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Abstract		
In	this	paper	we	demonstrate	the	application	of	object	detection	networks	for	
the	 classification	 and	 localization	 of	 cells	 in	 fluorescence	 microscopy.	 We	
benchmark	 two	 leading	 object	 detection	 algorithms	 across	 multiple	
challenging	2-D	microscopy	datasets	as	well	as	develop	and	demonstrate	an	
algorithm	 which	 can	 localize	 and	 image	 cells	 in	 3-D,	 in	 real-time.	
Furthermore,	we	exploit	the	fast	processing	of	these	algorithms	and	develop	a	
simple	 and	 effective	 Augmented	 Reality	 (AR)	 system	 for	 fluorescence	
microscopy	 systems.	 Object	 detection	 networks	 are	 well-known	 high	
performance	 networks	 famously	 applied	 to	 the	 task	 of	 identifying	 and	
localizing	objects	in	photography	images.	Here	we	show	their	application	and	
efficiency	 for	 localizing	 cells	 in	 fluorescence	 microscopy	 images.	 Object	
detection	 algorithms	 are	 typically	 trained	 on	 many	 thousands	 of	 images,	
which	 can	 be	 prohibitive	 within	 the	 biological	 sciences	 due	 to	 the	 cost	 of	
imaging	and	annotating	 large	amounts	of	data.	Through	taking	different	cell	
types	 and	 assays	 as	 an	 example,	 we	 show	 that	 with	 some	 careful	
considerations	 it	 is	possible	to	achieve	very	high	performance	with	datasets	
with	 as	 few	 as	 26	 images	 present.	 Using	 our	 approach,	 it	 is	 possible	 for	
relatively	 non-skilled	 users	 to	 automate	 detection	 of	 cell	 classes	 with	 a	
variety	 of	 appearances	 and	 enable	 new	 avenues	 for	 automation	 of	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2019. ; https://doi.org/10.1101/544833doi: bioRxiv preprint 

https://doi.org/10.1101/544833
http://creativecommons.org/licenses/by-nc/4.0/


conventionally	manual	fluorescence	microscopy	acquisition	pipelines.	

Introduction	
Even	the	most	advanced	light	microscopes	typically	have	a	wide-field	modality	that	
visualises	 a	 sample	 specimen	 and	 allows	 the	 user	 to	 view	 it	 by	 looking	 down	 the	
eyepiece.	 The	 user	 will	 look	 down	 the	 binocular,	 find	 an	 area	 to	 image	 and	 then	
commit	the	system	to	acquiring	an	image	within	that	region.	Subsequent	to	this,	the	
way	in	which	the	measurement	takes	place	is	highly	flexible,	it	maybe	a	sequence	of	
images	 to	 form	 a	 time-series,	 a	 volumetric	 stack,	 a	 super-resolution	 microscopy	
image	 or	 some	 kind	 of	 spectroscopic	 readout.	 The	 process	 of	 identifying	 cells	 for	
imaging	 is	 challenging	 in	 that	 it	 requires	 domain	 specific	 knowledge,	 but	 is	 also	
repetitive,	 in	that	the	process	 involves	 localising	many	cells	 through	looking	down	
the	 eyepiece.	 This	 is	 time-consuming	 for	 the	 scientists	 who	 must	 perform	 the	
acquisition	and	who	must	be	present	throughout	much	of	the	experiment.		
	 There	 are	 a	 number	 of	 high-content	 automated	 optical	 light	 microscopes	
which	can	find	and	image	cells	on	the	fly,	relieving	the	effort	of	acquisition	for	the	
researchers	 and	providing	 thorough	documentation	 of	 the	 acquisition	 pipeline	 [1,	
2].	 Typically,	 these	 systems	 don’t	 intelligently	 identify	 cells	 before	 imaging,	 but	
rather,	 exhaustively	 image	 a	 plate	 or	 slide	 and	 then	 perform	 analysis	 on	 all	 the	
samples	imaged.	This	dense	sampling	is	perfect	for	obtaining	images	of	all	the	cells	
present,	 but,	 due	 to	 the	 assay	 format	 and	 the	 hardware	 required,	 means	 that	
subsequent	specialised	imaging	is	hard	to	perform.	These	systems	are	ideally	suited	
to	 relatively	 static	 assays,	 with	 a	 high	 level	 of	 repetition,	 and	 relatively	 low	
magnification.	 A	 system	 like	 this	 for	 example	 would	 test	 a	 large	 library	 of	
compounds	acting	on	cultured	cells	and	 the	activity	would	be	established	 through	
visualisation	 of	 a	 reporter	 or	 through	 morphological	 analysis	 of	 the	 cells	 being	
imaged	[1,	2].	Techniques	like	this	are	often	built	on	signal-processing	methods	and	
are	 utilised	 for	 two-dimensional	 (2-D),	 or	more	 recently,	 three-dimensional	 (3-D)	
imaging	 and	 analysis	 of	 cells	 and	 tissues	 [3].	 Once	 created,	 these	 methods	 are	
powerful	and	fast,	but	they	lack	flexibility;	they	cannot	be	easily	tuned	to	different	
cell	 types	 or	 assays	 without	 skilled	 input.	 Through	 basic	 optimisation	 these	
algorithms	 can	be	 applied	 to	 conventional	microscopes	 that	 have	 been	 retrofitted	
with	an	automated	stage.	The	problem	however	is	the	fragility	of	these	algorithms	
when	 applied	 to	 a	 new	 setting	 (e.g.	 a	 different	 staining	 or	microscope).	 A	 skilled	
analyst	 is	 often	 required	 to	 tweak	 the	 parameters	 or	 to	 modify	 the	 algorithm	 to	
detect	a	different	cellular	appearance.	An	optimum	solution	would	be	an	algorithm	
that	is	easy	to	adapt	by	a	relatively	unskilled	user	to	recognise	and	localise	cells	of	
any	type,	reproducibly	and	reliably	and	across	different	microscopes.		

One	of	the	key	benefits	of	manual	microscopy	is,	as	mentioned,	the	specificity	
through	 it	 can	 be	 applied	 and	 the	 potential	 for	 customisation.	 One	 of	 the	 pitfalls	
however	 with	 a	 highly	 manual	 approach	 is	 that	 decisions	 made	 through	 the	
experimental	pipeline	are	difficult	to	describe,	illustrate	and	therefore	to	document	
and	share.	This	lack	of	ability	to	communicate	decisions	made	during	the	acquisition	
process	means	it	is	difficult	for	the	scientific	community	as	a	whole	to	question	and	
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discuss	methodologies	and	selection	strategies	and	which	means	that	we	are	at	risk	
as	a	community	from	unconscious	(and	potentially	conscious)	bias	of	scientists.	This	
issue	 is	 difficult	 to	 address	 but	 can	 be	 approached	 by	 adopting	 and	 introducing	
technology	 that	 allows	 improved	 documentation	 and	 reproducibility	 of	 data	
acquisition	during	an	experiment.	This	 is	a	delicate	balance	however	as	 it	must	be	
done	 without	 reducing	 the	 flexibility	 of	 the	 manual	 microscopy	 on	 which	 the	
automation	is	applied	or	restricting	the	workflow	or	experiments	performed	by	the	
scientist.	This	can	be	achieved,	as	we	will	see,	through	introducing	more	automation	
into	 the	 experimental	 pipeline	 and	 through	 using	 advanced	 cellular	 detection	
methodologies.		

Computer	vision	(CV)	has	developed	to	solve	various	challenges	in	video	and	
photography.	 From	 this	 field,	 high-performance	 algorithms	 have	 evolved	 which	
perform	classification	and	 localization	 in	 images	even	when	there	 is	a	high	degree	
of	variability	and	 complexity	 in	 object	 appearance.	 Recent	 advances	 in	 machine	
learning	and	computer	hardware	have	made	possible	a	new	generation	of	end-to-
end	neural	networks	with	unparalleled	performance	[4].	In	recent	years	algorithms	
inspired	 from	 the	 CV	 domain	 have	 made	 a	 noticeable	 impact	 in	 the	 domain	 of	
microscopy	image	analysis,	and	interest	continues	to	grow	[5-8].	Object	detection,	a	
sub-discipline	of	CV,	has	developed	with	the	goal	of	predicting	bounding	boxes	for	
multiple	 objects	 in	 images	 or	 videos	 for	 potentially	 multiple	 classes	 at	 different	
scales.	 In	 the	 past,	 this	 approach	 has	 been	 applied	 across	 many	 fields	 including	
pedestrian	 detection,	 face	 detection,	 autonomous	 vehicles,	 and	 for	 robotics	 (for	
reviews:	[9-15]).	So	far	object	detection	algorithms	have	not	been	used	extensively	
for	 microscopy	 based	 applications,	 though	 there	 are	 some	 recent	 contributions	
which	 utilize	 these	 type	 of	 networks	 (e.g.	 for	 Astrocyte	 detection)	 [8,	 16].	 In	 this	
article	we	 compare	 two	 state-of-the	 art	 object	 detection	 frameworks	 from	 the	 CV	
domain,	Faster-RCNN	and	YOLO,	and	evaluate	their	performance	for	identifying	and	
localizing	cells	in	microscopy	images,	and	show	how	they	can	be	used	to	explore	a	3-
D	space	rather	than	being	applied	only	to	static	2-D	images.	

Faster-RCNN	 (Region-based	 Convolutional	 Neural	 Network)	 was	 the	 first	
network	 to	 combine	 features	 for	 region	 proposal	 with	 object	 classification	 and	
represents	 the	 culmination	 of	 a	 systematic	 set	 of	 advances	 and	 optimizations	
[17],[18],[19].	 This	 network,	 and	 subsequent	 networks,	 leverage	 the	 depth	 and	
power	of	neuronal	networks	to	learn	a	transformation	between	the	input	space	(the	
image)	 and	 the	 output	 space,	 in	 this	 case,	 a	 set	 of	 bounding	boxes	 for	 the	 objects	
located	 within	 the	 input	 image.	 All	 object	 detection	 networks	 employ	 layers	 that	
calculate	 features	across	an	 image.	These	feature-calculating	 layers	of	the	network	
are	 structurally	 identical	 to	 those	 used	 in	 classification	 networks,	 and	 they	 are	
generally	 composed	 of	 multiple	 successive	 convolution,	 activation	 and	 pooling	
layers	whose	parameters	(or	weights)	dictate	how	the	features	are	calculated.	Once	
trained	 and	 applied	 to	 an	 image,	 the	 features	 numerically	 describe	 the	 shape	 and	
form	 of	 the	 objects	 and	 shapes	 present	 in	 an	 image.	 From	 this	 feature	
representation,	 multiple	 ‘anchor’	 regions	 are	 spawned	 that	 are	 then	 evaluated	 in	
their	capacity	to	bound	objects	in	the	input	space.	Through	optimizing	the	size	and	
placement	of	these	regions,	with	respect	to	the	objects	in	the	input	training	images	it	
is	 possible	 to	 identify	 and	 localize	 objects	 using	 the	 information	 encoded	 in	 the	
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feature	representation.	The	network	weights	are	trained	to	optimize	this	process	for	
finding	and	ultimately	classifying	the	objects	within	the	regions	of	the	image.	Once	
classified,	 the	bounding	boxes	are	 further	modulated,	 through	class	 specific	 layers	
that	 further	 refine	 the	 bounding	 box	 positions	 for	 each	 object.	 Following	 Faster-
RCNN,	 several	 other	 competitive	 algorithms	 have	 been	 developed	which	 compete	
with	and	out-perform	Faster-RCNN	in	several	aspects	(e.g.	SSD	[20],	YOLO[21-23]).	

