturally be
variability in functional connectivity in several domains, though based on the above
framework we will focus on two key ones here: firstly, we will refer to variability
in the size, shape and location of functional regions as subject variability in spatial
organisation; secondly, we will use subject variability in temporal features to denote
the changes in summary measures based on said time courses—in particular, the
strength of functional connectivity between regions (i.e. functional connectomes).
Finally, note that for clarity we will use the term functional coupling to specifically
refer to the functional connectivity between regions as described by these low-
dimensional connectomes4.

The assumption that is implicit in either the parcel or system-level analyses is
that registration to a common space means that the time courses we extract based
on group-level spatial descriptions are an accurate, or at least unbiased, description
of each subject’s data. However, given that it is by no means uncommon to observe
three-fold variation in the areal extent of regions of primary visual cortex across
subjects [Andrews et al. 1997; Dougherty et al. 2003]; or that non-homeomorphic
morphological changes, such as subjects exhibiting different number of gyri and
sulci, are prevalent [Shackman et al. 2011; Amiez and Petrides 2014] even in identical
twins [Bartley et al. 1997; Hasan et al. 2011]; or that macroscale anatomical features
are poor predictors of cytoarchitectonic borders [Amunts et al. 2007]; then we
should expect there to be substantial disparities in the presentation of functionally
homologous regions across subjects, even after nonlinear registration [Brett et
al. 2002; Devlin and Poldrack 2007; Van Essen and Dierker 2007; Mueller et al.
2013]. Recent observations have confirmed this for functional data, where it has
been shown that this subject variability in spatial organisation ‘can give rise to
divergent connectivity estimates from the same seed region in different subjects’
[Gordon et al. 2017a]—with the results from several studies also suggesting that
reorganisations of functionally homologous regions that cannot be represented
by diffeomorphic warps seem to be commonplace [Hacker et al. 2013; Harrison
et al. 2015; Laumann et al. 2015; Glasser et al. 2016a; Gordon et al. 2016; Braga and
Buckner 2017; Gordon et al. 2017b; Kong et al. 2018]. Furthermore, these differences
have a substantial impact on the data: cross-subject differences in static functional
connectivity have been shown to be much larger than either cross-site effects [S.
Noble et al. 2017] or cross-condition, within-subject changes [Gratton et al. 2018].

Loosely speaking, these spatial differences in functional connectivity after
registration can arise for four reasons: there will naturally be some errors in the
registration process, resulting in structural features that are not brought into corres-
pondence; there will be locations where anatomical landmarks bear little relation to
functional subdivisions, meaning structural similarity is not a sufficient condition
for accurate registration; there will be genuine non-homotopic reorganisations,
whereby the standard registration approaches based on diffeomorphic warps could

4We make this distinction as the spatial maps, which characterise the location of functional
regions, also capture aspects functional connectivity and organisation.
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never succeed5; and there will be dynamic—either moment-to-moment or state-
dependent—changes in the functional connectivity structure [Buckner et al. 2013;
Krienen et al. 2014; Salehi et al. 2020]. If these different sources of variability in
spatial organisation are not accounted for, then one expects the inferred mode time
courses to be a farrago of contributions from the underlying ‘true’ set of modes
[Smith et al. 2011; E. A. Allen et al. 2012]. Worse still, if the structural differences
capture meaningful cross-subject differences—which they almost certainly will
do [Llera et al. 2019]—then the amount of misalignment, and hence the quality
of the extracted time courses, will reflect information that is anatomical rather
than functional in origin [Bijsterbosch et al. 2018]. This breaks the central tenet of
investigations into subject variability in temporal features, as we can no longer
assume that a group-level description of the functional architecture is a reliable
description of individual subjects, or even that we can use these to extract unbiased
estimates of functional coupling. How then, do we proceed from here?

The first approach we could take is to improve the registrations, and hope
that better algorithms and utilising a richer feature set to drive the alignment
will push individual subjects ever closer towards the group description [Robinson
et al. 2014; Tong et al. 2017; Robinson et al. 2018]. Notably however, the multiple
recent observations that single functional regions can be manifested as multiple
disjoint regions in some subjects, is something that not even advanced functional
registration algorithms reliant on diffeomorphic warps can correct for. The min-
imum requirement for this approach is therefore the use of advanced registration
techniques that can non-homotopically reorganise the spatial layout of functional
regions, as, for example, introduced by Conroy et al. [2013] and Guntupalli et al.
[2016, 2018], or Langs et al. [2010].

The alternative approach, and the one that we take in this paper, is to build
algorithms that can extract estimates of subject variability in temporal features
while simultaneously accounting for the variable presentation of functional regions
at the subject level. Several methods have been proposed to do exactly this, using
both hierarchical models of functional systems [Varoquaux et al. 2011; Abraham
et al. 2013; Harrison et al. 2015; Li et al. 2017] and parcels [Liu et al. 2012; Langs et al.
2016; Kong et al. 2018]. We provide a more fulsome description of these, and their
counterparts that extract subject-specific information given a fixed group template,
in Appendix A. However, the majority of these methods have what is potentially
a major limitation: the flow of information is almost exclusively from group to
subject. In other words, there are only relatively rudimentary efforts to tap into
what we might hope is a virtuous cycle: we should be able to use our group-level
estimates to infer accurate subject-level information, but, crucially, we should
also be able to utilise the observed variability at the subject level to refine our

5It is somewhat contentious whether (structural) registration should be held responsible for the
latter two processes. Our definition of registration is somewhat broader, as we hold it responsible
for bringing subjects into structural and functional correspondence. While structural registration
is unlikely to be sufficient here, this is nevertheless a reasonable aim for multi-modal registration
approaches. For a good discussion of these issues see e.g. Van Essen and Dierker [2007].
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group-level parameterisations. Furthermore, the same process should hold within
subjects, such that accurate estimation of the individual spatial presentations
should improve evaluation of the temporal information, and vice versa.

Finally, while we have tended to focus on connectomes as the principal tem-
poral feature of interest in the above discussion, there are other types of variability
we are interested in. Recent work has shown that, for example, amplitudes—by
which we mean any metric which represents the amount of fluctuation in activity
of a functional region over time—carry a substantial amount of information about
subjects [Zang et al. 2007; Duff et al. 2008; Zou et al. 2008; Miller et al. 2016;
Bijsterbosch et al. 2017], provided we are sufficiently careful in how we distinguish
changes from those in functional coupling [Duff et al. 2018], and then how we
interpret said changes [Qing and Gong 2016]. Amplitudes are therefore another
type of subject-specific information that we would hope analysis methods could
identify, and more importantly disambiguate from, the types of subject variability
we have already discussed. This is an illustrative example of the complexity of
the task of characterising functional connectivity: at every level of any perceptual
hierarchy of features we impose (i.e. separation into spatial and temporal features,
or subdivision of temporal features into amplitudes and coupling), we expect there
to be multiple ways to identify the different features, and substantial cross-subject
variability that is correlated across the different categories.

1.2 Outline

For the rest of this paper, we will outline our approach for simultaneously inferring
group- and subject-level descriptions of functional systems. We use the term mode
to describe our mathematical description of a given system.

To begin with, we present our probabilistic model for these modes, including
the way we parameterise subject variability in both spatial and temporal features,
and our approach for inference. This is a significant extension of the proof-
of-concept method [Harrison et al. 2015] in several key ways: we introduce a
new hierarchical model to better capture the functional coupling between modes,
incorporate a model for mode amplitudes to engender a cleaner separation between
different types of functional variability, and we overhaul the entire implementation
to help the inference scale to large data sets.

We then compare the performance of our method with existing approaches.
We do this using both simulated and empirical data, namely the complete set
of rfMRI data as released by the Human Connectome Project and ‘active-state’
fMRI data from a more conventionally sized study. Finally, we offer some brief
discussions as to the significance of our results.
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2 Model

Our approach infers subject-level probabilistic functional modes (PFMs)—each of
which can be thought of as being described by a subject-specific spatial map and a
set of time courses—across the whole cohort simultaneously. Ensuring that there
is correspondence between the inferred modes across the cohort is a challenge
[Esposito et al. 2005], especially on resting-state data where we cannot assume
any common temporal structure.

However, we can use the information at the group-level to inform the subject-
specific decompositions: both the subject-specific spatial maps and the low-
dimensional, between-mode functional connectomes are constrained to vary
around their group-level descriptions, and we can also leverage the expected
properties of the hæmodynamic response to further constrain the time courses.
Moreover, we can use the subject-specific modes to learn about the variability of
all these properties, thereby allowing us to not only describe typical patterns of
activity, but to also quantify the extent to which observed patterns are atypical.
We do this by building, and then inferring upon, a hierarchical probabilistic model
for rfMRI data as described by a set of modes, and it is this that we outline in the
following section.

2.1 Matrix factorisation models

Defining a mode in terms of a spatial map and time course means that it is fun-
damentally a matrix factorisation approach, a mathematical formulation which
underpins principal component analysis, independent component analysis, non-
negative matrix factorisation, dictionary learning and several other of the well
established methods for extracting modes from rfMRI data. For completeness,
we briefly introduce our notation for this class of models before introducing our
extensions.

Firstly, each subject, 𝑠, from a cohort of 𝑆 subjects, is scanned 𝑅𝑠 times. Note
that we do not assume that each of the runs for a given subject (i.e. 𝑟 ∈ {1, … , 𝑅𝑠})
are identical from a modelling standpoint: they could, for example, represent
different time points in a longitudinal study, or different conditions6, and we may
therefore want to treat them differently. The fMRI data are acquired in 𝑉 voxels
and at 𝑇 time points, which we reshape into a data matrix 𝑫(𝑠𝑟) ∈ ℝ𝑉×𝑇. We do
all our analyses after the data has been registered into a common space, so the
number of voxels is constant across subjects. We do however allow the number of
time points per run to vary (i.e. 𝑫(𝑠𝑟) ∈ ℝ𝑉×𝑇

(𝑠𝑟)
), but for notational simplicity we

drop any superscripts on 𝑇.
The problem we are faced with is defining an extension to the standard matrix

factorisation approach to account for these multiple data. In the spatial domain, as
discussed in the Introduction, we expect between-subject variability in the locations

6Eyes-open, eyes-closed, pre/post an intervention, various ‘active-state’ paradigms etc.
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of functional regions, even after registration, and we expect these effects to be
amongst the dominant sources of functional variability. We make the pragmatic
decision to focus on differences in the static configuration of functional systems
specifically, and we target our spatial approach towards what are essentially
misalignments.

Therefore, as in Harrison et al. [2015], we model subject and run variability
within the matrix factorisation framework as follows. We are looking for a set
of 𝑀 modes, and we assume that the subject variability in spatial organisation
we observe across subjects, by virtue of it being driven primarily by cortical
reorganisations, is consistent across all runs for a given subject. This gives a set
of subject-specific spatial maps, 𝑷 (𝑠) ∈ ℝ𝑉×𝑀, that will potentially be observed
multiple times. Furthermore, each run will have its own unique set of time courses,
𝑨(𝑠𝑟) ∈ ℝ𝑀×𝑇, as well as a set of mode amplitudes, 𝒉(𝑠𝑟) ∈ ℝ𝑀. For convenience
we adopt the following convention: 𝑯 (𝑠𝑟) ∈ ℝ𝑀×𝑀 ≡ diag(𝒉(𝑠𝑟)). Finally, note that
in general we infer a small number of PFMs relative to 𝑉 and 𝑇, which gives a
parsimonious description of the data. However, this means that the factorisation
will not be exact, so we express the data as the contribution from the PFMs and a
noise term, 𝜺(𝑠𝑟) ∈ ℝ𝑉×𝑇. This set of assumptions allows us to describe the complete
model for one run as

𝑫(𝑠𝑟) = 𝑷 (𝑠)𝑯 (𝑠𝑟)𝑨(𝑠𝑟) + 𝜺(𝑠𝑟) (1)

In the following sections, we describe howwemodel the dependencies between
these run-specific decompositions, as well as the key properties of rfMRI data that
we are trying to capture. For reference, a full graphical model is provided in the
Supplementary Material.

2.2 Spatial Model

The spatial model remains conceptually similar to the approachwe used inHarrison
et al. [ibid.]. For each mode, there is a rich group-level description capturing the
mean group maps and typical subject variability around these; as Van Essen and
Dierker [2007] discuss, in light of subject variability, it is essential that ‘[regions are]
represented probabilistically whenever possible, in a way that reflects variability
in cortical convolutions and in [their] size, location, and internal (e.g., topographic)
organization’. Similarly, subject maps are parameterised such that they retain
the key characteristics of the group maps, but allow for genuine variability while
being robust to spurious correlations induced by noise.

