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Abstract (175): Machine learning holds considerable promise for understanding complex 19 

biological processes such as vaccine responses. Capturing interindividual variability is essential to 20 

increase the statistical power necessary for building more accurate predictive models. However, 21 

available approaches have difficulty coping with incomplete datasets which is often the case when 22 

combining studies. Additionally, there are hundreds of algorithms available and no simple way to 23 

find the optimal one. Here, we developed Sequential Iterative Modelling “OverNight” or SIMON, 24 

an automated machine learning system that compares results from 128 different algorithms and is 25 

particularly suitable for datasets containing many missing values. We applied SIMON to data from 26 

five clinical studies of seasonal influenza vaccination. The results reveal previously unrecognized 27 

CD4+ and CD8+ T cell subsets strongly associated with a robust antibody response to influenza 28 

antigens. These results demonstrate that SIMON can greatly speed up the choice of analysis 29 

modalities. Hence, it is a highly useful approach for data-driven hypothesis generation from 30 

disparate clinical datasets. Our strategy could be used to gain biological insight from ever-31 

expanding heterogeneous datasets that are publicly available. 32 

[Main Text: 7,756] 33 

Introduction 34 

The immune system is comprised of multiple cell types that work together to develop an 35 

effective response to a given pathogen. However, which of these myriad cell types are important 36 

in a particular response is not well understood. The increasingly common systems immunology 37 

approach measures gene expression and different cells and molecules in the immune system during 38 

an infection or vaccination and uses computational methods to discern which components are most 39 

important (1-6). These studies have the practical goal of determining what makes one vaccine 40 

formulation better than another or how individuals vary. In addition, it may suggest a mechanistic 41 
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understanding of how an effective immune response is achieved. To accomplish this, an accurate 42 

modeling of the complex processes that lead to a successful outcome is crucial.  43 

Over the past few years, many systems studies of influenza vaccination responses in human 44 

beings have been analyzed computationally, but the results have not been consistent (2, 3, 7-10). 45 

One reason for these inconsistent results are the relatively small sample sizes. Another is that 46 

studies focus on only one biological aspect, for example molecular correlates of protection by 47 

using transcriptome data (11). However, a more robust approach to understanding how a vaccine 48 

works would involve analyzing multiple parameters from many individuals across different 49 

populations to more accurately capture biological variability. Furthermore, this would increase the 50 

statistical power, ultimately leading to the generation of classification and regression models with 51 

more robust performance metrics. While the number of studies and the amount of data are 52 

expanding dramatically, analyzing diverse samples across clinical studies remains challenging 53 

(12). This is particularly true for data from flow and mass cytometry where the number of markers 54 

analyzed can vary tremendously (13).  55 

In this study, we develop an approach that optimizes a machine learning workflow through 56 

a Sequential Iterative Modeling “OverNight” (SIMON). SIMON is specifically tailored for clinical 57 

data containing inconsistent features with many missing values. SIMON utilizes multi-set 58 

intersections to successfully feed such data into an automated machine learning process with 59 

minimal sample losses. Our approach runs hundreds of different machine learning algorithms to 60 

find the ones which fit any given data distribution, and this maximizes predictive accuracy and 61 

other performance measurements. We used SIMON to analyze data from the Stanford Human 62 

Immune Monitoring Center (HIMC) collected from five separate clinical studies of seasonal 63 

influenza vaccination, obtained over eight years, with various platforms and expanding 64 
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parameters. This enabled a systems-level identification of features that correlate with protective 65 

immunity to influenza. In the resulting models, we identified several previously unknown immune 66 

cell subsets that correlated with a successful influenza vaccination outcome, as defined by antibody 67 

responses. The impact of our findings is twofold. First, the study offers a new tool that can increase 68 

the accuracy of predictions from heterogeneous biological datasets. Second, it provides new targets 69 

for the development of the next-generation of influenza vaccines. 70 

Results  71 

Subhead 1. Preprocessing of data collected across different clinical studies 72 

To test robustness of our approach, we used data from the Stanford HIMC. This data included 73 

187 nominally healthy individuals between 8 and 40 years of age undergoing an annual influenza 74 

vaccination recruited over eight consecutive seasons, from 2007 to 2014, and five clinical studies 75 

(Fig. 1A). Blood samples were acquired before vaccination and on day 28 after vaccination. Over 76 

3,800 parameters were measured at baseline. This included 102 blood-derived immune cell subsets 77 

analyzed by mass cytometry (Fig. S1, Table S1). It also included the signaling capacity of over 78 