YOLO	 (You	 Only	 Look	 Once)	 is	 a	 competing	 framework	 for	 object	
classification,	which	improves	on	Faster-RCNN	in	terms	of	accuracy	and	speed.	For	
this	study	YOLOv2	and	YOLOv3	have	been	benchmarked	[23].	The	YOLO	framework	
has	consistently	been	found	to	be	the	fastest	network	for	object	detection	compared	
to	its	competitors	like	Faster-RCNN	and	SSD,	and	it	is	also	highly	accurate	[23].	Like	
Faster-RCNN,	YOLOv2	utilizes	convolutional	anchor	boxes	as	the	basis	of	the	object	
detection,	 but	 has	 a	 different	 overall	 structure	 that	 yields	 superior	 performance.	
Amongst	the	differences	which	are	summarized	in	[21],	YOLO	employs	a	technique	
known	as	batch	normalization,	at	each	layer,	which	is	a	recent	but	proven	method	
for	 regularization,	 shown	 to	 improve	 the	 accuracy	 of	many	networks	 [24].	 In	 this	
study,	 we	 thoroughly	 characterize	 YOLOv2	 algorithm	 and	 compare	 it	 to	 Faster-
RCNN	to	establish	the	performance	of	both	algorithms	on	relatively	small	datasets	
in	 this	 different	 modality.	 We	 additionally	 benchmark	 YOLOv3	 but	 we	 find	 this	
network	does	not	perform	as	well	as	the	other	networks	on	this	data.	

As	mentioned,	object	detection	algorithms	are	derived	from	work	performed	
on	 photography	 images.	 There	 are	 several	 qualities	 of	 microscopy	 images,	
specifically	in	fluorescence	microscopy,	that	make	them	distinct	from	photography	
images,	 and	 that	 could	be	 important	 in	 terms	of	 the	performance	of	 the	proposed	
algorithms.	 Firstly,	 occlusion	 is	 minimal;	 for	 example,	 signal	 in	 fluorescence	
microscopy	is	additive	and	it	is	usually	possible	to	make	out	structures	even	when	
cells	 overlap,	 unlike	 in	 photography	 images	 where	 occlusions	 will	 hide	 objects.	
Secondly,	there	is	no	perspective	or	scale	issues	as	the	depth-of-view	in	microscopy	
is	 typically	narrow.	There	 are	however	 challenging	aspects	of	microscopy	 images;	
cells	will	have	a	variable	intensity,	for	example,	some	cells	may	be	bright	and	others	
darker	 within	 the	 same	 field-of-view.	 Furthermore,	 the	 appearance	 can	 vary	
dramatically	 between	 cells	 due	 to	 natural	 variation	 in	 morphology	 and	 shape.	
Additionally,	cells	may	be	densely	packed	or	even	overlap,	making	it	complicated	to	
delineate	 individual	 cells.	 This	 makes	 the	 question	 of	 whether	 object	 detection	
networks	 are	 effective	 or	 not	 for	microscopy	 an	 important	 one.	What	 potentially	
makes	the	object	detection	networks	so	attractive	to	microscopy	 is	 their	accuracy,	
their	 ease	 of	 use,	 and	 their	 predictive	 speed.	 Thanks	 in	 part	 to	 the	 design	 of	 the	
more	recent	algorithms,	these	algorithms	can	be	easily	implemented	efficiently	on	a	
GPU	and	so	can	evaluate	images	in	real-time.	This	makes	them	perfect	for	use	in	an	
automated	microscopy	setup	where	a	microscope	will	 image	and	apply	analysis	 in	
sequence.	 Annotating	 and	 manually	 segmenting	 cells	 for	 example	 fluorescence	
images	can	be	very	demanding	and	can	often	require	pixel	level	segmentations	to	be	
drawn.	Object	detection	algorithms	on	the	other-hand	utilize	bounding	boxes,	which	
are	 relatively	 simple	 for	 a	 user	 to	 provide	 through	 a	 simple	 and	 fast	 annotation	
procedure.	For	these	reasons,	the	possibility	of	using	object	detection	algorithms	in	
microscopy	is	an	interesting	one	and	worthy	of	investigation.		
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	 In	this	paper	we	show	that	Faster-RCNN	and	YOLOv2.0	behave	very	well	as	
object	detection	algorithms	for	fluorescence	microscopy.	We	show	that	despite	their	
complexity	 these	 algorithms	 can	 be	 trained	 to	 work	 on	 relatively	 modest	 sized	
training	datasets.	Furthermore,	we	prototype	and	test	an	algorithm	that	can	utilize	
the	bounding	boxes	predicted	by	these	algorithms	to	find	and	localize	cells	in	a	3-D	
environment,	a	 framework	we	call	 the	Autonomous	Microscope	Control	Algorithm	
(AMCA).	
	
	

Materials	and	Methods	
Dataset	generation.	
	
To	 create	 a	 collection	 of	 datasets	 to	 test	 the	 capabilities	 of	 the	 object	 detection	
algorithms	a	diverse	range	of	cell	types	were	assembled	and	stained	with	commonly	
used	 dyes.	 The	 data	 in	 its	 entirety	 as	well	 as	 the	 annotations	 are	 available	 in	 the	
repository	(https://doi.org/10.5281/zenodo.2548493).	
	
Erythroblast	 DAPI	 (+glycophorin	 A):	 erythroblast	 cells	were	 stained	with	DAPI	
and	 for	 glycophorin	 A	 protein.	 Cells	 were	 stained	 with	 CD235a	 antibody	 (JC159	
clone	from	Dako)	and	with	Alexa	Fluor	488	secondary	antibody	(Invitrogen).	DAPI	
staining	was	performed	through	using	VectaShield	Hard	Set	mounting	solution	with	
DAPI	 (Vector	 Lab).	Num.	 of	 images	 used	 for	 training:	 80	 and	 testing:	 80.	 Average	
number	of	cells	per	image:	4.5.	
Neuroblastoma	 phalloidin	 (+DAPI):	 images	 of	 neuroblastoma	 cells	 (N1E115)	
stained	with	phalloidin	and	DAPI	were	acquired	 from	the	Cell	 Image	Library	 [25].	
The	 images	 were	 stained	 for	 FITC-phalloidin	 and	 DAPI.	 Num.	 of	 images	 used	 for	
training:	180,	testing:	180.	Average	number	of	cells	per	image:	11.7.	
Fibroblast	nucleopore:	 fibroblast	(GM5756T)	cells	were	stained	for	a	nucleopore	
protein.	 Staining	was	performed	using	Anti-Nup153	mouse	antibody	 (Abcam)	and	
detected	 with	 anti-mouse	 Alexa	 Fluor	 488.	 Num.	 of	 images	 for	 training:	 26	 and	
testing:	20.	Average	number	of	cells	per	image:	4.8.	
Eukaryote	DAPI:	eukaryote	cells	were	stained	with	DAPI	and	fixed	and	mounted	in	
Vectashield.	Num.	of	images	for	training:	40	and	testing:	40.	Average	number	of	cells	
per	image:	8.9.	
C127	 DAPI:	 C127	 cells	 were	 initially	 treated	 with	 a	 technique	 called	 RASER-
FISH[26],	 stained	 with	 DAPI	 and	 fixed	 and	mounted	 in	 Vectashield	 (Vector	 Lab).	
Num.	of	images	for	training:	30	and	testing:	30.	Average	number	of	cells	per	image:	
7.1.	
HEK	 peroxisome:	 HEK-293	 cells	 expressing	 peroxisome	 localized	 GFP-SCP2	
protein.	 Cells	 were	 transfected	 with	 GFP-SCP2	 protein,	 which	 contains	 the	 PTS-1	
localization	signal,	which	 redirects	 the	 fluorescently	 tagged	protein	 to	 the	actively	
importing	 peroxisomes[27].	 Cells	 were	 fixed	 and	 mounted.	 Num.	 of	 images	 for	
training:	55	and	testing:	55.	Average	number	of	cells	per	image:	7.9.	
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Dataset	Annotation	
	
Datasets	were	annotated	by	a	skilled	user.	These	annotations	represent	the	ground-
truth	of	each	image	with	bounding	boxes	(regions)	drawn	around	each	cell	present	
within	the	staining.	The	dataset	labels	were	then	converted	into	a	format	compatible	
both	with	Faster-RCNN	(Pascal)	and	with	YOLOv2	and	YOLOv3.		The	scripts	used	to	
achieve	 this	 are	 located	 in	 the	 repository	
(https://doi.org/10.5281/zenodo.2594644).	
	
Microscopy	setup.	
	
With	the	exception	of	 the	neuroblastoma	and	erythroblast	cell	datasets	all	 images,	
were	 acquired	 on	 an	 Olympus	 IX73	 microscope	 with	 a	 100X	 UPlanSApo,	 NA	 1.4	
objective.	 The	 microscope	 was	 also	 equipped	 with	 a	 Photometrics	 Prime	 sCMOS	
camera,	a	CoolLED	Ultra	pe300	LED	light	source,	an	ASI	automated	XY	stage	and	a	PI	
Piezo	(P-733	2CL).	The	erythroblast	dataset	was	acquired	on	a	DeltaVision	Elite	(GE	
Healthcare	 Life	 Sciences)	 equipped	with	 an	Olympus	 60x	NA	 1.42	 lens,	 filters	 for	
DAPI	 (exc.	 390	 nm,	 emi.	 435	 nm)	 and	 FITC	 (exc.	 475	 nm,	 emi	 525	 nm)	 and	 a	
CoolSNAP	HQ2	camera.	The	neuroblastoma	phalloidin	+DAPI	cell	line	was	acquired	
on	a	Zeiss	Aviovert	200	microscope	with	filters	for	DAPI	and	FITC	[25].	

Augmented	Reality	modifications.	

To	develop	the	augmented	reality	setup	we	adapted	commercial	components	with	
custom	parts.	 The	 augmented	 reality	 effect	 is	 created	 through	 the	merging	 of	 the	
image	emanating	from	a	screen	projecting	graphics	with	the	image	emanating	from	
the	 microscopy	 sample.	 This	 was	 achieved	 through	 the	 coupling	 of	 a	 50:50	
beamsplitter	 (Thorlabs,	 BSW10R)	 into	 the	 light	 path	 of	 the	microscope.	 This	was	
realized	through	adapting	a	Mightex	Dichroic/filter	cube	(DSI-CUBE-OL-UA)	to	fit	in	
between	 the	 observation	 tube	 and	 the	 observation	 tube	 mount	 of	 an	 IX73	
microscope	 (Olympus).	 The	 Mightex	 Dichroic	 filter	 has	 the	 required	 circular	
dovetail	 mounts	 to	 fit	 within	 the	 binocular	 of	 the	 IX73	 system,	 but	 in	 its	 default	
configuration	 the	 beamsplitter	 couples	 light	 toward	 the	 specimen	 and	 not	 the	
observer,	which	is	what	we	require	for	the	augmented	reality	system.	To	correct	this	
we	 engineered	 two	 adapter	plates	 to	 reverse	 the	 gender	 of	 the	mounts,	 details	 of	
these	 plates	 can	 be	 found	 in	 the	 supplementary	 materials	 (SM1).	 	 The	 computer	
screen	 (Pimoroni,	HDMI	8"	 IPS	LCD	Screen	Kit)	was	positioned	 to	 the	 right	of	 the	
microscope	 so	 that	 the	 base	 of	 the	 screen	 was	 parallel	 to	 the	 Mightex	 cube	 and	
perpendicular	to	the	light	path	through	the	microscope.	The	screen	was	secured	at	
the	 desired	 angle	 using	 standard	 M6	 Post	 components	 (Thorlabs)	 and	 an	 Ailun	
Tripod	Mount	 Adapter	 (Amazon,	 B071XHYG5R).	 Attached	 to	 the	Mightex	 cube	 in	
between	the	beam	splitter	and	light	coming	from	the	computer	screen	was	a	300mm	
biconvex	 lens	 (Thorlabs,	LB1779)	which	converged	 the	 light	 from	the	screen	onto	
the	beam	splitter.	The	 computer	 screen	was	placed	around	30cm	 from	 the	 screen	
which	 resulted	 in	 an	 in	 focus	view	of	 the	 screen	graphics	when	 looking	down	 the	
binocular.	An	optional	modification	we	made	to	the	conventional	IX73	setup	was	to	
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use	a	50:50	beamsplitter	cube	in	place	of	the	mirror	that	directs	light	either	to	the	
camera	or	to	the	binocular.	We	made	this	modification	so	we	could	simultaneously	
view	 the	 specimen	 down	 the	 binocular	 and	 also	 record	 the	 same	 image	 on	 the	
computer.	For	this	we	engineered	our	own	cube	holder	(SM2)	and	using	superglue	
adhesive	 attached	 a	 30mm	 50R/50T	 Standard	 Cube	 Beamsplitter	 (#32-701,	
Edmund	Optics	Ltd).			