A key modification we make to the previous model is to change the way we
model the spatial map distribution, by relaxing the delta-Gaussian mixture model
to a double-Gaussian mixture model. Previously, the weights in voxels which were
inferred to be outside of a given mode were set to exactly zero. In reality however,
essentially all voxels will exhibit aweak correlation with a givenmode time course7,
and, particularly in studies like the Human Connectome Project with thousands

7Cf. the noisy estimates of beta values from a GLM fit.
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of time points per subject, there is often sufficient evidence a posteriori to model
this noise as small, but nevertheless non-zero, weights8. The new model allows
for exactly this type of ‘spurious’ (i.e. statistically but not biologically significant)
correlation by including a noise distribution to capture small deviations from zero
in the spatial map weights. While we are not interested in these small weights per
se, if we do not include a more explicit noise model then the model will erroneously
include them as signal thereby hindering our ability to detect genuine ‘neural’
signal.

This contamination by noise happens for three main reasons. Firstly, as Bright
and Murphy [2015] recently showed, even well-characterised functional modes can
be identified from noise processes like subject motion. Conversely, this implies that
even accurately identified modes may well correlate with non-neural processes.
Secondly, given the complex, long-range spatial autocorrelations present in fMRI
data [Kriegeskorte et al. 2008], fMRI noise processes have a non-trivial structure.
This is heightened by spatial smoothing, which is an often used pre-processing
step for fMRI data (though less so for modern high spatial and temporal resolution
data [Glasser et al. 2016b]). This is advantageous as it ameliorates the problem of
residual spatial mis-alignment after registration, but induces heightened spatial
correlations in the noise. While it would be possible to model this, estimating—and
then correcting for—the true number of spatial degrees of freedom in the data
is notoriously difficult [Worsley et al. 1996; Eklund et al. 2016], and would be
computationally expensive over a large number of voxels. Finally, in the section
on the noise model itself, we demonstrate how unstructured noise can have a
stabilising effect on matrix factorisation models. Therefore, we make the pragmatic
decision to account for these effects in the spatial model, rather than trying to
incorporate a more complex mechanistic model for the noise.

The resulting model takes the following form. For voxel 𝑣 in mode 𝑚, the
subject-specific spatial weights are distributed as follows:

𝑝(𝑷 (𝑠)𝑣𝑚 |𝑞
(𝑠)
𝑣𝑚 = 1) = 𝒩(𝑷 (𝑠)𝑣𝑚 |𝜇𝑣𝑚, 𝜎2𝑣𝑚)

𝑝(𝑷 (𝑠)𝑣𝑚 |𝑞
(𝑠)
𝑣𝑚 = 0) = 𝒩(𝑷 (𝑠)𝑣𝑚 |0, (𝜂

(𝑠)
𝑚 )2𝜁 2𝑣 )

𝑝(𝑞(𝑠)𝑣𝑚) = (𝜋𝑣𝑚)𝑞
(𝑠)
𝑣𝑚(1 − 𝜋𝑣𝑚)1−𝑞

(𝑠)
𝑣𝑚

𝑝(𝜂(𝑠)𝑚 ) = 𝒩(𝜂(𝑠)𝑚 |0, 𝛾 2𝜂 )

(2)

Where 𝑞(𝑠)𝑣𝑚 is a binary indicator variable which represents whether a given voxel’s
weight is drawn from the signal or the noise component.

This distribution is defined in terms of several group-level hyperparameters:
the probability that a given weight is drawn from the signal rather than the noise
distribution, 𝜋𝑣𝑚; the mean and standard deviation of the signal component, 𝜇𝑣𝑚
and 𝜎𝑣𝑚 respectively; and the new parameters, the standard deviation of the noise

8See Colclough et al. [2018] for a discussion of exactly this effect in relation to inference of
functional couplings between regions.
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component, which we parameterise as 𝜂(𝑠)𝑚 𝜁𝑣 for reasons which we explain in detail
later.

Note how much richer this description is than the single set of group-level
means that most currently used techniques infer. For example, the 𝜎𝑣𝑚 parameters
can capture the types of spatial non-uniformity in subject variability observed
by Mueller et al. [2013]. Therefore, when inferring subject maps, the inference
will automatically be informed by the data more than the group mean in regions
inferred to exhibit high functional heterogeneity over subjects, and vice versa for
regions with low subject-to-subject variability.

The model also includes the set of distributions over the group-level hyperpri-
ors (see the Supplementary Material for the way these, and all subsequent, hyper-
parameters are specified). Starting with the hyperpriors on the ‘signal’ component,
we place a mixture model prior over the group means, which, as in the previous
work, is inspired by the spike-slab distribution [Mitchell and Beauchamp 1988;
George and McCulloch 1993; Ishwaran and Rao 2005; Titsias and Lázaro-Gredilla
2011]. This encourages sparsity in the group-level spatial maps, thereby encod-
ing ideas about functional segregation, as well as allowing more flexibility when
specifying the distribution of the non-zero weights. However, we introduce an
extension and model the non-zero weights with a combination of two Gaussians
with different variances. This allows the group-level distribution of non-zero
spatial weights to have heavier tails than the single Gaussian used in the previous
incarnation of the model.

𝑝(𝜇𝑣𝑚|𝜌𝑣𝑚 = 2) = 𝒩(𝜇𝑣𝑚|𝜏𝜇2, 𝛾 2𝜇2)

𝑝(𝜇𝑣𝑚|𝜌𝑣𝑚 = 1) = 𝒩(𝜇𝑣𝑚|𝜏𝜇1, 𝛾 2𝜇1)

𝑝(𝜇𝑣𝑚|𝜌𝑣𝑚 = 0) = 𝛿(𝜇𝑣𝑚)

𝑝(𝜌𝑣𝑚) = ∏
𝑖∈{0,1,2}

(𝜆𝜇𝑖)
[𝜌𝑣𝑚=𝑖]

(3)

Where 𝜌𝑣𝑚 is the probability that a voxel in the group map is drawn from each of
the three distributions, and [𝜌𝑣𝑚 = 𝑖] is the Iverson bracket.

The group signal standard deviations, 𝜎𝑣𝑚, take an inverse-gamma hyperprior:

𝑝(𝜎𝑣𝑚) = Γ(𝜎−2𝑣𝑚 |𝑎𝜎, 𝑏𝜎) (4)

Returning to the hyperpriors on the ‘noise’ component, in Equation 2, the
standard deviation of the noise component of the subject-specific spatial map distri-
bution is parameterised as 𝜂(𝑠)𝑚 𝜁𝑣. The 𝜁𝑣 parameter encodes spatial inhomogeneity
in the noise variance: for example, we expect more structured noise due to motion
around the edges of the brain; similarly, we expect more physiological noise in the
brainstem. This group noise standard deviation, 𝜁𝑣, also takes an inverse-gamma
hyperprior:

𝑝(𝜁𝑣) = Γ(𝜁−2𝑣 |𝑎𝜁, 𝑏𝜁) (5)
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2. Model bioRxiv

However, we also expect different signal-to-noise ratios, both across subjects
and modes. Therefore, we include an extra parameter, 𝜂(𝑠)𝑚 , which captures vari-
ations in the noise level9. We place a weak prior on 𝜂(𝑠)𝑚 , as we want the overall
scale of each spatial map to be determined by the signal rather than the noise, as
this makes cross-subject analyses more informative:

𝑝(𝜂(𝑠)𝑚 ) = 𝒩(𝜇𝑣𝑚|0, 𝛾 2𝜂 ) (6)

Finally, the last hyperprior to specify is that on the group membership probab-
ilities. This follows a beta distribution:

𝑝(𝜋𝑣𝑚) = β(𝜋𝑣𝑚|𝑎𝜋, 𝑏𝜋) (7)

In summary, the model has rich descriptions of the spatial maps, both at the
group and subject level, and allows us to encode typical patterns of variability.
Furthermore, while we have included a weak sparsity constraint at the group-level,
there is no explicit constraint on, for example, orthogonality of the spatial maps.
Therefore, the model can capture modes that are highly spatially overlapping in
what is arguably a more natural way than independent component analysis—even
despite a historic tendency to overstate those criticisms [Beckmann et al. 2005;
Smith et al. 2012; Calhoun et al. 2013].

One last point to note is that when we present our results, the group maps we
show are themarginal posterior means of the whole spatial distribution, rather than
the 𝜇 parameters themselves. The group-level maps are therefore E[𝜋𝑣𝑚𝜇𝑣𝑚|𝒟],
which has the nice property that it incorporates the uncertainty about whether
each voxel is is drawn from the signal or the noise component.

2.3 Temporal Model

In the temporal domain, the unconstrained nature of rfMRI data means that we can
say relatively little about the time courses from a given run, as there are no external
events from which we can search for consistent time-locked patterns of mode
activation. However, functional connectomics has shown that, as well as having
a consistent group structure, both the interactions between modes and simple
amplitude measures encode interesting information about subjects. Similarly, the
hæmodynamic processes lend neural processes a distinct temporal signature. That
being the case, we wish to formulate a model that primarily captures these two
phenomena.

However, we expect the inferred time courses to be corrupted by noise, even if
we properly make allowances for the global noise process 𝜺(𝑠𝑟). As mentioned in
the Spatial Model section, there are likely to be structured noise processes that
violate our hæmodynamic assumptions. This needs to be accounted for before we
can introduce the targeted models of the BOLD signal.

9See e.g. Gelman [2006] for a related discussion of redundant parameterisations of variance.
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Analogously to the the spatial model, we extend the model from Harrison et al.
[2015] by making the pragmatic decision to allow noisy time courses. Therefore,
our time course model contains two terms: the first represents the clean BOLD
time courses, 𝑩(𝑠𝑟), while the second represents the noise that corrupts these, 𝝃 (𝑠𝑟).
This gives:

𝑨(𝑠𝑟) = 𝑩(𝑠𝑟) + 𝝃 (𝑠𝑟) (8)

There is an additional benefit of this explicit parameterisation of the BOLD
time courses. Recent work has claimed that the [fractional] Amplitude of Low
Frequency Fluctuations ([f]ALFF) [Zang et al. 2007; Zou et al. 2008; Zuo et al.
2010a], as derived from rfMRI data, captures aspects of subject variability related
to disease. Our parameterisation allows us to derive a related quantity, which
we term the fractional amplitude of BOLD time courses (fABT). This is simply
defined as the power in the clean BOLD time courses 𝑩(𝑠𝑟), relative to the power
in the noise time courses 𝝃 (𝑠𝑟), calculated for each mode and each run individually.
Conceptually, this is very closely related to fALFF, but it has the clear advantage
that it does not require defining ‘low’ frequencies in terms of an arbitrary threshold;
rather, the signal of interest is based on an explicit model of the HRF. Secondly, the
calculated fABT measures specifically relate to the activity in different functional
systems which makes the measure more interpretable.

2.3.1 Hæmodynamic model

We use the hæmodynamic response function (HRF) based model that we intro-
duced in Harrison et al. [2015]. This is a relatively simple, computationally efficient,
linear model that captures the gross properties of the HRF via the temporal auto-
correlations that it induces in the data. We assume a white noise ‘neuronal’ process
convolved with a canonical HRF10, whose autocorrelation function we can capture
using a full covariance matrix, 𝑲𝑩 ∈ ℝ𝑇×𝑇, for all the time points in a given run. As
the overall variance of the time courses is arbitrary given the explicit amplitude
parameters, we simply ensure that 𝑲𝑩 is scaled such that all entries on the main
diagonal are unity.

2.3.2 Subject-level mode interactions

The major extension relative to the previous model is an explicit parameterisation
of the functional coupling between modes. As discussed earlier, we expect to
observe temporal interactions between modes, and this will lend some structure
to the mode time courses. We define these interactions in terms of the precision
matrix between the mode time courses. In other words, we combine the HRF-
derived autocorrelation structure with a prior on the between-mode precision
matrix, 𝜶 (𝑠𝑟) ∈ ℝ𝑀×𝑀, in a matrix normal distribution.

10For adult populations, both the SPM double-gamma HRF [Friston et al. 2007] or the principal
component of the FLOBS basis in FSL [Woolrich et al. 2004] are provided, though this can be replaced
for different populations as appropriate e.g. [Arichi et al. 2012].
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The combined prior on the hæmodynamic time course for all the PFMs in a
given run is then:

𝑝(𝑩(𝑠𝑟)|𝜶 (𝑠𝑟)) = ℳ𝒩(𝑩(𝑠𝑟)|𝟎, 𝜶 (𝑠𝑟)−1, 𝑲𝑩) (9)

2.3.3 Group-level mode interactions

The temporal interactions between modes have been characterised as having a
consistent structure across the group [Shehzad et al. 2009], so we introduce a
hierarchical model to capture this. Subject- or run-level variability will manifest
itself as deviations from this set of group interactions. This formulation we use
is, in essence, the same model as that proposed by Marrelec et al. [2006], but
where we have two principal advantages: firstly, inference is informed by the full
posteriors on the rest of the model (i.e. rather than point estimates); and, secondly,
that the regularisation that arises from these priors will inform the inference of
the rest of the model parameters.