30 immune cells subsets stimulated with seven conditions, which were evaluated by measuring the 79 

phosphorylation of nine proteins (Table S2). Additionally, up to 50 serum analytes were evaluated 80 

using Luminex bead arrays (Table S3). On day 28 after vaccination, the serum titer of 81 

haemagglutinin-specific antibodies against all vaccine strains was determined using the 82 

hemagglutination inhibition assay (HAI), which is the best-defined correlate of influenza 83 

immunity induced by this vaccine (14). The HAI antibody titers were calculated as the fold change 84 

between the HAI titer at day 28 relative to the baseline titer. High and low responders were 85 

determined using metrics defined by the US Centers for Disease Control to evaluate influenza 86 

vaccine efficacy: seroconversion and seroprotection (15). Individuals were considered to be high 87 
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responders if they had a protective HAI antibody titer to all vaccine strains (HAI antibody titer > 88 

40) and if they seroconverted (geomean HAI titer > 4).  89 

Out of 187 analyzed donors, 64 were identified as high responders and 123 as low responders (Fig. 90 

1B). Overall, there were no major differences in the age, gender, or study year between the high 91 

and low responders (Fig. S2). The only exception was that a higher proportion of adolescents were 92 

high responders, which is in line with published data(16) (Fig. S2B). 93 

Subhead 2. Dealing with missing values using intersection function 94 

A major problem when using data across clinical studies and years is the lack of overlap 95 

between the features measured. Indeed, even though the data comes from a single facility, in many 96 

years there was an increase in the number of parameters measured, especially in the transition from 97 

FACS analysis (12-14 parameters) to mass cytometry (25-34 parameters). Since all assays were 98 

not performed across all studies and years (Fig. S3), our initial dataset had many missing values. 99 

The dataset contained 187 rows/donors and 3,284 columns/features, yielding a total of 614,108 values. 100 

However, 572,081 values were missing, resulting in high data sparsity. That is, the percentage of 101 

missing values in the dataset was 93.2% (Fig. S4). Such high data sparsity, which is commonly 102 

encountered in the clinical data, does not allow for straightforward statistical analysis. Therefore, we 103 

had to reduce the number of missing values. Researchers and data scientists deal with missing values 104 

either by deletion or by imputation of missing data (17). However, analysis of the missing data 105 

distribution revealed that when all studies were combined, the dataset had missing values in every 106 

column and every row and many of the columns and rows had sparsity of 90% (Table S4). 107 

Therefore, if we deleted either rows or columns, this would result in data with zero subjects. This 108 

approach was unsuitable. Additionally, effective imputation was strongly limited by the small 109 

number of cases that could be used as prior knowledge. Overall, we concluded that the high number 110 
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of columns and rows with missing values made it impossible to use the whole dataset for further 111 

analysis.  112 

Since this could be a very useful dataset for predictive modeling of influenza vaccine 113 

responses, we explored alternative ways to reduce the number of missing values. To ensure that 114 

interpretation of the initial dataset was preserved and so as not to introduce bias, we selected 115 

feature subsets from the original dataset without transformation by identification of the overlap 116 

(i.e. intersection) between multiple donors. We hypothesized that by using intersection, we could 117 

identify features shared across donors. Such a process could generate feature subsets that span an 118 

entire initial dataset. Additionally, it was expected that reducing the number of features would 119 

improve the performance of the model, such as was shown for random initial subset selection (18).  120 

In the first step of SIMON, we implemented an algorithm, mulset, to identify features shared 121 

across donors and generate datasets containing all possible combinations of features and donors 122 

across the entire initial dataset (Fig. 2). While strategies to find an intersection among large number 123 

of sets have been reported(19), detecting intersections in a dataset with 614,108 datapoints would 124 

be challenging. The mulset was inspired by an approach commonly used in computer science to 125 

accelerate detection of duplicated records across large databases (20). By using the intersect 126 

function, we identified shared features between donors. These were converted to a unique shared 127 

feature identifier using the hash function. This process allowed the rapid identification of donors 128 

with shared features and the generation of datasets that can be used in further analysis. The mulset 129 

algorithm calculated overlapping features between all donors, resulting in 34 datasets with 130 

different numbers of donors and features (Table S5). After applying the mulset algorithm, the 131 

dimensionality of the data was significantly reduced, since all generated datasets had a maximum 132 

of 300 shared features. Eleven of the generated datasets had a higher number of donors than 133 
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features, with a maximum number of 143 donors that shared 49 features (Table S5, dataset 8). 134 