Computer	Hardware.	

Benchmark	 experiments	were	 run	on	Dell	 PowerEdge	R730	Server:	 2x	 Intel	 Xeon	
E5-2650,	 256	RDIMM	RAM,	NVIDIA	Tesla	 K80	GPU	with	 CentOS	 7	 installed.	Real-
time	acquisition	experiments	were	run	on	Dell	Precision	Tower,	with	32GB	RDIMM	
Ram,	Nvidia	Quadro	P5000	16GB	GPU,	Dual	Xeon	Processor	E5-2637	with	Windows	
10	installed.		

Object	Detection	Algorithms	
	
In	 this	 study	 we	 took	 two	 leading	 publically	 available	 object	 detection	 network	
frameworks	(Faster-RCNN	and	YOLO).	Because	of	the	way	in	which	these	different	
frameworks	function	we	had	to	ensure	that	the	datasets	were	correctly	formatted	in	
each	case.	Each	dataset	has	annotations	in	form	of	the	PASCAL	dataset	[28],	which	is	
converted	 using	 scripts	 into	 a	 form	 compatible	 with	 YOLO.	 Each	 network	 is	
presented	with	one	or	more	datasets	for	training.		
	
The	 code	 used	 for	 the	 Faster-RCNN	 is	 a	 tensorflow	 implementation	 and	 was	
modified	 from	dBeker/Faster-RCNN-TensorFlow-Python3.5	and	can	be	 found	here	
https://zenodo.org/record/2594642.	 Faster-RCNN	was	 configured	 as	 follows.	 The	
VGG16	network	was	used	 to	 initialize	 the	classification	 layers.	The	parameters	 for	
learning	 were	 configured	 as	 follows:	 ‘Weight_decay’	 =	 0.0005,	 ‘learning_rate’	 =	
0.001,	 ‘momentum’	 =	 0.8,	 ‘gamma’	 =	 0.1,	 ‘batch_size’	 =	 256,	 ‘max_iters’	 =	 40000,	
‘step_size’	=	30000.	The	network	was	modified	 to	 flip	 images	not	 just	horizontally	
but	vertically	during	data	augmentation.		
	
YOLOv2	was	cloned	from	the	source	(https://pjreddie.com/darknet/yolov2/)	and	
was	modified	for	this	work	(https://doi.org/10.5281/zenodo.2594648).	The	
modified	YOLOv2	network	was	configured	with	the	following	settings:	‘batch’	=	64,	
‘subdivisions’	=	8,	‘height’	=	416,	‘width’	=	416,	‘channels’	=	3,	‘momentum’	=	0.9,	
‘decay’	=	0.0005,	‘angle’	=	0,	‘saturation’	=	1.5,	‘exposure’	=	1.5,	‘hue’	=	.1,	
‘learning_rate’	=	0.001,	‘burn_in’	=	1000,	‘max_batches’	=	10000,	‘policy’	=	steps,	
‘steps’	=	4500,	4800,	‘scales’	=	.1,	.1.	The	network	was	modified	to	flip	images	not	
just	horizontally	but	vertically	during	data	augmentation.		
	
YOLOv3	was	cloned	from	the	source	(https://github.com/pjreddie/darknet)	and	
run	with	settings:	‘batch’=64,	‘subdivisions’=16,	‘width’=608,	‘height’=608,	
‘channels’=3,	‘momentum’=0.9,	‘decay’=0.0005,	‘angle’=0,	‘saturation’	=	1.5,	
‘exposure’	=	1.5,	‘hue’=.1,	‘learning_rate’=0.001,	‘burn_in’=1000,	‘max_batches’	=	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2019. ; https://doi.org/10.1101/544833doi: bioRxiv preprint 

https://doi.org/10.1101/544833
http://creativecommons.org/licenses/by-nc/4.0/


20000,	‘policy’=steps,	‘steps’=4500,4800,	‘scales’=.1,.1.	The	network	was	modified	to	
flip	images	not	just	horizontally	but	vertically	during	data	augmentation.	The	
number	of	classes	was	set	to	6	and	the	filters	adjusted	accordingly	to	33	
(filters=(classes	+	5)*3).	
	
	
Average	 Precision	 (AP)	 is	 a	 commonly	 used	 metric	 for	 assessing	 the	 accuracy	 of	
algorithms	that	are	performing	classification	and/or	localization.		For	this	study	we	
use	 the	 updated	 VOC2010	 Average	 Precision	 definition	 described	 in	 [28]	 and	 as	
follows:	 In	 a	 given	2-D	 image,	 containing	one	or	more	objects	 (i.e.	 cells)	 a	 trained	
object	 detection	 network	 will	 predict	 bounding	 regions	 for	 each	 of	 	 the	 objects	
contained	 within	 the	 image	 and	 associate	 a	 level	 of	 confidence	 (0-1.0)	 with	 that	
prediction.	At	a	low	confidence	threshold	many	regions	will	be	predicted	whereas	a	
higher	 confidence	much	 fewer,	 normally	 for	 visualization	 of	 results	 we	 show	 the	
predictions	 with	 a	 specific	 cut-off	 for	 each	 algorithm.	 For	 comparison	 between	
algorithms	however	we	need	to	evaluate	performance	across	confidence	levels.	The	
first	 stage	 in	 this	 process	 is	 to	 assess	 which	 of	 the	 predicted	 regions	 (Bp)	 is	
overlapping	the	ground-truth	regions	(Bgt).	Those	detections	which	have	an	overlap	
coefficient	(ao)	of	more	than	50%	are	considered	correct	detections	(True	Positives,	
TP)	otherwise	they	are	defined	as	False	Positives	(FP).	
	

𝑎! =  !"#! !! ∩!!"
!"#! !!∪!!"

,	

	
where	𝐵!  ∩ 𝐵!"	is	 the	 intersect	and	𝐵! ∪ 𝐵!"	is	 the	union	of	 these	regions.	Multiple	
detections	 are	 then	 ordered	 in	 terms	 of	 decreasing	 confidence.	 Multiple	 positive	
detections	of	the	same	region	will	only	count	the	first	detection	as	a	positive	and	the	
rest	 as	negative	detections	 (False	Negatives).	 If	 a	 ground-truth	 region	 contains	no	
detections	 this	 counts	 as	 a	 FN	 also.	 There	 are	 no	 True	 Negative	 (TN)	 values	 as	
background	regions	are	never	actively	identified.	For	a	given	class,	a	precision-recall	
curve	is	computed	from	a	method	ranked	based	on	confidence.	The	precision	is	then	
calculated	(precision	=	TP/(TP	+FP)),	and	the	recall	(recall	=	TP/(TP+FN))	across	all	
the	data	at	each	rank.	We	simplify	the	data	by	taking	the	maximum	precision	for	any	
recall	 value,	 which	 results	 in	 the	 generation	 of	 a	 precision/recall	 curve,	 the	 area	
under	which	we	can	use	to	compare	different	algorithms.	The	so-called	AP	(Average	
Precision)	 metric	 is	 achieved	 my	 taking	 the	 maximum	 precision	 across	 all	 recall	
values	and	taking	the	average.	Sometimes	you	will	also	see	the	metric	mAP	(mean	
Average	Precision),	this	represents	the	mean	AP	value	yielded	from	evaluation	over	
different	classes	(i.e.	performance	across	different	cell	types	or	objects).	
	
	
Within	 the	 architecture	 of	 Faster-RCNN	 and	 YOLOv2	 there	 are	 points	 at	 which	
randomness	is	injected	into	the	training	process.	For	example,	the	way	the	regions	
are	selected	and	how	they	are	shuffled	 for	 the	 training	 is	done	randomly.	Much	of	
this	is	unseeded,	in	that	it	is	non-reproducible.	This	will	mean	every	time	a	network	
is	 trained	 the	 resulting	 model	 will	 be	 slightly	 different,	 and	 the	 model	 will	 see	
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different	training	data	at	different	points	of	training.	As	a	consequence	the	accuracy	
of	 trained	models	will	 vary	 slightly	when	retrained.	 If	 the	variance	 is	very	high,	 it	
suggests	 that	 the	 training	procedure	 is	not	well	optimized	 for	 the	problem.	 In	 this	
situation	 with	 relatively	 small	 amounts	 of	 data	 some	 variance	 is	 likely.	 To	 gain	
awareness	of	 the	network	stability	each	experiment	was	repeated	three	times	and	
the	average	precision	measured,	averaged	and	the	standard	deviation	calculated.	
	
3D	acquisition	algorithm.	
	
The	AMCA	(Automated	Microscopy	Control	Algorithm)	 is	written	 in	python	and	 is	
available	in	the	following	repository,	https://doi.org/10.5281/zenodo.2594644).		
	
Prior	to	the	acquisition,	the	user	defines	the	rough	positions	in	which	in	the	system	
scans	for	cells	using	the	‘collect_position.py’	script.	With	the	script	running,	the	user	
scans	the	slide	manually	and	saves	the	positions	of	 the	stage	at	key-points	around	
the	area	to	be	 imaged.	A	minimum	of	 four	points	 is	required	to	scan	a	rectangular	
area.	At	each	location	the	user	focuses	the	microscope	on	the	cells	using	the	z-piezo	
and	 stores	 the	 location	 using	 a	 python	 script.	 Once	 complete	 the	 algorithm	
interpolates	the	positions	across	the	entire	area,	with	a	user	defined	sampling	rate	
(e.g.	 every	 200	 μm).	 This	 array	 of	 spatial	 local	 forms	 the	 basis	 from	 which	 the	
acquisition	of	each	stack	takes	place	in	the	XY	dimension.		
	
For	the	‘passive’	version	of	the	algorithm,	Micromanager	is	used	to	acquire	stacks	at	
each	 location	 defined	 using	 the	 ‘collection_positions.py’	 script.	 Micromanager	 (v.	
1.4.23)	was	configured	to	do	this	using	the	‘PositionList’	functionality	(a	set	of	XYZ	
points)	and	was	set	to	acquire	stacks	at	these	locations,	for	this	work	image	stacks	of	
10	 images	 sampled	 in	 ‘z’	 at	 0.5	 μm	 intervals	 were	 acquired.	 The	 system	 then	
systematically	acquires	these	stacks	one-by-one	and	saves	the	output	stacks	to	the	
computer	as	‘tiff’	files.	Using	the	‘passive’	version	of	the	AMCA	algorithm,	each	stack	
is	 scanned	 and	 the	 location	 of	 the	 cells	 detected	 and	 exported	 using	 either	 the	
YOLOv2	 or	 Faster-RCNN	 algorithms.	 The	 positions	 of	 the	 cells	 are	 stored	 in	 an	
output	file	and	exported	for	subsequent	processing.	
	