Starting at the subject level, we estimate the subject/run-specific temporal
precision matrix 𝜶 (𝑠𝑟) to keep track of the functional connectivity between modes.
These precision matrices follow a Wishart distribution, and we introduce a hyper-
parameter, 𝜷 ∈ ℝ𝑀×𝑀, that encourages the interactions to be consistent across
subjects and/or runs. This takes the form of a hyperprior on the subject-specific
scale matrices, and again this follows a Wishart distribution.

𝑝(𝜶 (𝑠𝑟)|𝜷) = 𝒲(𝜶 (𝑠𝑟)|𝑎𝜶, 𝜷) 𝑝(𝜷) = 𝒲(𝜷|𝑎𝜷, 𝑩𝜷) (10)

Furthermore, we can also place restrictions on the type of variability we want
the model to capture. If, for example, subjects are scanned multiple times but
always under the same conditions, then it may well be appropriate to generate
a consensus set of interactions for that subject by pooling over runs. We can
do this straightforwardly by setting 𝜶 (𝑠𝑟) ≡ 𝜶 (𝑠). Alternatively, if the runs vary
across the group in a consistent way (e.g. ‘before’ and ‘after’ scans) then we may
want to explicitly model these conditions as separate entities. We can do this by
introducing a family of group-level interactions, {𝜷(𝑟)}𝑅𝑟=1, and selectively using

these as the hyperpriors on 𝜶 (𝑠𝑟) as appropriate. This gives us enormous flexibility
and allows us to increase our statistical power by making targeted assumptions
about the key modes of variation.

2.3.4 Time course specific noise model

The noise time course of mode 𝑚 at time 𝑡, 𝝃 (𝑠𝑟)𝑚𝑡 , is simply drawn from a Gaussian
distribution with precision 𝜔(𝑠𝑟)

𝑚 . This gives

𝑝(𝝃 (𝑠𝑟)𝑚𝑡 |𝜔(𝑠𝑟)
𝑚 ) = 𝒩(𝝃 (𝑠𝑟)𝑚𝑡 |0, 𝜔(𝑠𝑟)

𝑚
−1
) (11)
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Each 𝜔(𝑠𝑟)
𝑚 takes a gamma hyperprior:

𝑝(𝜔(𝑠𝑟)
𝑚 ) = Γ(𝜔(𝑠𝑟)

𝑚 |𝑎𝜔, 𝑏𝜔) (12)

2.4 Amplitude Model

Again, the amplitude model is an extension to our previous work. This has a
straightforward formulation, with these parameters simply designed to account
for the run-to-run variations in the overall activity of each mode. These are
parameterised in terms of 𝑯 (𝑠𝑟) ≡ diag(𝒉(𝑠𝑟)), and follow a Gaussian distribution:

𝑝(𝒉(𝑠𝑟)𝑚 |𝝁𝒉, 𝜮𝒉) = 𝒩(𝒉(𝑠𝑟)𝑚 |𝝁𝒉, 𝜮𝒉) (13)

The group-level parameters, 𝝁𝒉 and 𝜮𝒉 capture any consistent cross-subject
relationships between the mode amplitudes. For example, Bijsterbosch et al. [2017]
recently reported that the amplitudes of sensorimotor modes are correlated with
one another, as are the amplitudes of cognitive networks. It is exactly these types
of effects that these hyperpriors are able to capture.

The hyperpriors are formulated as follows:

𝑝(𝝁𝒉) =
𝑀
∏
𝑚=1

𝒩((𝝁𝒉)𝑚|𝜏𝝁𝒉 , 𝛾
2
𝝁𝒉) (14)

𝑝(𝜮𝒉) = 𝒲(𝜮−1
𝒉 |𝑎𝒉, 𝑩𝒉) (15)

Furthermore, we impose a post-hoc positivity constraint on these variables as
part of the inference procedure. As there is a multiplicative ambiguity as to the
signs of the components in a matrix factorisation model, we can do this without
loss of generality.

2.5 Noise Model

The final part of the model left to specify is the noise process, 𝜺(𝑠𝑟), which we
assume is zero-mean, white Gaussian noise, with an overall precision for each run,
𝜓 (𝑠𝑟). This specifies the likelihood:

𝑝(𝜺(𝑠𝑟)) = ℳ𝒩(𝜺(𝑠𝑟)|𝟎, (𝜓 (𝑠𝑟))−1𝑰𝑉, 𝑰𝑇)

= 𝑝(𝑫(𝑠𝑟) − 𝑷 (𝑠)𝑯 (𝑠𝑟)𝑨(𝑠𝑟))
(16)

This noise precision then takes a standard gamma hyperprior:

𝑝(𝜓 (𝑠𝑟)) = Γ(𝜓 (𝑠𝑟)|𝑎𝜓, 𝑏𝜓) (17)

This relatively simple structure assumes that the noise variance is the same in
every voxel, which is particularly useful as it allows us to exploit the properties of
the matrix normal distribution, leading to very computationally efficient inference
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[Stegle et al. 2011]. We can preprocess the data in such away that this is a reasonable
assumption to make, and this is discussed in Appendix B.

What is perhaps more problematic is that this model does not acknowledge
the spatial smoothness of fMRI data, which means that the noise is not truly inde-
pendent over voxels. It would be possible to model this, for example by inferring a
full spatial covariance matrix for the noise that acknowledged the dependencies
between voxels that smoothing introduces. Again, we decide that the benefits of
this more complex model are outweighed by the increased computational burden,
and again we discuss a way in which we can mitigate the effects of this model
misspecification via a relatively straightforward adjustment for the spatial degrees
of freedom introduced by Groves et al. [2011], as discussed in Appendix D .

2.5.1 Spatially and temporally specific noise models

One of the key changes to themodel as introduced here and its previous incarnation
is the way we model noise on the spatial maps and timecourses, as well as the
overall noise described above. Interestingly, these different sources of noise can be
beneficial for matrix factorisation models even in the absence of the fMRI-specific
effects we postulated.

To demonstrate this, we use a simple, single-run version of our generative
model, 𝑫 = 𝑷𝑨 + 𝜺, and we assume the maps and timecourses are full rank
to simplify the derivations below. The ordinary-least-squares single-regression
estimator for the spatial maps, ̂𝑷[𝑠𝑟], given the ground-truth timecourses is:

̂𝑷[𝑠𝑟] = 𝑫𝑨−1 = 𝑷 + 𝜺𝑨−1 (18)

If we instead run dual regression—using the Woodbury matrix identity for the
key rearrangements—we find a different estimator for ̂𝑷[𝑑𝑟]:

�̂�[𝑑𝑟] = 𝑷−1𝑫 = 𝑨 + 𝑷−1𝜺

̂𝑷[𝑑𝑟] = 𝑫�̂�−1
[𝑑𝑟]

= (𝑷 + 𝜺𝑨−1) − (𝑷𝑨 + 𝜺)𝑨−1𝑷−1(𝑰 + 𝜺𝑨−1𝑷−1)−1𝜺𝑨−1

= (𝑷 + 𝜺𝑨−1) − 𝜺𝑨−1

= 𝑷

(19)

What is surprising is that the dual regression estimator is closer to the ground
truth, even though the intermediate timecourses, �̂�[𝑑𝑟], are noisy. This unintuitive
behaviour occurs because dual regression involves two regressions on the same
noise, and this has concrete implications for the PFM model. When we fit the
hæmodynamic model to the timecourses, we exclude the temporally specific noise
terms from the estimation of the functional coupling between modes. However, we
need to include the temporal noise terms when using the timecourses to estimate
the subject-specific spatial maps, as removing it could increase the variance of the
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inferred maps. The situation is directly analagous with the model for spatial noise:
while it is not a quantity of interest for cross-subject modelling, its inclusion can
improve the stability of the overall estimation.

In sum, the PROFUMO approach uses the spatially and temporally specific
noise where the stabilising effect on matrix factorisation models means that it is
expedient to do so, but seeks to avoid letting it confound cross-subject analyses.
By way of contrast, dual regression is not naturally able to separate these types of
noise.

2.6 Inference Approach

We use a computationally efficient variational Bayesian approach to infer upon
the probabilistic model outlined above. This technique is well established for
graphical models that have a conjugate-exponential structure, as is the mean-field
approximation that renders the inference tractable [Attias 2000; MacKay 2003;
Winn and Bishop 2005; Blei et al. 2017]; as such, we will not cover the details of
that here. In the Appendices, we outline several of the implementation details,
including our data preprocessing pipeline, the way we handle large data sets,
tweaks to the model and the initialisation procedure.

The combined inference and analysis package, PROFUMO (from PRObabilistic
FUnctional MOdes) is available from git.fmrib.ox.ac.uk/samh/profumo and is com-
patible with FSL [Jenkinson et al. 2012]. All subsequent analyses were performed
with version 0.11.1.

The model clearly has a large number of hyperparameters, but as described in
the Supplementary Material we can drastically reduce the effective number given
that the overall variance of the data is fixed by the internal preprocessing. Further-
more, the vast majority of the parameters that need setting govern the group-level
hyperpriors and, as such, are several steps removed from the subject-level decom-
positions. This means that we can use the same default hyperpriors for all the
analyses presented here, and that the inference generalises well across simulated,
volumetric, and surface-based data, as well as datasets with very different numbers
of subjects.

2.7 Model Summary

In summary, we explicitly model many of the properties of rfMRI data within the
PROFUMO framework. In the spatial domain, we have a complex group-level
model that captures both mean effects and typical patterns of variability, and use
these to regularise the subject-specific spatial maps. The temporal model is based
around the physiological properties of the BOLD signal, and includes another hier-
archical model for the functional coupling between modes. Similarly, we capture
differences in the overall activity levels of modes via the amplitude parameters.
Finally, we can generate additional summaries by combining parameters as desired,
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which includes, for example, the measures related to the fractional amplitudes of
the BOLD signal.
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3 Results

Here, we demonstrate the performance of PROFUMO using a set of simulated
data and two empirical datasets. All comparisons are with spatial independent
component analysis and dual regression (ICA-DR) [Calhoun et al. 2001; Beckmann
et al. 2005; Zuo et al. 2010b; Nickerson et al. 2017], as this is what has been used in
previous publications on the empirical data.

3.1 Simulations

The simulation framework is explicitly designed to be challenging, such that it
tests the various ways in which the assumptions the different models make are
most likely to be violated. This includes spatial and temporal correlations between
components; spatial variability, including a model for misalignments; amplitude
variability across subjects and components; a (weakly) nonlinear HRF that varies
over both subjects and space; and spatial and temporal smoothness in the residuals.
This extends previously published analyses [Harrison et al. 2015; Bijsterbosch
et al. 2019], and all simulation code is available from git.fmrib.ox.ac.uk/samh/PFM_

Simulations.
Specifically, we simulate data containing 15 components in a group of 40

subjects, each with two runs containing 10,000 voxels and 500 timepoints at a TR
of 2.0 s. A more detailed overview of the data generation procedure is provided
in Appendix F. We then test how well PROFUMO and ICA-DR can recover the
ground-truth parameters, pooling results across 10 different simulated datasets.
Finally, to give more detailed insights into the performance of ICA-DR we include
several intermediate steps: firstly, to separate the performance of ICA and dual
regression, we include a dual regression analysis starting from the ground-truth
spatial maps (GTg-DR); secondly, we include the thresholded variant of dual
regression proposed by Bijsterbosch et al. [2019] which is designed to reduce the
observed bias in functional coupling (ICA-DRt, GTg-DRt).

Four key performance metrics are shown in Figure 1, and a much more de-
tailed set of comparisons is included in the Supplementary Material. PROFUMO is
able to accurately recover spatial maps, amplitudes and functional coupling net-
work matrices (netmats), and much more so than either ICA-DR or the improved
thresholded variant (ICA-DRt).

Crucially, the inferred PFMs are also unbiased in the presence of spatio-
temporal correlations between components, unlike ICA-DR. What Bijsterbosch
et al. [ibid.] demonstrated was that inaccurate estimation of the group-level spatial
correlation structure—an inevitable consequence of the orthogonality constraints
of ICA—leads to biased estimates of functional coupling. What we show here
is a stronger result: this effect is present even when starting from the correct
group-level spatial maps (GTg-DR). In this case, the effect is driven by the mis-
match between the true subject-level spatial correlations and those between the
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Figure 1: Performance of different algorithms on simulated data. For each metric,
optimal performance is shown by the horizontal green line. The metrics are accur-
acy in recovery of the subject-specific spatial maps, recovery of the run-specific
network matrices (netmats), recovery of cross-subject differences in amplitudes (as
different approaches normalise the data differently, we look at relative changes in
amplitudes across subjects), and any biases in the recovered temporal correlations
towards the spatial correlation structure. As well as PROFUMO and ICA-DR, we
test dual regression starting with the ground-truth spatial maps (GTg-DR) and
thresholded dual regression (ICA-DRt, GTg-DRt).
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group-level maps. In other words, this bias will be present for all dual regression
analyses, however the group-level maps are generated.