Overall, the first step in the SIMON produced more restricted datasets with higher data quality and 135 

reduced the number of features, making possible to continue the data analysis.  136 

Subhead 3. Automating the machine learning process and feature selection 137 

The next step, following data preprocessing, was to apply machine learning algorithms to 138 

extract patterns and knowledge from each of the 34 datasets. To select relevant features, we based 139 

our approach on the method for feature selection proposed by Kohavi and John (21). In the original 140 

approach, termed wrapper, feature subsets were selected using two families of algorithms: the 141 

decision trees and the Naïve-Bayes (21). In this study, we build upon this approach by adding 142 

ensemble algorithms (of which Random Forest was previously shown to be suitable for feature 143 

selection (22)) and other dimensionality-reduction algorithms, such as discriminant analysis. It is 144 

widely recognized that a best algorithm for all datasets does not exist (23). Currently, choosing an 145 

appropriate algorithm is done through a trial-and-error approach, with only a few algorithms tested. 146 

To identify optimal algorithms more quickly and efficiently across a broad spectrum of 147 

possibilities, we implemented an automated machine learning process in SIMON. 148 

SIMON is described briefly in Fig. 3. The feature subset selection was performed by testing 149 

multiple algorithms without any prior knowledge and user-defined parameters on each of the 34 150 

datasets in a sequential and iterative manner. First, each dataset was split into 75% training and 151 

25% test sets, preserving balanced distribution of high and low responders. The training set was 152 

used for model training and feature selection. The accuracy of the feature selection was determined 153 

using a10-fold cross-validation, which was shown to out-perform other resampling techniques for 154 

model selection (24). The test set was used for evaluating model performance on independent data 155 

not used in the model training. In general, it is most efficient to train the model on the entire dataset. 156 
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However, in our case, it was important to have an independent test set to evaluate and then compare 157 

performance of the many models we expected to obtain. Additionally, evaluating model 158 

performance using only cross-validation is not sufficient to conclude that model can be applied to 159 

other datasets. There could be a problem with overfitting, such as when a model does not generalize 160 

well to unseen data. Second, a fully automated process of model training utilizing 128 machine 161 

learning algorithms was done initially on the training set and repeated for each dataset. Table S6 162 

provides a list of all machine learning classification algorithms used. Each model was evaluated 163 

by calculating the performance parameters using the confusion matrix on the training and test sets. 164 

A confusion matrix calculates false positive and negatives, as well as true positive and negatives. 165 

This allows for more detailed analysis than accuracy, which only gives information about the 166 

proportion of correct classifications, and therefore can lead to misleading results (25). In SIMON, 167 

for each model we calculated the proportion of actual positive cases that were correctly identified 168 

(i.e. sensitivity) and the proportion of correctly identified actual negative cases (i.e. specificity). 169 

All performance parameters were saved in the MySQL database. Finally, to compare the models 170 

and discover which performed best, we calculated an Area Under the ROC Curve (AUROC). This 171 

is a widely-used measure of quality for the classification of models, especially in biology (26). A 172 

random classifier that cannot distinguish between two groups has AUROC of 0.5, while AUROC 173 

for a perfect classifier that separates two groups without any overlap is equal to 1.0 (27). Therefore, 174 

the training and test AUROC are reported throughout the text and models are compared using that 175 

metric of performance.  176 

To test the feasibility of SIMON, we ran more than 2,400 machine learning analyses on 34 177 

datasets. SIMON built models for 19 datasets, with an average of 54 models built per dataset 178 

(Table S7). None of the 128 machine learning algorithms tested were able to build a model for 15 179 
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of the datasets. This indicates that those have poor data quality and distributions. Therefore, they 180 

were discarded from further analysis. With the remaining 19 datasets, models were built with the 181 

training AUROC values ranging from a minimum of 0.08 to a maximum of 0.92 (Table S7). 182 

Overall, the automated machine learning process improved the performance of the models in all 183 

19 datasets, with a gain of performance ranging from 30 to 91% (Table S7). This indicates that 184 

SIMON facilitates the identification of optimal algorithms, which ultimately increases the 185 

performance of models. 186 

Subhead 4. Performance estimation and model selection   187 

Before model comparison, other performance parameters were calculated, in addition to 188 