Labview	software	(v.	15.0.1f10)	was	used	with	the	’active’	form	of	the	algorithm.	In	
this	mode,	 imaging	 and	movement	 of	 the	microscope	 act	 together	 dynamically.	 A	
python	 kernel	 running	 ‘amca.py’	 was	 started	 before	 acquisition	 using	 the	 Python	
Integration	 Toolkit	 for	 Labview	 (Enthought).	 	 At	 regular	 intervals	 the	 Labview	
software	would	obtain	an	 image	from	the	microscope	camera	and	then	trigger	the	
python	 function	 ‘analyzeAndMove’.	 The	 python	 function	 then	 analyses	 the	 image	
using	either	YOLO	or	Faster-RCNN,	saves	the	image,	and	then	if	any	cells	are	present	
will	then	trigger	the	microscope	to	move	up	in	the	‘z’	dimension	to	the	next	position.	
An	 image	 is	 then	 acquired	 in	 this	 location	 and	Labview	 then	 activates	 the	python	
function	 ‘analyzeAndMove’	 again	 to	 analyze	 the	 image.	 If	 again	 cells	 are	 detected	
within	the	image,	the	image	is	saved	and	the	microscope	triggered	to	move	up	in	‘z’.	
This	 process	 is	 repeated	 until	 cells	 are	 no	 longer	 detected.	 At	 this	 point	 the	
microscope	is	instructed	to	return	to	the	initial	‘z’	position	in	the	stack	and	then	to	
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move	 down	 in	 the	 ‘z’	 dimension	 until	 cells	 are	 no	 longer	 detected	within	 this	 XY	
spatial	 location.	At	 the	point,	 the	 image	stack	 is	saved	and	the	process	repeated	at	
the	next	XY	location	defined	earlier.		
	
Another	option	when	using	the	‘active’	mode	is	to	visualize	the	cell	localizations	in	
real-time	 using	 the	 augmented	 reality	 system.	 For	 this	 modality	 the	 Labview	
software	is	set	to	use	a	python	function	called	‘analyzeAndView.py’	which	allows	the	
user	 to	 control	 the	 stage	and	visualizes	 the	outputs	 the	graphics	 for	display	using	
the	augmented	reality	system.	As	the	user	moves	the	microscope	specimen	any	cells	
detected	will	be	shown	surrounded	by	blue	boxes.	
	
An	important	aspect	of	both	the	‘passive’	and	‘active’	forms	of	AMCA	is	its	ability	to	
extract	 the	 cells	 from	 volumes	 once	 detected	 in	 the	 individual	 slices;	 one	 cell	
detected	 in	 one	 z-slice,	 is	 not	 by	 default	 connected	 by	 reference	 to	 the	 same	 cell	
detected	in	the	following	slice.	This	connectivity	problem	is	non-trivial	to	solve,	as	
the	detected	cell	regions	do	not	necessarily	overlap	perfectly	between	the	slices	and	
may	appear	intermittently	if	the	detection	accuracy	is	low.	 	To	solve	this	challenge	
we	modified	a	popular	tracking	algorithm	called	SORT	(Simple	Online	and	Real-time	
Tracker)	[29]	software	and	used	it	for	linking	the	object	detections	between	‘z’	slices	
to	 form	 volumetric	 bounding	 regions	 for	 each	 detected	 cells.	 Algorithms	 such	 as	
SORT	ensure	 that	an	object	 labeled	 in	one	 image	 is	connected	to	 the	same-labeled	
object	 in	 a	 subsequent	 frame.	 SORT	 is	 based	 on	 the	 principle	 of	 a	 Kalman	 filter,	
which	means	that	it	can	accommodate	significant	perturbations	to	the	cells.	In	both	
the	‘active’	and	‘passive’	AMCA	variants	SORT	is	applied	offline,	after	acquisition	but	
could	 easily	 be	 applied	 online	 also.	 Once	 cells	 bounding	 regions	 are	 uniquely	
identified	 through	 the	 volume	 they	 are	 saved	 as	 regions	 to	 the	 ‘tiff’	 file	metadata	
using	 a	 python	 library	 that	 encodes	 the	 regions	 in	 a	 format	 compatible	 with	
ImageJ/Fiji	(for	source,	https://doi.org/10.5281/zenodo.2594733).			
	
Subsequent	 analysis	 of	 images	 and	 regions	 acquired	using	AMCA	were	performed	
using	 ImageJ/Fiji	 and	 python	 scripts.	 All	 these	 scripts	 along	 with	 detailed	
instructions	 are	 available	 in	 the	 repository	
(https://doi.org/10.5281/zenodo.2594644).	
	
	

Results	
Initial	Validation	

Our	 goal	 for	 applying	 object	 detection	 networks	 to	microscopy	was	 ultimately	 so	
that	 these	 algorithms	 could	 be	 applied	 to	 find	 and	 isolate	 cells	 within	 a	 3-D	
environment.	As	they	stand,	object	detection	algorithms	are	predominantly	used	to	
find	 objects	 in	 single	 2-D	 photography	 images	 or	 in	 movies,	 and	 the	 training	
material	is	supplied	to	the	algorithm	exclusively	in	a	2-D	format	[9-15].	Single-plane	
images	 are	 far	 easier	 to	 label	 by	 users	 than	 3-D	 volumes,	 requiring	 only	 a	 2-D	
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bounding	box	to	be	placed	around	examples	within	the	image.	Therefore,	we	wanted	
to	establish	our	methodology	 for	microscopy,	 including	 training	and	prediction,	 in	
2-D	 and	 then	 apply	 it	 in	 a	 3-D	 environment.	 To	 validate	 the	 object	 detection	
algorithms	we	created	six	different	cell	based	datasets	and	modified	 the	networks	
so	that	they	could	be	trained	on	this	data	and	also	be	validated	against	holdout	test	
data	(i.e.	not	used	for	training).	Each	dataset	was	divided	into	train	and	test	datasets	
and	the	object	detection	networks	were	trained	and	evaluated	on	the	data.	With	the	
exception	 of	 the	 neuroblastoma	 phalloidin	 data,	 each	 dataset	 was	 created	 and	
imaged	within	our	host	 institution	using	conventional	wide-field	microscopes.	The	
neuroblastoma	phalloidin	data	was	generated	from	an	online	resource	[25]	and	the	
ground-truth	segmentations	converted	into	bounding	box	representations.	

Figure	 1	 (and	Figure	 S1)	 illustrates	 the	 six	 datasets	 generated	 for	 this	 study	with	
ground-truth	bounding	boxes	and	predictions	made	by	YOLOv2	and	Faster-RCNN.	
First	 of	 all,	 we	 were	 interested	 to	 see	 if	 the	 technique	 would	 work	 at	 all.	 When	
applying	 vision	 based	 networks	 it	 is	 typical	 to	 inherit	 the	 weights	 of	 the	
convolutional	 layers	 from	 a	 pre-trained	 representation	 network,	 through	 a	
technique	 known	 as	 transfer	 learning	 [30].	 	 The	 idea	 being	 that	 for	 visual	 tasks,	
many	of	the	learnt	features	used	for	these	applications	are	universal	and	will	work	
with	minimal	 tuning	 for	 a	 different	 objective.	 This	 holds	 true	 for	 identification	 of	
objects	in	images,	but	we	were	unsure	whether	the	standard	procedure	of	transfer	
learning	would	be	sensible	when	starting	with	a	network	trained	to	identify	objects	
in	photography	and	then	training	it	to	recognize	cells	in	microscopy	images.	In	the	
case	of	Faster-RCNN	the	weights	of	the	representation	layers	are	taken	from	VGG16	
[31]	and	for	YOLOv2	they	are	taken	from	Darknet	[32],	both	of	which	are	pretrained	
on	 the	 photography	 image	 database	 ImageNet	 [33].	 Upon	 visual	 inspection,	 the	
predictions	made	by	YOLOv2	and	Faster-RCNN	on	the	test	data	were	accurate	with	
respect	 to	 the	ground-truth	 regions	created	during	 the	annotation	of	 the	datasets.	
This	 justified	 that	 the	 standard	 user	 protocol	 for	 applying	 object	 detection	 was	
applicable	 to	 application	 in	 microscopy	 without	 modification.	 Technically	 it	 is	
possible	to	train	a	network	from	scratch	for	this	application,	but	for	object	detection	
this	 is	 not	 recommended	 due	 to	 the	 complexity	 of	 the	 overall	 network.	 Ideally	 a	
large	 corpus	 of	 data	 for	 cells	 would	 be	 generated	 and	 a	 representation	 network	
trained	 for	 classifying	 images	 into	 different	 cells	 types.	 This	 is	 not	 a	 small	
undertaking	 since	 the	 ImageNet	 database	 contains	14,197,122	 images	 and	21,841	
different	 categories.	 Fortunately	 however,	 it	 appears	 as	 though	 the	 VGG16	 and	
Darknet	 pretrained	 networks	 form	 a	 good	 foundation	 on	 which	 to	 train	 the	 cell	
object	 detection	 capability.	 In	 the	 following	 result	 sections	 we	 quantified	 how	
accurate	the	predictions	were	and	how	they	could	be	further	optimized.		

Machine	 learning	 algorithms	 that	 lack	 a	 closed-form	 solution	 generally	 require	
iterative	 training	 to	 get	 to	 an	 optimum	 solution	 that	 can	 be	 then	 used	 to	 make	
predictions.	 Neural	 networks	 are	 no	 exception	 to	 this:	 the	 weights	 of	 a	 neural	
network	 are	 adjusted	 and	 the	 performance	 evaluated	 many	 thousands	 of	 times	
before	the	optimum	configuration	of	the	network	is	found.	Another	potential	 issue	
with	 our	 initial	 validation	was	 the	 concept	 of	 over-fitting.	 Over-fitting	 is	 a	 known	
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and	persistent	problem	within	statistical	methods,	whereby	the	model	being	trained	
contains	more	parameters	than	can	be	justified	by	the	amount	and	dimension	of	the	
training	data.	This	problem	is	observable	through	assessment	of	the	model	on	data	
unseen	during	training	(i.e.	test	data),	and	this	problem	is	often	observed	as	a	drop	
in	 accuracy	 past	 a	 certain	 point	 of	 training	 (i.e	 more	 than	 a	 certain	 number	 of	
iterations).	 With	 the	 six	 datasets	 (Figure	 1)	 we	 evaluated	 the	 accuracy	 of	 the	
algorithm	at	different	iterations	of	training.	We	found	that	typically,	a	peak	level	of	
accuracy	was	reached	before	the	accuracy	stabilized	to	a	consistent	value.	For	this	
study,	we	however	found	that	overall,	20,000	iterations	for	Faster-RCNN	(Figure	2)	
gave	 a	 stable	 and	 consistent	 high	 accuracy	 (i.e.	 the	 accuracy	 is	 high	 and	does	 not	
fluctuate)	across	the	test	data	for	the	basis	of	comparison,	and	for	YOLOv2	(Figure	
S2A),	10,000	iterations	a	reliable	stopping	point	to	achieve	the	highest	accuracy,	and	
so	 all	 comparisons	 were	 made	 after	 this	 many	 iterations	 of	 training	 for	 each	
algorithm.		