Furthermore, in the Supplementary Material, we repeat the simulations but
with the addition of structured noise, including subject-specific artefacts that can
be either spatially specific or global. While the differences between methods
are less pronounced, there are still clear benefits to using PROFUMO. However,
performance does suffer, and, as such, we strongly recommend ICA-based artefact
removal before running PROFUMO, as is the case for the two empirical datasets
presented here.

3.2 Human Connectome Project data

To evaluate the ability of PROFUMO to detect subtle subject-specific variations
in functional connectivity, we use data from the Human Connectome Project
(HCP) [Van Essen et al. 2012b; 2013]. This is for two main reasons. Firstly, the
most recent data release includes high-quality functional data from over 1,000
subjects and, as such, is an ideal test for methods that purport to be suitable for
population-level studies as mentioned in the Introduction. Secondly, the functional
pipeline has been published [Smith et al. 2013a] and the results are available to
download—thereby offering a comparison that is independently verifiable. The
pipeline uses spatial ICA and dual regression to characterise subject variability in
both spatial and temporal features. While it would also be possible to examine the
equivalent pipeline based on temporal ICA, this has not been used so extensively:
for example, the HCP’s MegaTrawl analyses are based on the spatial ICA pipeline11.
Similarly, this pipeline does not make use of the new thresholded variant of dual
regression. Based on the simulated data, this would improve the results slightly,
though PROFUMO still outperforms this variant on essentially all of the metrics
we tested. Again, the aim is to use the existing, publicly available results as a
baseline.

A key aim of modern, large-scale studies of functional connectivity is to
relate neurobiological changes to individual differences in genetic, lifestyle and
behavioural factors. Using the HCP data also allows us to do this by comparing
our results with a wide range of information about subjects. The data involves a
battery of cognitive tests, and also records a range of metrics based on health and
lifestyle: we will refer to differences in these as subject variability in behavioural
measures. We can indirectly assess the effects of genetics and environement by
calculating the heritability of key imaging metrics; we do this by utilising the fact
that many twins and siblings were involved in the study. Finally, we can examine
subject variability in structural measures by relating functional measures to the
thicknesses, areas and volumes of key cortical and subcortical structures as derived
from the structural MRI scans [Glasser et al. 2013]. In this way, we can quantify
to what extent different methods are able to capture key aspects of functional

11db.humanconnectome.org/megatrawl/index.html
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variability, and if there are meaningful relationships with other measures.
A more detailed overview of the data, and the tests we carry out here, can be

found in Appendix G.

3.2.1 Analyses

Both PROFUMO and spatial ICA were run at a dimensionality of 50, at which point
the modes were reordered for visualisation and noise components—or, in the case
of PROFUMO, modes eliminated by the Bayesian model complexity penalties—
were removed. Even on the extensive and high-quality HCP data, PROFUMO does
not identify more than 50 PFMs: when run at higher dimensionalities, more PFMs
are simply eliminated from the model. We discuss why PROFUMO is likely to be
conservative in this regard in more detail later.

For the full HCP data, PROFUMO therefore infers the posterior over approxim-
ately 25,000,000,000 parameters (1,000 subjects, 100,000 grayordinates, 50 modes,
5 parameters per grayordinate). In terms of computational requirements, this
analysis took approximately 110 hours using 18 cores on a single compute node,
and memory usage peaked at 350GB.

Finally, note that subsequent figures display spatial maps on the cortical surface
for simplicity and concision. However, all grayordinates (comprising approxim-
ately 60,000 cortical vertices and 30,000 subcortical voxels [Glasser et al. 2013])
were used in all analyses.

3.2.2 Overview of the PFM spatial model

To begin with, in Figures 2 and 3 we show examples of the group- and subject-level
spatial maps for four PFMs in order to demonstrate the richness of information
contained within the PFM model. We do this to emphasise that PROFUMO is
able to identify PFMs with strong spatial relationships with one another (in terms
of overlap and anti-correlations), while at the same time being able to identify
complex, subject-specific reorganisations of the group templates.

The most striking feature of the subject maps in Figure 3 is simply how much
variability relative to the group maps there is. These results are from data already
aligned using surface-based registration driven by functional features, which ar-
guably represent the current ‘gold-standard’ for warp-based registrations [Glasser
et al. 2016b; Coalson et al. 2018]. Despite this, and as we and several others have
demonstrated, there are pronounced differences between subjects, with both shifts
in the relative location of functional regions over surprisingly large distances, and
complex, non-homotopic splittings and reorganisations of the regions themselves.
Furthermore, as highlighted in the figure, even though the PFM itself is large, there
are several subject-specific features that are too small to be accurately represented
at the typical spatial scale of parcellations applied to fMRI.

However, while the descriptions of modes in terms of the mean group- or
subject-level spatial maps are familiar, a key advantage of the PFM framework
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(a) (b)

(c) (d)

-4.0 4.0

Figure 2: Group-level spatial maps for four example PFMs, as inferred from the
HCP data. The PFMs are (a) the default mode network (DMN) [Shulman et al. 1997;
Raichle et al. 2001; Greicius et al. 2003; Buckner et al. 2008]; (b) a mode described
as a variant of the DMN by Braga and Buckner [2017]; (c) a mode with strong
spatial anticorrelations with the DMN; and (d) the mode containing functional
activity within POS2 [Glasser and Van Essen 2011].

144933 149337

195950 901139

-6.0 6.0

Figure 3: Subject-level equivalents of the default mode network shown in Panel
(a) of Figure 2.
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is the more detailed group-level parameterisation. In other words, we can go
beyond simply noting the degree of subject variability: we can now quantify it in
detail on a per-mode level. In Figure 4 we again take the default mode network
[Figures 2 and 3] as an example and plot the four key group-level spatial parameters:
the probability that a given voxel belongs to the DMN, the mean and variability
over subjects of the signal component of the DMN’s voxelwise weights, and the
standard deviation of the spatial noise component. The information encoded by the
mean weights is familiar, but the other parameters add novel and complementary
information.

(a) (b)

(c) (d)

-5.0 5.0 0.0 1.0

0.0 0.60.0 2.5

Figure 4: Example of the key group-level spatial parameters for the PFM repres-
enting the default mode network [Panel (a) of Figure 2 and Figure 3], as inferred
from the HCP data. The parameters are the (a) posterior means of the signal
component, 𝜇𝑣𝑚; (b) posterior memberships, 𝜋𝑣𝑚; (c) posterior standard deviations
of the signal component, 𝜎𝑣𝑚; (d) posterior standard deviations of the noise com-
ponent, 𝜁𝑣.

For example, the memberships [Panel (b)] demonstrate that default mode
activity is distributed over a surprisingly large area, with consistently detected
activity across much of the lateral prefrontal cortex. This is an effect that has
been captured by several recent, high-powered single-subject analyses [Gonzalez-
Castillo et al. 2012; Laumann et al. 2015; Poldrack et al. 2015; Huth et al. 2016].
However, while the activity is widespread, it is also distinct: the areas of high
and low probability are sharply delineated. Similarly, the standard deviations
[Panel (c)] add extra information by telling us about variability in the size of the
weights–that is, in the strength of the detected activity—and we can see that, in
this instance, the activity in the inferior parietal lobule is much more variable in
strength across subjects than that in the precuneus.
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This detailed characterisation of non-homogeneous variability across the cortex
is a key advantage of the more complex group-level model we have adopted, and
we expand upon this in Figure 5. This summarises the membership probabilities
and weight standard deviations across all modes. There is a clear pattern whereby
association cortex contains more overlapping modes than sensory cortices [Panel
(a)], and that the spatial weights are also more variable in association cortex [Panel
(b)]—note how this is in agreement with the results of Mueller et al. [2013]. Finally,
the uncertainty in the memberships themselves [Panel (c)] tells us about shifts in
locations between subjects. For example, note the very clear area of variability in
medial frontal cortex between SMA and pre-SMA [Johansen-Berg et al. 2004]. This
metric is presumably particularly sensitive to this region because variability here
tends to manifest itself as relatively simple anterior-posterior shifts of the SMA/pre-
SMA boundary, whereas more complicated 2D rearrangements of overlapping
PFMs are present elsewhere.

0.0 0.55

(a) (b) (c)

0.0 1.8 0.0 0.7

Figure 5: Summaries of the group-level spatial parameters encoding different
aspects of variability across subjects. The panels are (a) mode overlap; (b) variab-
ility in mode strength; (c) variability in mode memberships.
Mode overlap is defined as the posterior memberships averaged across all modes,
1
𝑀 ∑∀𝑚 𝜋𝑣𝑚. Variability in mode strength is captured by the weighted average of
the posterior standard deviations, (∑∀𝑚 𝜋𝑣𝑚𝜎𝑣𝑚)/(∑∀𝑚 𝜋𝑣𝑚). Finally, variability in
mode memberships is given by the average entropy, in bits, of the membership
distributions, 1

𝑀 ∑∀𝑚 H(𝜋𝑣𝑚).

In summary, the PFM spatial model captures familiar group-level modes, and
exhibits many of the complex subject-specific rearrangements already described
in the literature. However, the key advantage is the way in which we have para-
meterised this model. Crucially, the richness of the group description allows us to
make specific claims about the patterns of variability across the population that
are ordinarily hard to tease apart.

3.2.3 Comparison with spatial ICA

To begin with, we examine the performance of the different models in terms of
their inference of the group-level spatial descriptions. In Figure 6 we plot the
similarity between these group-level descriptions.

There are several key points to note. Firstly, there are strong spatial correlations
between the PFM maps, especially within the different categories. By way of
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contrast, the independence assumptions in spatial ICA preclude this. Secondly,
PROFUMO is relatively conservative: it only infers 36 signal modes compared to
the 48 found by ICA, and the difference is particularly pronounced in the subcortical
regions. This subcortical difference is predominantly driven by the different signal
properties of the HCP data between cortical and subcortical grayordinates, and
the different data normalisation strategies the two algorithms use. The result
is that ICA tends to find subcortical regions appearing in components without
much cortical involvement, whereas PROFUMO tends to find subcortical regions
appearing in components with cortical involvement. Finally, despite the above
differences, there is fundamentally a strong relationship between the two sets of
maps. Most cortical modes appear in both decompositions, and often look fairly
similar; this is encouraging, as we do not expect a radically different patterns of
functional connectivity at the group level given how many published methods
have converged on similar descriptions.

Figure 6: Spatial similarity between the sets of group-level spatial maps as inferred
by PROFUMO and ICA. Modes were split into five categories and reordered: visual
(Vis); motor (Mot); auditory (Aud); cognitive (Cog); and subcortical (Sub). This
ordering is used for all subsequent sections.

3.2.4 Properties of subject variability in spatial organisation

Given that the group-level descriptions are fairly similar between PFMs and sICA,
the obvious question are to what extent does the extra group-level information in
the PFM model regularise the subject-specific decompositions, and in what ways
do the subject-specific maps diverge from the group-level representations? We
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deal with the former first, and in Figure 7 we look at that the consistency of the
subject maps as inferred by PROFUMO and the ICA-DR pipeline. As expected
given the regularisation from the more complex group-level priors, the PFM maps
are much more consistent across subjects.

0.0 1.0 ICA-DRPFMs

Figure 7: Similarity between the subject-specific spatial maps, for both PFMs
and ICA-DR, as inferred from the HCP data. For each voxel and in every pair
of subjects, we compute the Pearson correlation coefficient between the two 𝑀-
dimensional vectors of mode weights. The maps shown here are the correlation
coefficients averaged over every pair of subjects.

However, this increase in consistency could also be explained if the subject-
specific PFM spatial maps were simply pushed closer to the group maps by the
priors, thereby being less faithful to the ‘true’ patterns of functional connectivity
at the subject level. While this does not appear to be the case for the exemplar
subject maps, what we really want to quantify is whether they are capturing
‘interesting’ aspects of subject variability in spatial organisation. In other words,
are the differences between the approaches meaningful, and do they make different
predictions about the subjects themselves?

To investigate this, we use the fact that the HCP includes data from twins and
siblings to investigate the influence of genetics and environment. We estimate the
voxelwise broad-sense heritability of the subject-specific spatial maps we observe:
in each voxel and each subject, we extract the vector of PFM or ICA map weights,
and look to see if these weight vectors are more consistent in monozygotic than
dizygotic twins (see Appendix G for full methodological details). The results of
this analysis are shown in Figure 8.

The results show a clear increase in heritability for the PFM spatial maps,
suggesting that they are more sensitive to subject variability that we can attribute
to genetic factors. Furthermore, this is not simply attributable to a reduction in
noise or as the result of the priors pushing the subject maps closer to the group.
While the PFM maps are more consistent across subjects than ICA-DR [Figure 7],
the heritability relates to the difference in consistency between monozygotic and
dizygotic twins and, as such, a global increase in consistency is not enough to
explain the increased heritability.
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(a) (b)

-0.3 0.3

(c)

Figure 8: Analyses of the heritability of the subject-specific mode maps, for both
PFMs and ICA-DR, as inferred from the HCP data. In (a) and (b) we display the
voxelwise estimates of broad-sense heritability (𝐻 2

𝑏 ), and in (c) we compare the
two as a scatter plot.
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We can also gain further insights into this observation by utilising the HCP’s
retest data. 46 subjects underwent the full HCP imaging and behavioural testing
protocol twice, of which there is full rfMRI data from 42. This allows us to examine
how the algorithms perform on the hitherto unseen retest scans. The group-level
representations from the full data (i.e. the ICA spatial maps, and the group-level
PFM posteriors) were used to derive new subject maps from the independently
acquired retest data.

-99.5% 99.5%

IC
A
-D

R
P
F
M
s

Group 149337 Retest

Figure 9: Example spatial maps for the language mode, for both PFMs and ICA-
DR, as inferred from the full HCP data and the HCP retest data for subject 149337.
Only the left lateral surface is shown.

In Figure 9 we compare subject-specific realisations of the language mode
as derived by PROFUMO and the ICA-DR pipeline. This particular mode was
chosen because a characteristic split in area 55b in some subjects was reported
and examined in some detail by Glasser et al. [2016a]. In terms of a comparison
between PROFUMO and ICA-DR, both are clearly sensitive to the same gross
re-organisations that occur. For example, both can detect the rearrangement of
area 55b in the original and retest data for the subject shown here. However, the
most marked difference is in the noise-level and appearance of anticorrelations.
Relative to ICA-DR, the PFMs show much reduced background noise in regions
not associated with the networks, and do not exhibit anticorrelations (indicated
by negative weights, shown in blue) tightly interposed between positive weights.
This is presumably a simple consequence of dual regression’s inability to separate
signal from noise, as we discussed in the section on noise modelling. By way
of contrast, the information encoded by the group-level parameters in the PFM
model suppresses the background noise in regions that are not part of the language
network, but in a way that does not preclude inferring complicated rearrangements
of functional regions.

To assess the reliability of the different decompositions on the retest data more
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quantitatively, we assess the specificity of the inferred spatial maps as ‘fingerprints’
that uniquely identify different subjects [Finn et al. 2015; Horien et al. 2019]. This
is shown in Figure 10.

ICA-DRPFMs

(c) (d)

(a) (b)

Figure 10: Specificity of the subject-level spatial maps as inferred from both
the original and retest HCP data by PROFUMO and ICA-DR. The group results
from the full data are used to derive subject-specific spatial maps in the unseen
retest data. In (a) we show the similarity of the inferred maps in the same subject,
seperately for each mode. In (b) we calculate the fingerprint specificity, or how
much more similar the maps in the same subject are as compared to maps from
non-matching pairs of subjects, averaged over modes. This is equivalent to the
difference between the diagonal and the off-diagonal elements (calculated for each
column separately) in the full simmilarity matrices as shown in (c) and (d).

Firstly, we compute the spatial similarity between the new subject-specific
spatial maps from the retest data, and the original set from the full data, for every
pair of subjects. We pool these retest results over all modes and subjects, and
this is shown in Panel (a). Again, the subject-specific PFM maps are much more
consistent across the two acquisitions.

Secondly, we assess whether this leads to more specific fingerprints. In Panel
(b) we show that the fingerprint specificity (i.e. the amount by which the two
sets of maps from the same subject are more similar than paired maps from
different subjects) is also higher for the PFMs. In other words, not only are the
maps generally more consistent across subjects, but there is an increase in subject
specificity above and beyond this effect.

In summary, the comparisons with ICA-DR have demonstrated that while
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the group-level descriptions are similar, the more complex hierarchical modelling
in PROFUMO allows us to infer spatial maps that are more consistent—on both
the original data and the held-out retest data—as well as being more specific and
capturing more informative aspects of cross-subject variability.

3.2.5 Overview of the PFM temporal model

Here, we briefly give a summary of the key temporal parameters—that is, the
amplitudes and the functional coupling between modes—as inferred by PROFUMO
on the HCP data. Note again that these are new parameters: in other words, it
was only possible to investigate these in a post-hoc fashion based on the previous
PFM model. Firstly, in Figure 11 we plot the cross-subject correlations between
the mode amplitudes, as captured by the 𝜮𝒉 parameter. Encouragingly, we see a
clear replication of the results of Bijsterbosch et al. [2017], who reported strong
correlations between the amplitudes of sensorimotor modes, as well as between
cognitive modes, but relatively weak correlations across the two categories. How-
ever, the crucial difference between this result and the original observation is
that this behaviour was initially demonstrated from a purely post-hoc analysis of
the ICA-DR results, whereas it is explicitly parameterised and inferred within the
PFMs model. What this means is that this knowledge of the systematic relationship
between mode amplitudes is available during inference, and it is therefore naturally
incorporated as an extra factor regularising the subject-specific decompositions.

Figure 11: Cross-subject relationships between the amplitudes of the PFMs, as
inferred from the HCP data. For visualisation purposes, we display the posterior
precision matrix, 𝜮𝒉, after transforming it to both full and partial correlation
coefficients.

Secondly, in Figure 12 we plot the PFM functional coupling parameters, 𝜷
and 𝜶 (𝑠) (these represent the group- and subject-level temporal network matrices
respectively). What is striking is how weak the functional coupling is between
modes in the group-level network matrix (netmat), especially given that we have
an explicit hierarchical model to allow for just these interactions. This is not trivial
to explain away as a spatial effect either: despite the fact that these interactions
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are more similar to what we would expect from temporal ICA, the PFM spatial
maps are similar to those inferred by spatial ICA which typically infers strong
functional coupling between modes. We quantify the implications of this different
view on functional coupling from the PFM model in the following section.

195950144933Group

Figure 12: Group- and subject-level functional coupling between the PFMs, as
inferred from the HCP data. For visualisation purposes, we display the pos-
terior parameters 𝜷 (group-level) and 𝜶 (𝑠) (subject-level) as partial correlation
coefficients. As in Figures 3 and 9, subject 149337 is chosen as the exemplar.

3.2.6 Multivariate relationships with behavioural variables

How then, are we to interpret the differences between the PFM and ICA-DR
approaches? Do they simply represent a different trade-off between sensitivity and
specificity in the spatial and temporal domains, or are they telling us something
fundamentally different about brain activity?

To probe this further, we performed a series of multivariate analyses to invest-
igate the different ways in which the two models encode cross-subject information.
Like in Smith et al. [2015], canonical correlation analysis (CCA)—a multivariate
analysis technique used to find the linear relationships between sets of variables
[Hotelling 1936]—was used to summarise the key correspondences (see Appendix G
formethodological details). Furthermore, as some sets exhibit more than one strong
linear relationship, we use the RV coefficient [Robert and Escoufier 1976] to give
a principled summary of the multivariate information reported by the CCA. In
Figure 13, we examine the full set of pairwise relationships between the behavi-
oural and structural variables from the HCP, and the spatial maps, amplitudes and
network matrices from both PROFUMO and ICA-DR.

There are several key results we can glean from this analysis. Firstly, the
cross-subject information captured by the different aspects of the PFM model is
relatively distinct. Comparing the similarity between the PFMmeasures with those
for the ICA-DR variables (i.e. the on-diagonal blocks), we can see that the scores
are typically lower for the PFMs. In other words, the temporal measures derived
from the PFMs carry relatively different information from the spatial measures
about the subjects themselves, at least compared to their ICA-DR equivalents.
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ICA-DRPFMs

Figure 13: Relationships between the cross-subject information encoded by dif-
ferent analyses. The non-functional variables (NFVs) have been separated into
variables from the HCP’s battery of behavioural tests, and variables derived from
structural MRI relating to brain size and morphology. On the left we plot the log
RV coefficient calculated between the subspaces of the top ten CCA components
as calculated between every pair of sets of variables, and on the right we reproduce
the relationships with the non-functional variables (i.e. the top two rows / two
leftmost columns) as a bar chart for ease of visualisation. Higher values of the RV
coefficient indicate that more similar cross-subject information is being captured.

Secondly, if we examine the relationships with the behavioural and structural
measures in the bar graph on the right, there are several striking differences
between the methods. As we would expect from our earlier analyses, the PFM
spatial maps are the best predictors of structural variables. They are also good
predictors of the behavioural variables, though slightly less so than the ICA-DR
netmats. However, the stories for the temporal information are very different.
The PFM amplitudes, fABT and netmats are relatively poor predictors of both
behavioural and structural variables, though, intriguingly, they are better predict-
ors of behaviour than structure. By way of contrast, the ICA-DR amplitudes and
netmats are better behavioural predictors, though surprisingly they are also good
predictors of structure (e.g. one can predict the sizes and thicknesses of cortical
areas better than behavioural measures from the ICA-DR amplitudes).

Given the simulation results, the interpretation is relatively straightforward:
the ICA-DR pipeline contains inherent biases that conflate spatial and temporal
information. Furthermore, even though we do not explicitly test it here, it is
interesting to note that using the thresholded version of dual regression to correct
this bias also reduces the correlation between temporal netmats and behaviour
[Bijsterbosch et al. 2019]. In other words, and consistent with the results on
simulated data, thresholded dual regression is an improvement on ICA-DR but is
less accurate than the full PROFUMOmodel. The question that remains however, is
what information, if any, is the PFM temporal model capturing if not the trait-like
behavioural variables examined here?
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3.2.7 Summary

Given the full set of results presented on the HCP data, the implication is that
the PFMs, by virtue of the improved spatial modelling in particular, are better
able to capture interesting information about cross-subject variability in spatial
organisation. However, this does not address the relative lack of information
encoded in the various temporal measures that PFMs capture. We address this
point using another data set in the following section.

3.3 Active-state data

Given the way that subject variability in spatial and temporal features simultan-
eously co-varies with a wide range of non-imaging derived subject measures, it
is very challenging to conclusively disambiguate them from studies like the HCP.
However, if we manipulate the functional connectivity at the subject level, for
example by changing the cognitive state [Shirer et al. 2011; Krienen et al. 2014;
Vanderwal et al. 2017; Gratton et al. 2018; Kieliba et al. 2019; Salehi et al. 2020],
then we can begin to examine temporal differences in more detail. Crucially, by
looking at multiple conditions for the same subject we essentially eliminate the
influence of structural variability from the functional data.

To do this, we use a dataset collected where subjects were scanned when
in different active states—these are induced by performing simple, continuous
tasks in the scanner, of which rest (i.e. eyes-open fixation) is just one [Duff et al.
2018; Kieliba et al. 2019; Sala-Llonch et al. 2019]. There are five runs for every
subject, each collected under different steady-state conditions: a standard resting-
state acquisition (Rest); a finger-tapping based motor task (Mot); a passive visual
condition (Vis); an independent combination of the visual stimulus and motor
task (V-M); and a condition where the specifics of the motor task changed based on
the visual stimulus (V+M). A more detailed descriptions of the tasks and data itself
can be found in Kieliba et al. [2019]. Furthermore, this dataset offers a validation
of our method on data acquired using a more conventional sequence and scan
duration than the HCP, with fewer subjects, shorter scan durations, and all analyses
performed on volumetric rather than surface-based data.

3.3.1 Analyses

As per the modelling assumptions, PROFUMO infers one consensus spatial map per
subject, but a separate set of time courses per run. We choose to infer run-specific
temporal precision matrices, 𝜶 (𝑠𝑟), with a consistent group-level hyperprior, 𝜷,
which is shared across all conditions. Note that we could have chosen to use
condition-specific group-level priors, {𝜷(𝑟)}𝑅𝑟=1, but this has the side-effect of in-
validating the assumptions behind any subject-level statistics where we compare
between conditions. In short, it reduces the cross-subject, within-condition vari-
ance which invalidates the typical null hypothesis we use. We leave the problem of
performing statistical inference on these types of models for future investigations.
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We infer 30 modes for both PROFUMO and ICA-DR, which again seems to
be close to the upper limit for PROFUMO on this relatively small dataset. Again,
artefactual modes were eliminated and those remaining were reordered for visu-
alisation. In terms of computational requirements, the PROFUMO analysis took
approximately 12 hours using 15 cores on a single compute node, and memory
usage peaked at 25GB. Compared to the HCP analysis, the demands are higher
than expected given the number of subjects for two reasons: firstly, the volumetric
analysis contains over twice as many voxels as grayordinates; secondly, we do not
do within-subject data reduction for this analysis.