The	 first	 experiment	 performed	was	 to	 train	 Faster-RCNN	 and	 evaluate	 its	
average	precision	(AP)	on	each	of	the	six	datasets.	AP	is	a	metric	that	evaluates	the	
performance	 of	 the	 algorithm	 taking	 into	 account	 its	 accuracy	 and	 precision	 (see	
Materials	 and	Methods	 for	 a	 full	 definition).	 This	 output	performance	 is	 shown	 in	
Figure	2A	at	key	training	iterations,	and	the	10,000th	iteration	AP	is	summarized	for	
each	dataset	 in	Figure	3A	(cond.	a).	From	this	data	 it	was	clear	 that	 the	algorithm	
performed	better	on	certain	datasets	over	others.	This	 trend	was	seen	throughout	
the	 study	 even	with	 certain	 enhancements.	 The	HEK	 peroxisome	 dataset	was	 the	
most	challenging	(0.64	±	0.02	AP	±	SD),	 followed	by	the	neuroblastoma	phalloidin	
dataset	 (0.81	±	0.01,	AP	±	 SD),	whereas	Faster-RCNN	performed	very	well	 on	 the	
fibroblast	nucleopore,	eukaryote	DAPI	and	C127	DAPI	datasets	achieving	>0.94	AP	
with	no	additional	optimizations.	For	the	same	experiment	YOLOv2	(Figure	S2A	and	
Figure	3B)	performed	better	for	the	HEK	peroxisome	dataset	(0.80	±	0.02,	AP	±	SD)	
and	 the	 Neuroblastoma	 phalloidin	 dataset	 (0.89	 ±	 0.01,	 AP	 ±	 SD)	 compared	 to	
Faster-RCNN	 and	 >0.96	 AP	 for	 the	 other	 datasets.	 Later,	 we	 definitively	 compare	
YOLOv2	 and	 Faster-RCNN	 performance	 head-to-head	 with	 optimum	 settings	 for	
both	algorithms.	 Interestingly	 the	AP	versus	 iteration	number	comparison	 (Figure	
2A)	showed	that	Faster-RCNN	was	clearly	over-fitting	the	data.	This	is	shown	by	the	
drop	in	performance	in	many	of	the	datasets,	with	additional	training	iterations	(i.e.	
the	accuracy	peaks	and	then	declines	with	more	iterations).	This	is	not	seen	in	the	
equivalent	 training	 profile	 for	 YOLOv2	 (Figure	 S2A	 evaluated	 at	 the	 10,000th	
iteration),	 indicating	that	over-fitting	 is	not	such	a	problem	with	this	network	and	
potentially	explains	some	of	 the	reason	why	YOLOv2	outperforms	Faster-RCNN	 in	
general	and	on	this	data.	

	
Training	across	multiple	classes		
	
One	 of	 the	 key	 advantages	 of	 object	 detection	 algorithms	 is	 that	 they	 have	 been	
developed	to	classify	objects	across	multiple	categories	and	so	are	typically	 jointly	
trained	 to	 potentially	 recognize	 and	 differentiate	 a	 number	 of	 different	 objects	
simultaneously.	Conventionally,	 in	microscopy,	we	are	only	 interested	in	 localizing	
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spatially	a	cell	of	particular	type	rather	than	classifying	what	type	of	cell	it	is,	as	the	
scientist	 who	 prepared	 the	 sample	 often	 knows	 this.	 Intuitively	 therefore,	 for	
microscopy	data	 it	would	seem	sensible	 to	 train	networks	on	 individual	classes	of	
data	 and	 then,	 as	 necessary,	 retrain	 the	 network	 from	 scratch	 to	 recognize	
subsequent	 datasets	 as	 needed.	 Instinctively,	 one	 would	 believe	 that	 this	 would	
create	higher	performing	networks	as	 the	optimization	 is	 focused	on	boosting	 the	
accuracy	 for	 a	 particular	 class	 (cell	 type).	 As	 mentioned	 however,	 one	 of	 the	
challenges	of	machine	learning	is	avoiding	over-fitting,	and	this	is	clearly	observed	
in	the	Faster-RCNN	data	as	a	decline	in	AP	with	iteration	(Figure	2A).	If	we	train	our	
algorithm	on	several	discrete,	but	similar	datasets	(in	this	case	different	cell	classes)	
it	 is	 likely	we	 can	 increase	 the	 amount	of	 training	data	 and	produce	an	algorithm	
which	generalizes	better	and	performs	more	accurately	on	each	individual	cell	class.	
We	were	 interested	 therefore	 to	know	whether	 training	across	multiple	classes	of	
data	 simultaneously	 conferred	 an	 accuracy	 improvement	 over	when	 the	 network	
was	 trained	on	only	one	specific	dataset.	Through	 training	Faster-RCNN	across	all	
six	datasets	the	AP	increased	on	average	5.0%	(0.90	mAP)	(Figure	3A,	cond.	c)	with	
respect	 to	 the	 equivalent	model	 trained	 independently	 on	 each	 individual	 dataset	
(0.86	mAP,	Figure	3A,	cond.	a).	Interestingly,	the	over-fitting	was	no	longer	present	
when	looking	at	 the	AP	versus	 iteration	profiles	(Figure	2C,	accuracy	plateaus	and	
does	not	decline).	For	YOLOv2	a	smaller	increase	of	1.3%	on	average	was	seen	in	the	
AP	for	those	models	trained	across	multiple	datasets	(0.93	mAP,	Figure	3B,	cond.	c)	
when	compared	to	the	precision	for	models	trained	on	individual	data	(0.92	mAP)	
(Figure	 3B,	 cond.	 a).	 In	 some	 cases	 for	 YOLOv2,	 a	 non-significant	 decrease	 was	
observed	 when	 training	 was	 performed	 across	 multiple	 datasets	 such	 as	 in	 the	
erythroblast	DAPI	and	neuroblastoma	phalloidin	classes.	 It	not	clear	why	this	may	
be,	 but	 it	 is	 clear	 that	 these	datasets	 did	not	 show	much	 improvement	under	 any	
condition,	 and	 so	 may	 represent	 a	 saturation	 in	 the	 performance	 of	 this	 type	 of	
network.	In	either	case,	training	across	multiple	datasets	boosts	the	performance	of	
the	framework	being	trained.	
	
Data	augmentation	
	
Object	 detection	 and	 many	 other	 computer	 vision	 algorithms	 that	 employ	 deep	
learning	have	some	kind	of	data	augmentation	procedure	to	maximize	the	amount	
of	 data	 used	 for	 training.	 Data	 augmentation	 involves	 applying	 different	 kinds	 of	
transformations	 that	 alter	 the	 data	 subtly,	 providing	 informative	 variations	 of	 the	
training	data.	For	example,	rotation	and	scaling	of	objects	provide	clues	as	 to	how	
these	 objects	 may	 appear	 if	 positioned	 differently	 in	 test	 images,	 effectively	
increasing	 the	 number	 of	 relevant	 training	 examples	 for	 the	model	 to	 learn	 from.	
This	regularization	method	has	been	shown	on	numerous	occasions	to	improve	the	
accuracy	of	algorithms	at	test	time.	Object	detection	algorithms	by	default	use	data	
augmentation	methods	in	order	to	increase	the	apparent	number	of	images	present.	
Data	 augmentation	 is	 effective	 as	 long	 as	 the	 transformations	 are	meaningful,	 for	
example	 if	 your	 dataset	 contained	 images	 of	 cars,	 it	would	 not	 be	meaningful	 for	
those	 images	 to	be	 flipped	vertically	 for	 example	or	 the	pixel	 intensities	 inverted.	
You	are	very	unlikely	 to	see	a	car	upside	down	 in	photography	and	so	a	classifier	
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doesn’t	need	to	be	trained	on	images	simulating	this.	Flipping	the	image	horizontally	
is	fully	permissible	however,	as	you	are	just	as	likely	to	see	cars	coming	from	both	
sides.	 In	 this	application	 the	 rules	 for	augmentation	are	a	 little	different	as	within	
microscopy	it	 is	 fully	permissible	to	flip	the	images	horizontally	and	vertically	and	
also	 to	 flip	 them	 both	 ways	 at	 the	 same	 time.	 This	 is	 because	 in	 conventional	
fluorescence	microscopy	the	images	are	rotationally	invariant	(unlike	in	some	other	
forms	 of	 microscopy	 e.g.	 DIC,	 phase	 contrast).	 In	 conventional	 fluorescence	
microscopy,	 images	that	are	flipped	vertically	are	 just	as	realistic	as	those	that	are	
unflipped.	Therefore,	we	were	interested	to	see	if	we	could	improve	the	accuracy	of	
the	detection	through	flipping	the	images	vertically	to	generate	additional	training	
data.	 The	 ‘flip’	 conditions	 (Figure	 3A	 and	 B	 (cond.	 b,	 d))	 show	 the	 incremental	
improvement	that	augmenting	the	training	data	provides.	In	each	dataset,	 for	both	
Faster-RCNN	and	YOLOv2	when	trained	on	a	single	dataset	(Figures	3A	and	B,	cond.	
b),	 or	 across	multiple	 datasets	 (Figures	 3A	 and	B,	 cond.	 d)	 the	 additional	 flipping	
augmentation	increased	the	accuracy	of	the	resulting	algorithm.	The	only	exception	
to	 this	was	 the	C127	DAPI	dataset	with	additional	 flipping	 (0.99	AP)	which	 saw	a	
marginal	 reduction	when	 trained	on	multiple	datasets	 and	 evaluated	on	 the	C127	
dataset,	 compared	 to	 the	 unflipped	 data	 (0.98	 AP).	 This	 difference	 was	 not	
significant.	Therefore,	given	the	bulk	of	the	datasets	and	approaches	it	is	clear	that	
both	Faster-RCNN	and	YOLOv2	benefit	 from	additional	vertical	 flipping	of	 training	
data.	 This	 acts	 to	 increase	 the	 quantity	 of	 training	 data	 in	 a	 meaningful	 way	
improving	the	generalizability	and	accuracy	of	the	resulting	trained	model.	

Faster-RCNN	versus	YOLOv2	and	YOLOv3	

From	 the	 described	 experiments	 it	 was	 possible	 to	 optimize	 the	 performance	 of	
both	Faster-RCNN	and	YOLOv2.	In	both	cases,	the	models	trained	on	data	that	also	
included	vertically	flipped	data	and	were	trained	across	multiple	datasets	provided	
the	best	performance	in	each	case.		In	terms	of	accuracy,	Faster-RCNN	and	YOLOv2,	
once	 optimized,	 were	 very	 similar	 for	most	 datasets	 (Fig.	 3C).	 Later	 in	 the	 study	
YOLOv3	 became	 available	 and	 so	 was	 included	 in	 the	 summary	 analysis	 [23].	
Supplementary	 Table	 1	 summarizes	 the	 accuracy	 of	 either	 algorithm	 when	
evaluated	 on	 the	 datasets	 and	 Figure	 3C	 summarizes	 the	 data	 graphically.	 In	 the	
more	 challenging	 HEK	 peroxisome	 and	 neuroblastoma	 phalloidin	 datasets	 the	
performance	 is	 significantly	 better	 with	 the	 YOLOv2	 network	 compared	 to	 the	
Faster-RCNN	algorithm	(Figure	3C,	blue	statistical	comparisons).	 In	 the	rest	of	 the	
data	 the	 results	 were	 indistinguishable	 and	 overall	 YOLOv2	was	 not	 significantly	
better	 than	Faster-RCNN	 in	 terms	of	mAP.	This	 shows	 that	YOLOv2	 is	performing	
better	 on	 more	 challenging	 data,	 but	 with	 the	 correct	 optimizations	 both	
frameworks	can	perform	near	perfectly	on	 less	challenging	data.	The	performance	
of	 YOLOv3	 was	 disappointing	 on	 many	 of	 the	 datasets	 especially	 the	 more	
challenging	 ones	 and	 was	 performing	 significantly	 less	 well	 that	 the	 other	 two	
algorithms	in	all	but	the	C127	DAPI	and	Eukaryote	DAPI	classes.	The	reason	for	this	
is	not	totally	clear	but	is	likely	is	due	to	the	increased	complexity	of	the	network	and	
likely	 requirements	 this	 puts	 on	 the	 level	 of	 training	 data	 required.	 At	 this	 stage,	
YOLOv2	 is	 the	better	choice	of	algorithm	with	more	challenging	data	and	also	has	
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the	added	benefit	of	being	a	 faster	algorithm	 [21]	 than	Faster-RCNN	(67	FPS	vs	7	
FPS	respectively)	which	makes	it	a	more	desirable	choice.		