For the ICA-DR pipeline, we use MELODIC [Beckmann and Smith 2004; Beck-
mann et al. 2005] to infer a set of group maps, followed by dual regression to
generate the run-specific time courses.

3.3.2 Overview of the PFM model

In Figure 14 we show the group-level properties of the default mode as inferred from
this data set. This is directly comparable with Figure 4, and simply demonstrates
that we are able to infer similar summaries of the mode itself, and heterogeneous
variability, from fourteen subjects rather than one thousand.

(a)
-3.0 3.0 -4.0 4.0 0.0 0.75 0.5 1.5 0.0 0.8

(b) (c) (d) (e)

Figure 14: Example of the key group-level spatial parameters for the PFM rep-
resenting the default mode network, as inferred from the active-state data. The
parameters are as per Figure 4, along with the group map. The panels are the (a)
group map; (b) posterior means, 𝜇𝑣𝑚; (c) posterior memberships, 𝜋𝑣𝑚; (d) posterior
standard deviations, 𝜎𝑣𝑚; (e) posterior noise standard deviations, 𝜁𝑣.
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In Figure 15, we demonstrate some of the properties of the inferred time
courses from the PFMs. This data is more challenging than the HCP in that the
runs are shorter, and the data has not benefited from resampling onto the cortical
surface. Nevertheless, the HRF-based prior constraint results in a temporally
smooth timecourse, which we are able to cleanly separate from the high-frequency
noise which contaminates them. Furthermore, this is stable when we undo the
temporal blurring that the HRF induces, with straightforward estimation of the
underlying ‘neural’ process via whitening with respect to the autocorrelation
induced by the HRF.

Finally, in Figure 16, we display examples of the network matrices to illustrate
the typical patterns of, and subject variability in, the functional coupling between
PFMs. Interestingly, in this data, PROFUMO infers PFMs with much stronger
functional coupling between them than at the run level from the HCP data.

3.3.3 Comparison with ICA-DR

One would hope that the PFM model allows us to more accurately infer the true
functional coupling between modes. To begin with, we look at the relationships
between the condition-specific network matrices as inferred by PROFUMO and
ICA-DR. These are shown in Figure 17. While the PFM network matrices are less
consistent between conditions and subjects than their ICA-DR counterparts, there
is some indication that there is condition-specific modulation across subjects (as
indicated by the block diagonal). By way of contrast, the ICA-DR network matrices
are dominated by the subjects themselves (i.e. the multiple strong off-diagonal lines
in the ICA-DR plot), with no real indication of condition-specific modulations.

In summary, ICA-DR computes netmats that are more similar within subjects
than they are within conditions across subjects. By way of contrast, PROFUMO
infers netmats that are somewhat more similar within conditions than within
subjects. Again, this suggests that the different models for subject variability
in spatial organisation have a profound influence on downstream estimates of
functional connectivity.

Next, we test whether the different conditions induce focal changes to the
between-mode patterns of functional connectivity. The results of a statistical
analysis that looks for modulations at the level of individual network matrix edges
are shown in Figure 18. Both the PFM and ICA-DR pipelines detect changes in
the coupling of visual regions induced by the visual stimulus, and it appears they
both have similar sensitivity to the changes in coupling induced by the changes
in cognitive state. There are some differences between the methods: for example,
the visual changes detected by PROFUMO are more consistent across the three
conditions with visual stimuli than for ICA-DR. Similarly, the types of changes for
the combined visuo-motor condition are somewhat different, with ICA-DR finding
changes in amplitude predominantly, whereas there are more changes in coupling
for PROFUMO.

However, the results are fundamentally fairly similar and the numbers of edges
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(a)

(b) (c)

Figure 15: Example PFM time courses, and observed frequency content, from the
active-state data.
Panel (a): Example time course for one mode in one run. ‘Combined’ refers to
the time course which includes the noise terms (𝑨(𝑠𝑟) = 𝑩(𝑠𝑟) + 𝝃 (𝑠𝑟)), ‘clean’ refers
to the BOLD portion specifically (𝑩(𝑠𝑟)), while ‘decorrelated’ refers to the clean
time course after correcting for the temporal autocorrelation induced by the HRF
(𝑩(𝑠𝑟)𝑲−1/2

𝑩 ).
Panels (b) & (c): Frequency content of the combined and clean time courses
respectively, pooled over all runs and subjects. The magnitude of the DFT coeffi-
cients are calculated for each time course, and for visualisation purposes, we fit a
gamma distribution to the histogram of observed magnitudes for each frequency
bin. The mode of this distribution is plotted in red, and the grey region represents
the 95 % highest density interval [Kruschke 2014].
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Group s25; Rest s25; Mot s25; Vis

Figure 16: Example PFM network matrices, capturing the functional coupling
between the mode timeseries. We display the group network matrix alongside
the network matrices from subject 25 in the rest, motor and visual conditions.
As in Figure 12, we display the posterior precision matrices (i.e. 𝜷 for the group
level and 𝜶 (𝑠𝑟) at the run level) as partial correlations. Modes were split into three
categories and reordered for visualisation of the network matrices: visual (Vis);
motor (Mot); and cognitive (Cog).

ICA-DRPFMs

Figure 17: Correlations between the network matrices, for both PFMs and ICA-
DR, as inferred from the active-state data. The network matrices are grouped
by condition, and the subjects have a consistent ordering within each block.
Correlation is the Pearson correlation coefficient between the unwrapped upper-
triangle of the network matrices.
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Figure 18: Changes in between-mode functional connectivity as induced by
different active states relative to the rest condition. The raw difference between
the group mean network matrix during the active condition and during rest is
shown above the diagonal, and any significant changes (p<0.05) are highlighted
by blue or red squares, for increases and decreases in coupling respectively, below
the diagonal. Changes in amplitudes are shown on the diagonal. All tests were
family-wise error corrected and computed using the accelerated permutation
inference in PALM [Winkler et al. 2014; 2016]. The black dots denote elements
that were significant under an f-test over all contrasts. As per Figure 16, modes
were split into three categories and reordered for visualisation of the network
matrices: visual (Vis); motor (Mot); and cognitive (Cog).
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that exhibit significant changes is relatively low—and, perhaps, lower than we
might expect given the strong manipulations of cognitive state12—suggesting that
the statistical power might be the limiting factor here, especially given that there
are only 14 subjects included in this analysis. Finally therefore, we do one further
set of tests to probe whether the multivariate information in the network matrices
and amplitudes captures condition-specific information. Repeating the analysis of
Sala-Llonch et al. [2019], we investigate whether a support vector machine (SVM)
can be trained to distinguish between network matrices from different conditions.
The accuracy of the SVM classification is tested using a leave-one-subject-out
cross-validation framework [Varoquaux et al. 2017], of which we provide more
methodological details in Appendix H.

As well as comparing PROFUMO and ICA-DR in this way, we additionally
examine the effect that the hæmodynamic model has on the temporal information
that we infer. In other words, can the changes to estimates of functional connectiv-
ity be attributed to the advanced spatial modelling alone, or does the regularisation
in the time domain improve our estimates too? As well as the explicitly inferred
PFM network matrices, we do a post-hoc estimation of the temporal network
matrices based on both the BOLD time courses and the combined time courses
(i.e. 𝑨(𝑠𝑟), which includes both the BOLD and noise time courses) to assess what,
if any, effect the modelling hierarchy has.

The results from the SVM analysis are presented in Figure 19. The SVM
achieves a significantly better classification accuracy when trained on the PFM
netmats, as opposed to those estimated by ICA-DR. Again, this suggests that by
correcting for subject variability in spatial organisation the PFM framework allows
us to estimate state-induced changes in functional coupling with greater fidelity.
By way of contrast, the conflation of spatial and temporal information by ICA-DR
masks these more subtle state-related changes in functional coupling. Finally,
there appears to be a distinct performance improvement when using the inferred
PFM network matrices, suggesting that the hierarchical temporal modelling is
advantageous and that we are not discarding relevant information by focusing on
the predominantly low-frequency HRF-derived time courses.

12Note also that Figure 2 from Sala-Llonch et al. [2019] uses FDR with 𝑞 = 0.2 for the background,
whereas the tests here use a more stringent FWE 𝑝 < 0.05 test for significance.
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AmplitudesNetmats

Figure 19: Posterior classification rates for a multi-class SVM trained to distin-
guish between the different active-state conditions. The results on the left are
when the off-diagonal elements of the network matrices are fed in, and the results
on the right are when the amplitudes are used as features. Posterior densities are
based on the number of correct and incorrect classifications out of the full set of 70
tests (14 subjects; 5 conditions), combined with Haldane’s uninformative beta prior
[Haldane 1932]. The modes of the distributions are shown by the black bars, and
the chance level is shown by the dashed blue line. The two p-values are calculated
via McNemar’s test (mid-p variant) and Bonferroni corrected [Fagerland et al.
2013]. For the PFM netmats, the variants are:
PFMs: network matrices inferred as part of the PFM model, 𝜶 (𝑠𝑟).
PFM (BT): network matrices estimated as the partial correlations between the
PFM BOLD time courses 𝑩(𝑠𝑟).
PFM (CT): network matrices estimated as the partial correlations between the
combined time courses 𝑨(𝑠𝑟) = 𝑩(𝑠𝑟) + 𝝃 (𝑠𝑟).
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4 Discussion

In summary, the results presented above demonstrate three key attributes of PRO-
FUMO. Firstly, the algorithm is applicable to modern, large-scale data, whereby it
is exquisitely sensitive to cross-subject variability in spatial organisation. Secondly,
the joint inference framework allows estimation of subject variability in temporal
features that does not appear to be confounded by spatial differences, which at
times leads to a radically different view of functional connectivity. Finally, the
implication of these results is that after accounting for spatial variability, the func-
tional coupling between modes is much more reflective of current cognitive state
rather than trait-like qualities.

Furthermore, we have shown that there is significant value added in terms of
interpretability from the practitioner’s point of view in using models of this form.
To give a few concrete examples, we can only make the claims pertaining to the
dissociation of non-homogeneous spatial variability—as illustrated in Figure 5—if
we can both consistently identify equivalent functional systems across multiple
subjects and model the different ways in which variability can arise. Similary, the
ability to capture cross-subject amplitude effects (Figure 11) or use the model to
define alternatives to, for example, fALFF-type measures (Figure 13) means that
many of what would have been post-hoc analyses can be simplified and made
more interpretable.

4.1 Group- versus subject-level approaches

The comparisons in this paper have been with ICA-DR, as this is probably the most
common method for finding functional modes from resting-state data and is a key
part of the HCP’s pipelines. However, while PROFUMO and ICA-DR try and infer
on many of the same quantities, they make fundamentally—and not necessarily
compatible—assumptions about the data itself.

The key difference between the two is the way PROFUMO entails a holistic
model for group- and subject-level representations, whereas ICA-DR assumes they
are separately estimable. The majority of group-level ICA methods assume all
subjects are in a common space, and proceed to analyse the data without recourse
to individual decompositions. This formulation gives much more flexibility for the
group-level decomposition to utilise the extra statistical power that concatenating
over subjects affords, which means that the ICA modes depart—at times fairly
radically—away from what we can resolve at the subject level. As such, ICA seems
to be able to identify up to several hundred plausible components, that ultimately
begin to resemble a parcellation [Kiviniemi et al. 2009; Smith et al. 2013b].

However, what we show here is that group-level representations are not
enough. In the simulated data, even if the ground truth is known at the group-level,
the subject-level information inferred by dual regression will be biased and noisy.

What PROFUMO attempts to do is to model as many different facets of multi-
subject rfMRI data together as is plausible. Here, we expand on two concrete
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implications of this approach as compared to other methods.
Firstly, the implication of the joint subject-level modelling in PROFUMO is

that for a mode to appear at the group-level it has to be resolvable in the majority
of individual subjects. Therefore, this engenders a fundamentally different view on
what the dimensionality of the data is. The Bayesian model complexity penalties
seem to result in no more than thirty or forty PFMs being identified, essentially
regardless of the pre-specified model dimensionality. While more subjects do
offer increased regularisation of the subject-level modes, this can only do so much.
This is why the inferred number of PFMs is on the same order as the number of
signal components as inferred by ICA-FIX (23.3 ± 6.6 at the run-level for HCP data
[Marcus et al. 2013]).

Secondly, we have demonstrated the importance of modelling different char-
acteristics of the data together. In the simulated data, even if the ground truth
is known and thresholded dual regression is used to reduce the inherent spati-
otemporal biases [Bijsterbosch et al. 2019], PROFUMO is still more accurate than
ICA-DR like approaches. Similarly, in the classification of the active-state data,
there are clear performance benefits from modelling the netmats hierarchically,
even after the spatial variability has been accounted for. This is not to say that the
PROFUMO model is perfect, as it clearly contains many simplifying assumptions.
However, it is at least an internally consistent framework within which one can
begin to explore the implications of different modelling decisions.