Multi-channel	data	
	
We	were	also	interested	in	the	possibility	of	using	the	object	detection	algorithm	on	
multi-channel	data.	Both	the	neuroblastoma	and	the	glycophorin	A	data	were	dual-
stained	and	acquired	within	two	different	colour	channels	(Figure	4A	and	B).	Each	
stain	 was	 discretely	 staining	 different	 aspects	 of	 the	 cell.	 In	 the	 case	 of	 the	
Neuroblastoma	 cells	 they	 were	 stained	 with	 phalloidin	 (green)	 for	 the	 actin	
cytoskeleton	 and	 DAPI	 (blue)	 for	 the	 cell	 nucleus,	 whereas	 in	 the	 case	 of	 the	
erythoblast	 cells	 they	 were	 stained	 for	 glycophorin	 A	 protein(green)	 and	 DAPI	
(blue)	 for	 the	nucleus.	We	 found	 that	both	YOLOv2	and	Faster-RCNN	were	clearly	
capable	of	recognizing	multiple	channel	images	and	the	additional	information	was	
not	detrimental	to	the	classification	performance.	For	the	erythroblast	two	channel	
data	 (Figure	 4C,	 cond.	 b),	 the	 performance	 was	 much	 the	 same	 as	 for	 the	 same	
images	used	with	just	the	DAPI	single	channel	staining	(Figure	4C,	cond.	a).	For	the	
neuroblastoma	dataset	 the	performance	of	 the	algorithm	when	trained	on	the	two	
channel	 data	was	 improved	 in	 relation	 to	 the	 performance	 on	 the	 single	 channel	
data	Figure	4C	(cond.	a	and	c	vs.	b	and	d;	magenta	data).	This	relationship	persisted	
for	models	trained	on	only	the	neuroblastoma	dataset	(Figure	4C,	cond.	a	and	b)	and	
also	when	 trained	 using	 both	 neuroblastoma	 and	 erythroblast	 datasets	 combined	
(Figure	 4C,	 cond.	 c	 and	 d).	We	 also	 attempted	 to	 evaluate	 the	models	 trained	 on	
multi-channel	data	on	 single-channel	data.	As	 expected,	 the	 algorithms	performed	
poorly	 (data	not-shown),	as	 the	model	had	a	dependence	on	 the	additional	 colour	
channel,	which	was	not	present	 in	 this	 case.	For	example,	 an	algorithm	 trained	 to	
recognize	cells	based	both	on	phalloidin	and	DAPI	staining	will	not	perform	well,	if	it	
sees	phalloidin	staining	in	place	of	the	DAPI	training.	The	algorithm	cannot	sensibly	
recognize	 in	 this	 context	 that	 the	 DAPI	 staining	 is	 in	 fact	 phalloidin	 and	 so	 its	
performance	will	suffer.	This	underwrites	the	necessity	for	models	to	be	specifically	
trained	 for	 recognizing	 images	with	 the	 same	number	of	 channels,	 ordered	 in	 the	
same	sequence.		
	
3D	implementation	of	algorithm	
	
Samples	 when	 viewed	 under	 a	microscope	 are	 predominantly	 3-D	 environments,	
where	 cells	 or	 specimens	 will	 often	 span	 more	 than	 one	 focal	 plane	 of	 the	
microscope.	 A	 natural	 progression	 from	 localizing	 cells	 in	 2-D	 therefore,	 is	 to	
localize	 them	 in	 a	 3-D	 environment.	 3-D	microscopy	 still	 predominantly	 involves	
taking	2-D	 images	 that	 optically	 section	 the	3-D	volume	of	 the	 sample.	The	 image	
volume	 is	 then	 reconstructed	 subsequently	 and	 viewed	 by	 scrolling	 through	 one	
slice	at	a	time,	or	through	some	form	of	rendering	at	an	oblique	angle.	The	challenge	
for	 cellular	detection	 is	 to	 concatenate	detections	made	 in	 individual	2-D	 slices	 to	
create	 a	 3-D	 region	 encompassing	 the	 entire	 cells.	 To	 adapt	 the	 object	 detection	
networks	 so	 that	 they	 could	be	used	 for	 acquiring	 cells	 in	 a	3-D	 environment,	we	
developed	 the	 AMCA	 (Autonomous	 Microscope	 Control	 Algorithm).	 AMCA	 is	 a	
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control	framework	which	interfaces	with	microscope	camera	and	control	hardware	
to	 dynamically	 acquire	 images	 in	 3-D.	 At	 its	 core	 is	 an	 object	 detection	 algorithm	
(either	 Faster-RCNN	 or	 YOLO),	which	 informs	 the	 system	whether	 there	 are	 cells	
present	in	a	particular	optical	slice.	AMCA	comes	in	two	forms,	‘passive’	and	‘active’	
(See	 Figure	 5	 for	 graphical	 representation).	 The	 ‘passive’	 algorithm,	 which	 is	 the	
simpler	of	 the	 two	algorithms,	 takes	volumetric	stacks	of	 images	which	have	been	
pre-acquired	 e.g.	 using	 Micro-manager	 software	 [34].	 These	 stacks	 are	 then	
processed	by	the	AMCA	to	find	and	label	the	sub-volumes	occupied	by	the	cells.	This	
process	 is	 storage	 intensive	 and	 relatively	 slow	 as	 the	 images	 volumes	 are	 first	
acquired	 exhaustively	 across	 the	 slide	 before	 processing.	 The	 advantages	 of	 the	
‘passive’	 form	however	 are	 its	 simplicity,	 because	Micro-manager	 is	 easy	 to	 setup	
and	run	and	freely	available.	The	active	form	of	AMCA	works	with	Labview	software	
[35]	 utilizing	 its	 depth	 of	 functionality.	 Through	 using	 custom	 scripts	 written	 in	
Labview	and	interfacing	with	python	scripts	it	is	possible	to	efficiently	scan	the	slide	
and	 only	 acquire	 image	 volumes	 and	 slices	 where	 cells	 are	 identified.	 This	 is	
efficient,	as	only	slices	with	cells	in	are	retained	and	imaged	and	the	microscope	can	
move	 through	 areas	without	 cells	 quickly	 and	without	 continual	 prompt	 from	 the	
user.		

Although	 the	 AMCA	 system	 can	 be	 used	 to	manually	 evaluate	 and	 acquire	
images	 it	 is	 most	 effective	 when	 set	 to	 automatically	 acquire	 images	 across	 the	
whole	sample	slide.	As	user	 input,	 it	 is	necessary	 to	specify	a	 rough	outline	of	 the	
area	 to	 be	 inspected	 by	 the	 system.	 This	 process	 involves	 moving	 the	 stage	 to	
locations	 around	 the	 perimeter	 of	 the	 area	 to	 be	 imaged	 and	 selecting	 these	
locations	 to	be	bounding	key-points.	This	prevents	 the	 system	 from	going	beyond	
the	bounds	of	the	slide	and	potentially	damaging	the	system.	The	initial	points	to	be	
imaged	are	then	interpolated	in	x,	y	and	z	between	these	key-points.	The	regions	can	
then	be	 imaged	densely	or	selected	at	 random	to	sample	 the	slide	sparsely.	When	
the	 system	 moves	 to	 a	 new	 location	 and	 an	 image	 is	 acquired	 in	 case	 cells	 are	
detected.	 In	 that	 case	 the	microscope	will	move	 the	 sample	 up	 and	 then	 down	 in	
axial	Z	direction,	acquiring	2-D	images	at	each	Z-position	for	3D-reconstruction,	and	
storing	 locations,	 until	 no	 cells	 are	 detected,	 at	 which	 point	 it	 signals	 to	 the	
microscope	to	move	to	the	next	spatial	XY	location.	

Figure	6	shows	the	AMCA	algorithm	when	applied	to	a	volumetric	acquisition	
of	some	C127	cells	stained	with	DAPI.	Figure	6A	shows	a	single	frame	of	the	movie	
with	 the	 bounding	 boxes	 representing	 each	 unique	 cell	 localization	 and	
classification.	The	colour	of	each	region	shows	the	result	of	 the	tracking	algorithm	
which	discretely	identifies	each	cell	and	does	so	for	each	classification	made	by	the	
object	detection	algorithm.	The	classification	persists	through	the	in-focus	region	of	
the	volume	and	each	classification	is	linked	with	its	counterparts	from	the	same	cell.	
Figure	 6B	 shows	 each	 cell	 sub-volume	 detected	 and	 subsequently	 connected	
through	 ‘z’	by	 the	AMCA	 tracking	 system	(each	unique	 colour	 shows	a	 contiguous	
cell	detection).	These	isolated	stacks	precisely	represent	the	different	z-slices	of	the	
cell	across	the	image	volume.	Figure	6C	shows	a	montage	of	the	entire	z-stack	with	
the	 cellular	 detections	 depicted	with	 discrete	 colours.	 The	 classifier	 has	 not	 been	
trained	 to	 recognize	 cells	 that	 are	 out-of-focus,	 and	 therefore	 out-of-focus	 frames	
are	 not	 retained.	 Our	 experiment	 clearly	 shows	 that	 object	 detection	 algorithms,	
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when	 applied	 to	 microscopy,	 offer	 significant	 possibilities	 with	 regards	 to	 the	
identification	and	extraction	of	cellular	sub-volumes.		

We	wanted	to	showcase	the	potential	for	our	method	by	performing	a	small-
scale	screen	on	cells	and	did	so	on	a	slide	containing	C127	cells,	with	nuclei	stained	
with	DAPI	 after	having	been	 treated	with	a	 technique	known	as	RASER-FISH	 [26]	
(Figure	 7).	 For	 this	 treatment	 cells	 are	 first	 incubated	 for	 18	 h	 with	 BrdU/BrdC.	
BrdU	and	BrdC	are	 analogues	 for	 the	nucleosides	 thymidine	 and	 cytosine	 and	are	
incorporated	into	the	DNA	of	proliferating	cells.	Almost	all	the	cells	should	take	up	
these	analogues	as	they	divide	and	synthesize	new	DNA.	BrdU/BrdC	are	important	
for	 subsequent	 stages	 in	 the	 RASER-FISH	 technique,	 where	 they	 allow	 the	
generation	of	extensive	regions	of	single-stranded	DNA.	A	side-effect	of	RASER-FISH	
treatment	is	that	conventional	DAPI	staining	intensity	is	reduced	in	those	cells	that	
take	up	the	BrdU/BrdC	analogues.	This	is	likely	to	be	a	twofold	phenomenon;	firstly	
DAPI	fluoresces	much	more	weakly	when	bound	to	single-stranded	DNA	compared	
to	 double-stranded	 DNA	 [36]).	 Further,	 DAPI	 preferentially	 binds	 adenosine-
thymidine	 rich	 DNA	 regions,	 and	 therefore	 incorporation	 of	 BrdU,	 instead	 of	
thymidine,	reduces	the	ability	of	DAPI	to	bind	the	cellular	DNA	and	thus	rendering	
the	nucleus	less	fluorescent	[37,	38].	For	this	study	we	made	a	screen	encompassing	
330	imaging	positions	spread	across	a	slide	area	of	(4.5x3.0	mm).	Imaging	positions	
were	arranged	uniformly	and	sparsely	across	the	slide,	200	μm	from	each	other.	A	
low-resolution	over-view	image	is	shown	in	Fig	7A	with	a	higher	resolution	image	
inset	 showing	 the	 imaged	 regions	 and	 cells	 identified	 in	 those	 regions	 (coloured	
boxes).	In	this	case,	any	cells	detected	that	touched	the	boundary	were	ignored.	For	
the	basis	of	overview	statistics,	 image	volumes	were	 ‘maximum’	projected	and	the	
average	intensity	measured	in	each	cell	area.	2412	cells	were	detected	and	analyzed,	
and	the	procedure	took	40	min	in	total.	Figure	7B	shows	a	summary	histogram	for	
the	mean	intensities	of	cells	within	the	regions.	The	distribution	has	two	peaks	(33	
and	55	intensity	respectively)	and	suggests	that	there	is	more	than	one	component	
contributing	 to	 the	overall	 intensity	distribution	of	 the	DAPI	stained	cells.	Further	
experiments	 would	 be	 required	 to	 ascertain	 that	 this	 effect	 is	 real.	 Yet,	 our	
preliminary	 experiment	 shows	 the	 power	 of	 a	 higher-throughput	 automated	
approach	to	reveal	effects	not	usually	visible	from	assays	run	across	a	small	number	
of	 cells.	 This	 data	 suggests	 the	 BrdU	 is	 not	 being	 taken	 up	 in	 every	 cell	 present,	
illustrated	 by	 the	 differential	 DAPI	 staining	 and	 resulting	 in	 a	 complex	 DAPI	
intensity	distribution	with	multiple	peaks.	It	 is	 likely	that	those	cells	which	appear	
to	be	brighter	are	those	which	have	not	taken	up	BrdU/BrdC	during	the	incubation	
step.	 It	 would	 be	 interesting	 in	 subsequent	 work	 to	 establish	 whether	 the	 DAPI	
intensity	in	this	manner	can	be	used	to	ascertain	the	quality	of	RASER-FISH	staining	
and	 whether	 this	 would	 be	 a	 good	method	 for	 performing	 fully	 automated	 high-
resolution	imaging	of	specific	cells.		
	 Another	interesting	observation	of	the	latter	experiment	is	the	time-taken	to	
perform	 it.	 Rather	 than	 using	 the	 exhaustive	 ‘passive’	 mode,	 the	 images	 were	
acquired	and	analyzed	dynamically	using	AMCA	in	‘active’	mode.	Figure	7C	shows	a	
histogram	summarizing	the	distribution	of	time-taken	to	acquire	each	image	volume	
in	seconds.	This	process	is	linear	with	respect	to	the	number	of	slices	present,	as	it	
takes	 longer	 to	 acquire	 and	 analyze	 image	 volumes	 that	 comprise	more	 ‘z’	 slices	
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(Fig.	7D).	On	average	 it	 takes	7.5s	 to	acquire	a	stack	(of	e.g.	18	slices)	analyze	 the	
data,	save	the	images,	and	move	to	the	next	position	of	the	slide.	Because	the	system	
is	 dynamic	 it	 cuts	 short	 the	 imaging	 of	 volumes	 where	 the	 imaging	 has	 already	
extended	 across	 all	 the	 cells	 present,	 saving	 valuable	 time.	 If	 we	 were	 to	 image	
exhaustively	 the	same	area,	we	would	need	 image	volumes	comprising	at	 least	24	
frames	(99	%	percentile)	to	ensure	we	covered	all	the	cells	within	the	3-D	volume,	
assuming	 a	 symmetric	 positioning	 of	 cells	 centered	 on	 the	 start	 location.	 Image	
volumes	comprising	24	‘z’	slices	would	take	at	least	10	s	per	stack	and	330	volumes	
would	 take	 55	min	 in	 total	 compared	 to	 40	min	 taken	with	 the	 ‘active’	 approach,	
which	 is	 almost	 a	 1/3	quicker.	 For	 large	 screens	 this	 represents	 a	 large	 saving	 in	
time	and	also	requires	less	storage.	This	screen	was	6.09	GB	in	size	compared	to	a	
330x24	 slice	 volumes	 which	 would	 be	 around	 8.30	 GB	 in	 size.	 This	 experiment	
proves	that	an	automated	system	could	easily	localize	and	extract	cells	from	a	large	
area	with	very	little	human	interaction	and	through	doing	it	‘actively’	one	can	save	
storage	and	acquisition	time.	
	
Augmented	reality	acquisition	
	
The	augmented	reality	(AR)	display	gives	real-time	and	off-line	feedback	to	the	user.		
The	experience	of	using	augmented	reality	in	the	context	of	microscopy	enriches	the	
experience	and	helps	integrate	the	acquisition	phase	with	the	analysis	of	the	sample.		
We	 demonstrate	 a	 simple	 solution	 to	 providing	 augmented	 reality	 using	 off-the-
shelf	 components	 and	 optical	 elements	 (see	 methods	 for	 more	 details).	 The	 AR	
system	lends	itself	very	well	to	the	fast	analysis	and	processing	of	the	tested	object	
detection	 algorithms.	 The	 AR	 system	 can	work	 in	 two	 different	 ways:	 ‘Real-time’	
mode	 that	 works	 with	 the	 ‘active’	 ACMA	 algorithm,	 where	 the	 system	
simultaneously	analyses	as	you	manually	move	around	the	slide.	A	user	can	quickly	
navigate	 around	 a	 slide	 and	 then	 receive	 analysis	 feedback	 regarding	 that	 area,	
identifying	the	cells	and	relaying	information	regarding	brightness,	number	of	foci,	
and	 size	 of	 cells.	 Whereas	 ‘Offline’	 mode	 allows	 you	 to	 inspect	 the	 pre-acquired	
cellular	positions	on	the	slide	with	no-analysis	over-head	and	so	a	slightly	quicker	
frame-rate.		The	‘offline’	analysis	can	be	applied	with	data	acquired	through	both	the	
‘passive’	and	‘active’	forms	of	the	AMCA	algorithm.	Fig	5.	shows	a	photo	taken	down	
the	eyepiece	that	shows	the	augmented	reality	system	working	in	‘real-time’	mode.	
The	 image	 area	 is	 being	 imaged	 and	 relayed	 to	 the	 computer	 camera	 where	 the	
image	 is	analysed	and	the	regions	are	displayed	and	updated	 in	real-time	through	
the	AR	 display	 adapter.	 For	 videos	 of	 the	 augmented	 reality	working	 in	 real-time	
please	refer	to	Supp.	Mater.	3	and	4.	
	
	

Discussion	
In	this	study	we	document	the	creation	of	a	collection	of	datasets	of	cellular	images	
and	provide	annotation	 in	 the	 form	of	bounding	boxes.	This	has	been	an	excellent	
resource	for	training,	benchmarking	and	improving	the	object	detection	algorithms	
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used	in	this	study.	This	dataset	is	publically	available	and	will	be	updated	at	regular	
intervals	with	additional	data	(https://zenodo.org/record/2548493).	It	is	our	hope	
it	 will	 become	 a	 valuable	 resource	 for	 future	 studies	 involving	 microscopy	 and	
object	detection	algorithms.	

We	have	in	this	study	thoroughly	benchmarked	two	popular	object	detection	
algorithms,	 Faster-RCNN	 and	 YOLOv2,	 for	 the	 task	 of	 cellular	 classification	 and	
localisation.	With	the	settings	we	have	used	we	have	found	YOLOv2	to	be	a	superior	
algorithm	 in	 terms	 of	 accuracy	 and	 speed.	 Additionally,	 we	 have	 found	 that	 both	
algorithms	 gave	 enhanced	 performance	with	 additional	 data	 augmentation	 in	 the	
form	of	vertical	 flipping.	We	also	 found,	as	expected,	 that	 training	across	different	
classes	 simultaneously	 boosted	 performance	 of	 the	 networks,	 especially	 Faster-
RCNN.	We	also	benchmarked	YOLOv3	toward	the	end	of	the	study	and	surprisingly	
found	the	algorithm	underperformed	on	multiple	datasets.	We	believe	this	is	due	to	
the	number	of	parameters	and	complexity	that	YOLOv3	has	relative	to	YOLOv2	and	
how	this	 inevitably	requires	more	training	material.	YOLOv3	uses	a	more	complex	
variant	of	darknet	that	forms	the	basis	of	the	feature	description	layers.	The	YOLOv3	
darknet	has	twice	the	number	of	convolutional	layers	(106	versus	53	for	YOLOv2).	A	
restriction	 of	 having	more	 parameters	 is	 that	 you	 require	more	material	 to	 train	
adequately.	 Consequently,	 we	 believe	 that	 as	 networks	 get	 more	 and	 more	
complicated	 they	 will	 perform	 less	 well	 when	 applied	 on	 smaller-sized	 datasets,	
though	interestingly	in	the	case	of	our	data,	each	of	three	algorithms	perform	well	
on	the	smallest	dataset	(C127	DAPI,	26	training	images).	The	relationship	is	likely	to	
be	 an	 interplay	 between	 the	 complexity	 of	 the	 data	 and	 the	 size	 of	 the	 datasets	
involved.	It	would	suggest	that	unlike	in	the	domain	of	photography	where	there	is	
still	a	 trend	towards	more	complicated	networks	(and	bigger	and	bigger	datasets)	
that	for	microscopy	we	may	see	networks	of	a	smaller	size,	which	are	easier	to	train.	
In	either	case	the	 future	 for	 these	kind	of	networks	within	the	 imaging	sciences	 is	
likely	 to	 revolve	 around	 designing	 and	 generating	 network	 designs	 which	 can	
outperform	 YOLO	 and	 other	 networks,	 can	 function	 on	 smaller	 self-contained	
hardware,	 and	 can	 incorporate	 information	 such	 as	 focus	 into	 the	 classification	
process.	

Bounding	boxes,	 as	 a	 form	of	 annotation,	 have	 the	 advantage	 that	 they	 are	
simple	 and	 quick	 to	 create	 and	 interpret.	 One	 criticism	 of	 using	 bounding	 boxes	
however	is	that	cellular	image	analysis	generally	involves	some	form	segmentation	
to	 discretize	 each	 cell,	 and	 to	 potentially	 reduce	 the	 impact	 of	 background	 pixels.	
Using	bounding	boxes	however	does	not	exclude	this	type	of	analysis	and	actually	is	
an	 excellent	 prior	 for	 applying	 subsequent	 analysis	 methods	 through	 providing	
demarcation	 of	 the	 image	 and	 an	 appropriate	 region	 to	 provide	 as	 initialization.	
Conventionally,	cells	 that	are	close	to	one	another	may	upon	segmentation	appear	
connected.	 Traditionally	 a	 ‘watershed’	 algorithm	 is	 used	 to	 separate	 the	 cells,	 but	
with	 the	 bounding	 box	 predictions	 it	 is	 possible	 to	 split	 the	 cells	 using	 the	
boundaries	 of	 the	 boxes	 as	 limits.	 Another	 use	 of	 bounding	 boxes	 is	 for	 Active	
Contours	 [39].	 Active	 Contours	 are	 a	 popular	 form	 of	 statistical	 shape	 model	
whereby	a	parameterized	spline	is	evolved	through	iteration,	to	fit	a	shape,	which	in	
this	case	would	most	likely	be	the	perimeter	of	a	cell.	One	of	the	main	limitations	of	
Active	Contours	and	for	many	of	the	related	level	set	or	statistical	shape	models	is	
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the	quality	of	 initialization,	especially	where	 there	are	multiple	objects	present	all	
which	need	to	be	fit.	There	is	no	generic	way	of	initializing	automatically	despite	this	
being	critical	to	the	successful	application	of	this	technique.	Bounding	boxes	are	an	
excellent	method	to	bridge	the	problem	of	initialization	and	open	up	possibilities	of	
application	 of	 these	 two	 techniques	 together.	 Furthermore,	 analyzing	 sparse	 foci	
distributions	in	scenes	with	dense	cellular	distributions	of	fluorescence	can	often	be	
challenging	 as	 it	 challenging	 to	 separate	 the	 foci	 attributed	 to	 each	 cell.	Using	 the	
bounding	boxes	however	it	 is	straightforward	to	delineate	the	cellular	regions	and	
attribute	the	foci	accurately	to	each	cell.		