4.2 Spatial representations

One of the key messages from this work, in line with other recent reports [Hacker
et al. 2013; Harrison et al. 2015; Laumann et al. 2015; Glasser et al. 2016a; Gordon
et al. 2016; Braga and Buckner 2017; Gordon et al. 2017a; b; Kong et al. 2018], is that
complex rearrangements of functional regions in individual subjects are ubiquit-
ous and of a surprisingly large spatial scale. Figures 3 and 9 provide reasonable
examples of these effects. Even after the advanced multi-modal, surface-based re-
gistration employed by the HCP, one often observes spatial rearrangements where
subject-specific features are shifted relative to the group by many millimetres.

The difficulty we face when working at the group-level is that the summary
features we extract are not necessarily representative of those at the subject-
level; they are, and should always be thought of as, probabilistic representations
[Van Essen and Dierker 2007]. As discussed in the previous section, we cannot
automatically expect that it will be straightforward to project group-level results
back to meaningful characterisations of functional connectivity at the subject level.
Furthermore, the characteristic size of misalignments probably represents a limit
in terms of the size of functional features we can project from the group back to
the subject-level; while the native resolution of the subject-level data may well be
higher, methods that work on the functional data alone like ICA-DR or PROFUMO
will always struggle in the absence of additional constraints if the misalignments
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are large enough to mean some regions do not overlap with their group-level
homologues at all.

In other words, misalignments are now often larger in scale than the fun-
damental resolution limits imposed by the physics and physiology that governs
the properties of the data itself. Subject-level representations are limited by the
properties of the data itself: 2mm isotropic voxels are now common, and the
spatial characteristics of the HRF do not appear to blur much beyond this [Shmuel
et al. 2007]; at the group-level, the effective resolution of the data relates to the
characteristic size of these residual misalignments between subjects, and these
are likely to be larger. What this means is that functional MRI currently occu-
pies an interesting liminal space, where the spatial resolution of high-powered
single-subject analyses can now surpass that of studies that employ multitudes of
subjects. This probably explains the recent resurgence of exploratory studies based
on small numbers of subjects [Gonzalez-Castillo et al. 2012; Raemaekers et al. 2014;
Laumann et al. 2015; Poldrack et al. 2015; Huth et al. 2016; Braga and Buckner 2017;
Gordon et al. 2017b; Salehi et al. 2020]. Fortunately, recent work has suggested that
there is scope to further reduce the size of the residual misalignments [Guntupalli
et al. 2018], and use multi-modal data to help identify regions at the subject-level
[Glasser et al. 2016a], both of which will be essential parts of the push towards
finer spatial scales.

Finally, these observed spatial differences also have implications for parcel-
based analyses. Given the many fine-scale variations in the spatial maps and the
amount of overlap between PFMs, it may be that we need multivariate analysis
techniques that go beyond one summary time course per parcel to capture the
richness of the functional data at sub-parcel spatial scales [Geerligs et al. 2016;
Anzellotti and Coutanche 2018; Haak et al. 2018].

4.3 Interpreting spatiotemporal connectivity patterns

One of the striking differences between PROFUMO and ICA-DR is their inferred
patterns of functional coupling between regions. Not only do these suggest funda-
mentally different group-level coupling strengths, but the predictive power at the
subject and run level is also different. Whereas ICA-DR netmats primarily correlate
with trait-like properties, PROFUMO netmats are more sensitive to changes in
cognitive state. Here, we expand on these observations as a final discussion point.

Clearly, there is a complicated relationship linking spatial variability and the
functional coupling between modes, and indeed concerns about the interpretability
of functional connectivity in the presence of anatomical variability are far from
new [Brett et al. 2002]. The effect that subject variability in spatial organisation
might have on its temporal counterpart has been noted in simulation studies. For
example, E. A. Allen et al. [2012] observed a sharp decrease in the ability of a variant
of ICA-DR to detect subject-specific modes in the presence of subject variability in
spatial organisation, an effect which was compounded by spatial overlap between
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modes13. This links to functional coupling via the work of Smith et al. [2011], who
noted that if ROIs were misspecified such that the time courses contained a range
of contributions from the true underlying regions, then ‘[t]he results are extremely
bad’. It is the latter result in particular which is particularly shocking: if we do not
extract accurate subject-level estimates of functional regions then it is essentially
impossible to characterise the functional coupling between them.

Furthermore, a key claim of the related recent work on subject variability in
functional connectivity by Bijsterbosch et al. [2018] is that it is not possible to make
meaningful claims about what drives cross-subject changes in functional coupling
between regions if said regions are not properly delineated at the subject level.
In other words, spatial variabiality does not simply make it harder to estimate
functional coupling, it can also fundamentally bias our inferences. Again, the
results here—particularly the simulations—extend these results, showing that the
way in which dual regression biases functional connectivity estimates away from
the spatial correlation structure [Bijsterbosch et al. 2019] is really an inherent
property of mapping between group and subject levels in this way. While this bias
can be reduced with the thresholded variant of dual regression, the simulation
results, and short theoretical analysis on the role of noise, suggest that the PFM
model will be much more performant than this variant.

What we show here with regards to the predictive power of the PROFUMO
netmats is that, in line with other work [Bijsterbosch et al. 2018; 2019; Pervaiz et al.
2020], they are relatively poor predictors of trait-like quantities. Instead, we have
shown that they are much more predictive of current cognitive state. However, for
analyses that try to use functional coupling to make predictions about individual
subjects [Abraham et al. 2017; Dadi et al. 2019; Pervaiz et al. 2020], the ICA-DR
netmats are likely to produce more accurate predictions. In that case, one has to
contend with the fact that the induced biases reduce the interpretability of the
findings, which may or may not be desirable depending on the specifics of the
problem at hand [Stephan et al. 2015; 2017]. Of course, the presence of confounds
that are themselves behaviourally relevant—such as head motion [Power et al.
2012; Satterthwaite et al. 2012; Van Dijk et al. 2012; Couvy-Duchesne et al. 2014;
Hodgson et al. 2017; Laumann et al. 2017], physiological noise [Power et al. 2017;
Glasser et al. 2018] or brain volume [Bartley et al. 1997; McDaniel 2005; Qing and
Gong 2016]—makes this problem of interpretability very challenging in practice
for any method.

The results we have presented here suggest that the spatial information en-
coded by PROFUMO is likely to give much better predictive performance in this
context. This is similar to other work which has demonstrated increased perform-
ance of spatial features such as, for example, task-based maps [Bijsterbosch et al.
2018] or parcel topography [Kong et al. 2018], and, furthermore, that this has a
close relationship with structural information [Llera et al. 2019]. The obvious
questions are therefore why do spatial rearrangements of functional regions seem

13Figures 4 and 5 in particular.
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to be so predictive in cross-subject analyses, and how do we interpret them? One
hypothesis is that this variability in spatial organisation of functional regions is
simply reflecting variability in the brain’s macroscale structure, for which there
are already well established links between environmental, genetic and lifestyle
factors [Reiss et al. 1996; Shaw et al. 2006; Stein et al. 2012; Douaud et al. 2014;
K. G. Noble et al. 2015; Elliott et al. 2018].

However, it would be an enormous surprise if this reductionist reading of these
functional changes as simply reflecting structural variability is the whole story,
especially after the registration approaches used. Rather, it is vitally important
to understand both what mechanisms give rise to these spatial changes, and, in
particular, what unique information does the functional variability carry over and
above what can be derived from other techniques and modalities.

5 Conclusions

All analyses of complex, multivariate functional data require us tomake simplifying
assumptions, and, as such, the results we see are inevitably coloured by the model-
ling choices we make. This might involve, for example, deciding decide whether
to run a parcel- or mode-based analysis, or when choosing which specific method
to use. As such, it is essentially impossible to conclusively determine whether
one method more accurately characterises the general organisational principles
or subject variability from the functional data alone. However, we feel that the
above results demonstrate that PROFUMO and the PFMs model are providing a
novel and worthwhile perspective on the analysis and interpretation of functional
MRI data. We hope that this approach—by virtue of having a model tailored to the
properties of fMRI data, the enhanced spatial sensitivity and specificity, and the
way spatial variability is automatically accounted for when estimating functional
coupling—proves useful.
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Appendices

A Alternative approaches

There are now several methods that characterise resting brain activity in terms of
functional modes, both at the group and subject level. The standard pipeline is
essentially a two-step process, where the group-level modes are estimated before
some form of back-projection is used to extract subject-specific versions of these.
Dual regression and related variants thereof, typically combined or integrated with
a group-level spatial independent component analysis (ICA) [Calhoun et al. 2001;
Beckmann et al. 2005], have been the de facto standard for analyses of the subject
variability in spatial and, more recently, temporal features of modes for at least the
past decade. Dual regression proceeds by regressing the group-level spatial maps
into the data to get a set of time courses—fromwhich subject variability in temporal
features may be estimated via any number of functional connectivity metrics—
before regressing the time courses back into the data to get subject-specific spatial
maps [Calhoun et al. 2001; Beckmann et al. 2009; Zuo et al. 2010b; Erhardt et al.
2011; Nickerson et al. 2017].

This approach has been extended over the years, with several proposed refine-
ments to either the method for identifying group-level modes [Damoiseaux et al.
2006; Varoquaux et al. 2010; Lee et al. 2011; Smith et al. 2012; G. I. Allen et al. 2014;
Hjelm et al. 2014; Karahanoğlu and Van De Ville 2015; Dohmatob et al. 2016], or to
the way subject-specific information is extracted [Du and Fan 2013; Hacker et al.
2013; Zöller et al. 2019].

However, there have been several more extensive departures from the above
framework that are more similar in spirit to the hierarchical PFMs model. For
example, Varoquaux et al. [2011] and Abraham et al. [2013] proposed a more holistic
model that finds a set of systems regularised by not only the group-level properties,
but also by the consistency of both spatial and temporal information at the subject
level. More recently, Li et al. [2017] introduced a model based on non-negative
matrix factorisation (NMF) that jointly optimises subject-specific decompositions
such that the spatial maps are both sparse and consistent over subjects, though
without explicitly leveraging any information about temporal consistency.

As mentioned in the Introduction, these methods all have potential shortcom-
ings in terms of the extent to which typical patterns of variability are learnt from
the multiple subject-specific decompositions. These shortcomings are particularly
apparent for dual regression type approaches, where the estimation of subject
variability is completely post-hoc (and, moreover, the estimated subject variability
in spatial organisation only indirectly informs the subject variability in temporal
features), but it is also problematic for the more complex models which we have
mentioned, for which no explicit parameterisation for the observed variability
over subjects is inferred.

More recent methodological work has focused on deriving subject-specific
parcellations, both based on a fixed group-level template [Dhillon et al. 2014; Wang
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et al. 2015; Glasser et al. 2016a; Chong et al. 2017; Gordon et al. 2017a; Salehi et al.
2017], and formulated as a hierarchical model [Liu et al. 2012; Langs et al. 2016;
Kong et al. 2018]. However, while both mode- and parcel-based approaches have
shown promise, our concern is that the subject variability in spatial organisation
that has been reported often features reorganisations of a similar scale to our
current best estimates of the sizes of distinct functional regions [Van Essen and
Dierker 2007; Van Essen et al. 2012a], and as such, reliable identification at this
scale is arguably beyond all but the most sophisticated, multimodal approaches
utilising high quality data [Glasser et al. 2016a]. Therefore, in this work, we stick
to a system-level description and base our method on a decomposition into a set
of modes. Intuitively, a functional system is more protected from the deleterious
effects of misalignment than a functional region in two key ways: firstly, functional
systems have a greater spatial extent than parcels; secondly, a reorganisation of
one region within a larger system can be straightforwardly corrected for if the
other regions are relatively stable.

B Preprocessing

The aim of the preprocessing pipeline is to normalise the data such that it has a
consistent scale across subjects, and that the properties of the unstructured noise
follow the assumptions that are contained in the generative model. The approach
is as follows.

• Voxelwise normalisation. For each voxel independently, the time course (i.e.
𝑫(𝑠𝑟)
𝑣 ) is set to zero mean and unit variance. This ensures that each voxel

has a roughly equal contribution to the SVD in the next step.

• Voxelwise normalisation of the noise subspace. Each voxel is independently
normalised such that the variance of the unstructured noise is unity. This
matches the assumption of isotropic noise in the generative model. The
unstructured noise subspace is estimated via the SVD. The whole data mat-
rix is decomposed and the 𝑀 components with the highest singular values
are assumed to represent the structured signal subspace and are removed.
The noise subspace is reconstructed from the remaining components, the
variance is calculated in each voxel, and the data is renormalised on a
voxelwise basis such that the variance becomes unity.