The	AMCA	algorithm	shows	that	object	detection	algorithms	have	a	valuable	
role	 to	 play	 in	 the	 development	 of	 automated	microscopy	 acquisition	 algorithms.	
Although	microscopes	often	operate	within	a	3-D	environment,	they	most	often	only	
will	 acquire	 information	 as	 2-D	 planes.	 As	 a	 consequence,	 2-D	 object	 detection	
algorithms	have	a	definite	place	in	the	acquisition	process,	with	the	possibility	for	3-
D	 classification	 and	 analysis	 post-acquisition.	 In	 this	 work,	 we	 have	 showed	 that	
AMCA	 can	 in	 combination	 with	 the	 pre-trained	 object	 detection	 algorithms,	 an	
automated	 stage	 and	 fast-acquisition	 camera	 can	 identify	 cells	 and	 acquire	 image	
volumes	of	those	cells.	This	is	a	very	powerful	technique	and	easily	trained	by	non-
skilled	users	due	to	the	simplicity	of	the	training.	

Following	 an	 acquisition	 session	 using	 the	ACMA	 system	 the	 positions	 and	
dimensions	of	 the	cells	are	parameterized	and	stored.	This	data	 is	rich	and	can	be	
used	in	different	ways.	It	would	be	possible,	for	example,	to	register	the	position	of	
the	 slide	 during	 a	 series	 of	 imaging	 experiments.	 Often,	 the	 exact	 positioning	 and	
focus	of	a	slide	is	lost	when	the	slide	is	removed	and	then	subsequently	replaced	on	
a	microscope.	This	 is	often	 the	case	with	conventional	microscopy	equipment	and	
regular	 slide	 preparations.	 Due	 to	 the	 parameterization	 of	 the	 cells,	 it	 is	 possible	
with	AMCA	to	accurately	and	quickly,	register	the	slide	during	subsequent	imaging.	
To	do	this	a	search	strategy	is	employed	which	images	a	region	of	the	slide	and	then	
matches	the	coordinate	system	of	the	two	slides,	before	imaging	the	whole	slide	in	
the	 corrected	 coordinate	 system.	 Such	 developments	 would	make	 it	 very	 easy	 to	
perform	 time-series	 experiments	 or	 to	 return	 to	 samples	 after	 an	 initial	 imaging	
experiment	for	repeated	or	different	measurements.	Work	of	this	nature	empowers	
users	 of	 conventional	microscopes	 to	perform	 large-scale	 acquisition	 and	 analysis	
experiments	 in	 the	 domain	 of	 conventional	 microscopy.	 This	 means	 that	
conventional	 slide	 preparation	 and	 regular	microscopy	 equipment	 can	 be	 used	 to	
perform	high	throughput	experimentation.	We	expect	to	utilise	this	technique	for	a	
number	of	applied	experiments	in	the	future,	where	the	automation	and	recognition	
capability	 will	 boost	 the	 number	 of	 samples	 acquired	 and	 enable	 new	 types	 of	
experiments	to	be	performed.	

It	 is	not	 essential	 to	use	an	automated	 stage	 to	yield	 the	benefits	of	AMCA.	
Cells	 under	 a	 microscope	 can	 still	 be	 classified	 and	 tracked	 using	 the	 AMCA	
algorithm	 even	 with	 the	 stage	 under	 human	 control.	 The	 drawback	 is	 that	 when	
acquiring	 image	 volumes,	 there	will	 not	 be	 a	 record	of	 the	 z-plane	position.	 	 As	 a	
consequence	it	works	well	as	means	of	highlighting	cells	but	not	for	recording	3-D	
volumes	 of	 cells.	 This	 functionality	 as	 is,	 however,	 works	 excellently	 as	 an	
augmented	 reality	 microscope	 system,	 annotating	 samples,	 as	 the	 user	 navigates	
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around	the	sample	looking	for	cells	of	certain	brightness	for	example.	
AR	 in	 the	 microscopy	 domain	 has	 several	 advantages	 over	 conventional	

visualisation	 of	 data:	 E.g.	 computer-based	 exploration	 of	 3-D	 data	 can	 often	 be	
cumbersome	and	unintuitive.	 In	 contrast,	 a	microscope	 is	 a	well-designed	 tool	 for	
navigating	a	3-D	space	and	 lends	 itself	well	 to	3-D	exploration.	By	augmenting	the	
visual	output	of	the	microscope,	the	data	is	displayed	in	the	context	of	the	slide	and	
so	is	enjoyable	to	view	and	explore	in	this	way.	It	can	sometimes	be	easier	for	a	user	
to	appreciate	a	sample	when	looking	down	a	microscope.	The	user	can	also	quickly	
review	areas	that	haven’t	been	imaged	with	those	that	have.	By	having	information	
overlaid	on	the	image	data	one	can	understand	it	better.		
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Figures	
	
Figure	 1:	 Example	 fluorescence	 microscopy	 data	 generated	 for	 our	 study	 with	
corresponding	 ground-truth	 human	 annotations	 and	 object	 detection	 predictions.	
A-B)	 eukaryotic	 cell	 dataset,	 stained	with	DAPI.	C-D)	 neuroblastoma	 cells	 stained	
with	 GFP-phalloidin.	 E-F)	 HEK	 cells	 expressing	 GFP-SCP2	 protein.	 Ground-Truth	
boxes,	 (white),	 YOLOv2	 prediction	 boxes	 (red),	 Faster-RCNN	 prediction	 boxes	
(green).	Scale	bar	(25	μm).	

Figure	2:	Average	Precision	at	different	levels	of	training	for	Faster-RCNN	across	six	
different	 datasets.	 A-B)	 Average	 Precision	 for	 Faster-RCNN	 network	 trained	 and	
evaluated	 on	 individual	 datasets	 without	 (A)	 and	 with	 (B)	 additional	 vertically	
flipped	training	data	augmentation.	C-D)	Average	Precision	for	Faster-RCNN	trained	
across	multiple	datasets	and	evaluated	on	individual	datasets	without	(C)	and	with	
(D)	additional	vertically	flipped	training	data	augmentation.	Erythroblast	DAPI	cells	
(blue),	neuroblastoma	phalloidin	dataset	(magenta),	fibroblast	nucleopore	dataset	
(red),	 eukaryote	 DAPI	 dataset	 (orange),	 C127	 DAPI	 dataset	 (green)	 and	 HEK	
peroxisome	dataset	(black).	

Figure	3:	Summary	comparison	of	object	detection	algorithms	for	cellular	detection.	
Performance	 of	 Faster-RCNN	 (A)	 and	 YOLOv2	 (B)	 when	 trained	 on:	 individual	
datasets	 without	 (a)	 and	 with	 additional	 flip	 data	 (b)	 augmentation	 and	 when	
trained	 using	multiple	 datasets	 and	without	 (c)	 and	with	 (d)	 additional	 vertically	
flipped	 data	 augmentation	 C)	 Pairwise	 comparison	 of	 Faster-RCNN,	 YOLOv2	 and	
YOLOv3	and	trained	on	datasets	with	multiple	classes	and	evaluated	on	single	class	
with	additional	vertically	flipped	data	augmentation.	Erythroblast	DAPI	cells	(blue),	
neuroblastoma	phalloidin	dataset	 (magenta),	 fibroblast	 nucleopore	dataset	 (red),	
eukaryote	DAPI	dataset	(orange),	C127	DAPI	dataset	(green)	and	HEK	peroxisome	
dataset	(black).	Statistical	comparisons	were	made	using	2-way	ANOVA	and	Sidaks	
multiple	 comparison	 test	and	compared	Faster-RCNN	to	YOLOv2	(blue)	as	well	as	
comparisons	between	Faster-RCNN,	YOLOv2	and	YOLOv3	 (black)	 for	 each	dataset	
(n=3	in	each	case).	

Figure	4:	Summary	performance	of	object	detection	algorithms	when	trained	on	
multi	channel	data	versus	single	channel	data.	A)	Erythroblast	cells	stained	with	
DAPI	(blue)	and	for	glycophorin	A	protein	(green).	B)	Neuroblastoma	cells	stained	
with	phalloidin	(green)	and	DAPI	(blue).	Scale	is	25	μm.	C)	Average	precision	of	
YOLOv2	and	Faster-RCNN,	comparing	performance	when	trained	and	evaluated	on	a	
single	dataset	comprising	of	one	channel	data	(a)	and	two	channel	(b)	or	when	
trained	on	multiple	data	comprising	of	one	channel	(c)	and	two	chanels	(d)	
respectively.	All	training	data	is	additionally	augmented	through	being	vertically	
flipped.	Erythroblast	DAPI	glycophorin	A	dataset	(blue),	neuroblastoma	phalloidin	
DAPI	dataset	(magenta).	
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Figure	5:	Schematic	illustrating	the	differences	between	the	‘passive’	and	‘active’	
forms	of	the	AMCA	algorithm.	The	‘passive’	form	of	the	algorithm	involves	
exhaustively	sampling	the	slide	specimen	and	then	analyzing	the	acquired	stacks	of	
images	for	the	position	of	cells.	Whereas	the	‘active’	form	of	the	algorithm	involves	
imaging	and	analysis	of	positions	in	sequence.	If	a	location	contains	cells,	it	is	only	
scanned	in	‘z’	dimension	until	no	cells	are	detected,	whereupon	the	microscope	
moves	to	the	next	position.	In	both	modes,	once	all	the	regions	containing	cells	have	
been	saved	they	are	analyzed	to	find	the	cells	that	are	contiguous	in	the	z-
dimension,	creating	3-D	regions	that	encapsulate	the	cells.	Augmented	Reality	(AR)	
allows	the	user	to	see	the	outputs	of	the	analysis	algorithm	when	viewing	the	
sample	down	the	microscope.	The	regions	generated	from	cellular	detection	can	be	
visualized	through	the	augmented	reality	system	in	‘real-time’,	as	the	microscope	
acquires	images,	or	subsequently	‘offline’,	when	the	user	views	areas	of	the	sample	
that	have	already	been	analyzed.	
	
Figure	6:	Acquisition	of	individual	C127	cells	from	3-D	volumes.		A)	Example	image	
with		bounding	boxes	representing	discrete	cellular	classification	from	Faster-RCNN	
and	the	colour	represents	track	linking	with	adapted	SORT	algorithm.		Scale	is	25	
μm.	B)	Depiction	of	cell	classifications	tracked	through	the	different	‘z’	slices,	colour	
border	represents	cells	in	‘A’.	C)	Same	cells	as	in	‘B’	but	highlighted	in	original	slices	
of	full	acquisition	volume.	
	
Figure	 7:	 Preliminary	 screen	 of	 C127	 cells	 stained	 with	 DAPI.	 A)	 low-resolution	
overview	 image	of	C127	cells	acquired	during	screen.	 Inset)	Zoom	area	shown	by	
green	 rectangle.	 Image	 areas	 are	 shown	with	 detected	 cells	 bounded	 by	 coloured	
boxes.	 Cells	 touching	 the	 image	 area	 boundaries	 are	 excluded	 in	 this	 analysis.	B)	
Summary	distribution	for	a	histogram	calculated	over	the	mean	intensity	values	for	
the	cells	acquired	during	 screen.	 C)	Distribution	of	 image	volume	acquired	size	 in	
terms	of	number	of	‘z’	slices	acquired	during	‘active’	mode	acquisition	to	encompass	
the	cells	present	in	each	volume.	D)	Plot	comparing	the	number	of	seconds	required	
to	acquire	each	volume	at	each	position	with	 the	number	of	 ‘z’	 slices	 required	 for	
each	volume.	 Straight-line	 represents	 regression	 line	 fit	 to	data	 (slope:=0.4112,	 y-
intercept=0).	
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