• Global normalisation of the signal subspace. There is one final degree of
freedom remaining. The generative model assumes isotropic noise, but
does not assume a fixed variance. Therefore we can apply a global renor-
malisation to set the overall variance of the modes we observe. As an
approximation, if 𝑫 = 𝑷𝑯𝑨 and we assume independence over modes,
then we can say that E[𝑫2

𝑣𝑡] = ∑𝑀
𝑚=1 E[𝑷

2
𝑣𝑚]E[𝒉2𝑚]E[𝑨2

𝑚𝑡]. In other words,
if the maps, amplitudes and time courses have unit variance then the signal
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variance will be equal to 𝑀. Therefore we use another SVD decomposi-
tion and set the overall variance of the assumed signal subspace (i.e. the
first 𝑀 components) to match the above by applying exactly the same
normalisation to each voxel.

C Data reduction

The scale of modern rfMRI studies is now such that even manipulating all the
data in its raw form simultaneously is impossible. For approaches that start by
inferring group-level descriptions of the data, such as ICA, it is possible to use on-
line algorithms that work by passing over the data sequentially [Smith et al. 2014;
Mensch et al. 2017], thereby removing the dependence between memory required
and the number of subjects under study. However, our approach is explicitly
designed to simultaneously extract group- and subject-level features, and as such
we need the data from each subject to be available.

To facilitate analyses of large data-sets, we apply subject specific data reduc-
tions, but do not collapse these down further to group-level summaries. The
approach we take is to approximate each run with a low-rank singular value de-
composition (SVD). As our model is defined in terms of both spatial and temporal
features, we have to retain both the spatial and temporal singular vectors. However,
as the PFM model assumes that subject-specific spatial maps are conserved across
all runs for a given subject, we make further savings by only maintaining a single
set of spatial singular vectors per subject.

To do this, we calculate the SVD of the matrix formed by temporally concat-
enating all data from a given subject. This combined data matrix, 𝑫(𝑠) ∈ ℝ𝑉×𝑅𝑠𝑇,
is then represented by 𝑼 (𝑠), 𝑺(𝑠) and 𝑽 (𝑠). To approximate this with a low rank
SVD, we simply only retain the singular vectors associated with the top 𝑁 singular
values. For example, assuming 𝑉 > 𝑅𝑠𝑇 and ignoring columns associated with
singular values equal to zero, 𝑼 (𝑠) ∈ ℝ𝑉×𝑅𝑠𝑇 is replaced by �̂� (𝑠) ∈ ℝ𝑉×𝑁. Finally, we
can partition the temporal singular vectors, according to the order the individual
runs were concatenated, in order to reconstruct the data from each run individu-
ally, or in other words, ̂𝑽 (𝑠) ∈ ℝ𝑅𝑠𝑇×𝑁 is decomposed into a set of ̂𝑽 (𝑠𝑟) ∈ ℝ𝑇×𝑁.
In summary, each data matrix, 𝑫(𝑠𝑟), has three approximating matrices, namely
�̂� (𝑠) ∈ ℝ𝑉×𝑁, ̂𝑺(𝑠) ∈ ℝ𝑁×𝑁 and ̂𝑽 (𝑠𝑟) ∈ ℝ𝑇×𝑁.

The last thing we do is to combine these three matrices into two matrices. This
simply saves some computation each time we need to calculate any expectations
involving the data. The final form for the approximate data is therefore

𝑾 (𝑠) = (�̂� (𝑠))( ̂𝑺(𝑠))
1
2

𝑿 (𝑠𝑟) = ( ̂𝑺(𝑠))
1
2 ( ̂𝑽 (𝑠𝑟))T

𝑫(𝑠𝑟) ≈ 𝑾 (𝑠)𝑿 (𝑠𝑟)

(20)

We can simply substitute this approximate expression for 𝑫(𝑠𝑟) any time we
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need access to the data in the inference procedure, and this has the added bonus of
being computationally, as well as space, efficient. However, we explicitly calculate,
and cache, the overall data variance from the full data, rather than ignoring the
contribution from the subspace of discarded singular values14. This means that
the estimate for the noise precision, 𝜓 (𝑠𝑟), will be comparable whether or not we
choose to utilise this low-rank approximation, or indeed across different values of
𝑁.

We now have an explicit method for reducing large data-sets to a more manage-
able size. However, there is one final complication: computationally, calculating
the SVD of every 𝑫(𝑠) actually turns out to be prohibitively expensive in most
cases. In order to circumvent this, we utilise the fact that we are explicitly looking
for a low-rank approximation and implement an extremely efficient randomised
algorithm to directly calculate the truncated SVD. This approach is described in
the excellent review by Halko et al. [2011].

D Degrees of freedom correction

fMRI data has an inherent spatial smoothness—such that there are non-trivial
spatial autocorrelations in the noise processes—which is amplified by the spatial
smoothing that is a standard pre-processing step for most analyses. As discussed
earlier, this is not acknowledged in our specification of our model of the noise
process. In essence, this means that the model assumes that there are more
independent spatial measurements than actually exist.

Fortunately, as Groves et al. [2011] discuss, there is a simple way to mitigate
some of the effects of this within the Bayesian framework. Intuitively, if we
have smoothed the data then we should be able to downsample it without loss of
information. At some stage, this would result in the noise becoming genuinely
spatially independent again, thereby satisfying the assumptions of the generative
model. However, this presents several practical problems, so rather than actually
downsample the data, we simply downweight the spatial information by a factor
𝜈. This represents the proportion of voxels that would be retained if we were to
optimally downsample. ‘This is analogous to fixing that only a random fraction of
the data points will be kept, but at each stage averaging over all possible choices
of decimated voxels’ [ibid.].

While this approach still does not explicitly acknowledge the relationship
between noise in nearby voxels, it does counter most of the deleterious effects of
this model misspecification, especially when combined with the models for noise
in the subject-specific spatial maps and time courses. The main advantage of this
approach, compared to a more formal model for smoothness, is that it remains
particularly computationally efficient.

14More explicitly, we use Tr((𝑫(𝑠𝑟))T𝑫(𝑠𝑟)) rather than Tr((𝑾 (𝑠)𝑿 (𝑠𝑟))T𝑾 (𝑠)𝑿 (𝑠𝑟)) whenever re-
quired.
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E Initialisation

With a model of this complexity, it is important that the algorithm is appropriately
initialised. By doing so, we can improve reliability and computational stability
whilst reducing the computational time required for convergence. Our approach
is to compute a consensus group-level set of modes, and use these to initialise the
full model.

To do this, we mimic the temporal concatenation approach employed by most
existing algorithms and compute a consensus set of spatial singular vectors (this
can be done even more efficiently if we have already utilised the data reduction
technique described previously [Calhoun et al. 2001]) using another randomised
SVD algorithm that streams over the data. These singular vectors are reweighted
via an adjusted set of singular values. More specifically, we use the properties of
the Marchenko-Pastur distribution to find the noise level that ensures the SNR at
the group-level decomposition is similar to the SNR at the subject level. We then
run a Bayesian version of spatial ICA—with the spatial priors set to mimic the
group-level priors of the full model—to generate the group-level modes. The SNR
recalibration ensures we do not get over-splitting of the modes at this stage. We
can then propagate this set of group-level modes through the rest of the algorithm,
thereby ensuring all parameters are initialised with plausible values.

F Simulations

The spatial model consists of two levels: parcels and modes. We simulate 100
spatially contiguous parcels within a one-dimensional space comprising 10,000
voxels. We then apply a random diffeomorphic warp to each subject separately as
a model for residual misalignments after registration. We then simulate a set of 15
modes consisting of blocks of spatially adjacent parcels. There is variability in the
mode weights over subjects, and we introduce overlap such that, on average, each
voxel is a member of 1.4 modes.

In the temporal domain we simulate a set of sparse, correlated ‘neural’ time-
courses for each of the two runs per subject. There is variability in the between-
mode correlation structure at the run and subject level. These are then convolved
with a random draw from the FLOBS basis of hæmodynamic response functions
[Woolrich et al. 2004], which introduces variability over subjects and space. This
results in 500 timepoints at a TR of 2.0 s.

The spatial maps and timecourses are combined via the outer product model,
and a nonlinear saturation is applied such that the highest amplitude moments
of instantaneous voxelwise activity are reduced. Finally, random noise is added
with a degree of spatiotemporal smoothness such that the overall SNR (expressed
in terms of variance) is 0.1. For the simulations presented in the Supplementary
Material, we also add some structured, subject-specific noise components, again
using an outer-product model. These can either be spatially specific or global, and
are designed to contribute a similar amount of variance per component as the
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individual signal modes.
To allow inference algorithms to model the aforementioned artefacts, 18 modes

are inferred. After inference, modes are paired to the ground truth based on the
similarity between both the spatial maps and timecourses, averaged over runs
and subjects. The full set of performance metrics shown in the Supplementary
Material is then calculated.

G Human Connectome Project data and analyses

For theHCP analyses, all datawas from the 1,200 Subjects Data Release: humanconnectome.
org/study/hcp-young-adult/document/1200-subjects-data-release. We used the
1,003 subjects for whom there was full behavioural, structural and rfMRI data (i.e.
4 runs, each of 1,200 volumes). All analyses are of the MSMAll and FIX cleaned
data (i.e. rfMRI_REST1_LR_Atlas_MSMAll_hp2000_clean.dtseries.nii etc.).

ICA-DR results were taken from the Extensively Processed fMRIData: humanconnectome.
org/study/hcp-young-adult/document/extensively-processed-fmri-data-documentation.
The amplitudes and netmats were estimated from the time courses released by
the HCP: the amplitudes were taken as the standard deviations, while the netmats
were the partial correlation matrices. Tikhonov regularisation was used when
calculating the inverse of the full correlation matrices, with 𝜞 = 0.1𝑰.

Heritability was estimated via Falconer’s formula, 𝐻 2
𝑏 = 2(𝑟𝑚𝑧 − 𝑟𝑑𝑧) [Falconer

1960]. We calculate the correlations, 𝑟𝑚𝑧 and 𝑟𝑑𝑧, between the voxelwise spatial
map weights. In other words, for each subject and each voxel we extract a length
𝑀 vector of weights: 𝑷 (𝑠)𝑣 using the PFM notation, and compute the correlation
between these for every pair of subjects.

For the CCA analyses, we used the full set of restricted information released
by the HCP. We first removed all variables relating to study completion or quality
control. The structural variables were all the remaining variables in the Free-
Surfer category; all others were taken as behavioural. To preprocess the behavi-
oural variables, we first removed any variables that were either more than 20%
NaN, or those for which more than 95% of subjects had exactly the same entries.
We then imputed any missing values using the SoftImpute method [Mazumder
et al. 2010] as implemented in the fancyimpute Python package (github.com/
iskandr/fancyimpute). The following were regressed out as confounds (one-hot
encoded where necessary) in all subsequent analyses: Release, Acquisition,
fMRI_3T_ReconVrs, rfMRI_motion, Age, Gender, Race, Ethnicity, Handedness,
Height, Weight, BMI, BPSystolic, BPDiastolic, Hematocrit_1, Hematocrit_2,
FS_IntraCranial_Vol, FS_BrainSeg_Vol. A detailed description of all variables
can be found atwiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+
Public-+Updated+for+the+1200+Subject+Release.

For the CCA, all groups of variables were normalised and then reduced to
their top 25 components via the SVD, before a CCA was run on every pair of
variable groups. The RV coefficient was then calculated between the top 10 paired
components from each CCA.

65

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2020. ; https://doi.org/10.1101/544817doi: bioRxiv preprint 

https://humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://humanconnectome.org/study/hcp-young-adult/document/extensively-processed-fmri-data-documentation
https://humanconnectome.org/study/hcp-young-adult/document/extensively-processed-fmri-data-documentation
https://github.com/iskandr/fancyimpute
https://github.com/iskandr/fancyimpute
https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-+Updated+for+the+1200+Subject+Release
https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-+Updated+for+the+1200+Subject+Release
https://doi.org/10.1101/544817
http://creativecommons.org/licenses/by-nd/4.0/


References bioRxiv

H Active-state data and analyses

Data was acquired from fifteen subjects, but for these analyses we excluded Subject
07 due to potential artefacts in several of their scans. Preprocessing was as previ-
ously published (i.e. brain extraction, B0 unwarping, high-pass temporal filtering,
motion correction, and FIX cleaning) [Kieliba et al. 2019]. However, we did not
apply mean-based intensity normalisation or low-pass filter the data. Finally, the
pre-processed functional scans were then registered to MNI space and spatially
smoothed (2mm FWHM).

As with the HCP data, the ICA-DR amplitudes and netmats were estimated
from the time courses: the amplitudes were taken as the standard deviations, while
the netmats were the partial correlation matrices. Tikhonov regularisation was
used when calculating the inverse of the full correlation matrices, with 𝜞 = 0.1𝑰.
The SVMwas from scikit-learn (sklearn.svm.SVC), and as this is a relatively small
dataset parameters were left at their defaults [Varoquaux et al. 2017].
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