AUROC, and were used to filter out poorly performing models with the goal of facilitating further 189 

exploratory analysis. To remove random classifiers, all models with AUROC ≤ 0.5 on both training 190 

and test sets were discarded. Furthermore, all models in which specificity and sensitivity of both 191 

training and test sets were < 0.5 (i.e. models with higher proportion of false positive and negative 192 

values) were also removed. This restriction discarded models in which the classifier achieved high 193 

performance, as indicated by a high AUROC, at the cost of a high false positive or negative rate 194 

(28, 29). After applying these filters, many models were removed, decreasing the average number 195 

of models per dataset to three (Table S8). Additionally, eight datasets were discarded. This 196 

filtering step was essential to remove models which would otherwise be falsely evaluated as high 197 

performing, such as those built using dataset 205, for which a high AUROC of 0.92 was obtained 198 

at the expense of low specificity (0.06) (Table S7).  199 

To compare models within one dataset and discover which performs best, the random 200 

number seed was set before training with each algorithm. This ensured that each algorithm trained 201 

the model on the same data partitions and repeats. Further, it allowed for comparison of models 202 
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using AUROC. In general, AUROC values between 0.9-1 are considered excellent, 0.8-0.9 good, 203 

0.7-0.8 fair and values between 0.6-0.7 are considered as having poor discriminative ability (30). 204 

In SIMON, models trained on six datasets were built with fair discriminative ability (max. train 205 

AUROC between 0.7-0.8) (Table S8). To avoid overfitting, we additionally evaluated the 206 

performance of each model on the test set, which was not used for building the model. In this case, 207 

models trained on the three datasets were built with a fair discriminative ability (Table S9, 208 

datasets 5, 13, and 171). One dataset (Table S9, dataset 36) was built with a good discriminative 209 

ability (max. test AUROC 0.86), which could be generalized to an independent set. It should be 210 

noted that maximum AUROC values did not necessarily come from the same model (e.g. 211 

maximum train AUROC might come from model 1, while maximum test AUROC from model 2). 212 

To account for that, we add another filter to remove all models with poor discriminative ability, 213 

that is all models in which the train and test AUROC were less than 0.7. By applying this 214 

restriction, we were left with only two datasets (datasets 13 and 36). These were used for further 215 

analysis and feature selection. The model build on dataset 36, with the shrinkage discriminant 216 

analysis, out-performed the other four models as evaluated by comparison of train AUROC (Fig. 217 

S5A, Table S10). A model was built with train AUROC of 0.78 and it performed well on an 218 

independent test set (test AUROC 0.86). The model build on dataset 13 with the Naïve- Bayes 219 

performed better than the other model built for the same dataset (train AUROC 0.75, test AUROC 220 

0.7) (Fig. S5B, Table S11).  221 

Overall, SIMON facilitated exploratory analysis and discovery of models with good discriminative 222 

performance by integrating the filtering steps and evaluating comprehensive model performance. 223 

Subhead 5. Identification of all-relevant cellular predictors using SIMON 224 
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After selection of the best-performing models, we focused on feature selection. Our goal was 225 

to use SIMON to identify all-relevant features to deepen our knowledge about the process that 226 

drives antibody generation in response to influenza vaccination. To solve this problem, classifiers 227 

were used in SIMON to rank features based on their contribution to the model. Features were 228 

ranked depending on the variable importance score calculated for each model (31). The score 229 

ranges from 0 to 100. Features with variable importance score of 0 are not important for the 230 

classification model and can be removed from training the model.  231 

First, we focused on the model built on dataset 13 with 61 donors (Table S12). Out of 76 232 

features, 64 had measurable variable importance score and 15 features had variable importance 233 

score above 50 (Fig. 4A, Table S13). The top-ranked feature that highly contributed to this model 234 

was CD4+ T cells with the CD127-CD25hi phenotype (described as regulatory T cells or Tregs(32)) 235 

that expressed CD161 and CD45RA markers (Table S13, rank 1). The frequency of Tregs with 236 

CD161-CD45RA+ phenotype was shown to be significantly greater among the high responders 237 

(Fig. 4B, FDR < 0.01). To further explain features that contributed to this model, we performed 238 

correlation analysis. Correlation analysis revealed that Tregs with CD161-CD45RA+ phenotype 239 

had a significant positive correlation with the top-ranked feature, CD161+CD45RA+ Tregs 240 

(Pearson’s r = 0.54, p < 0.0001 after multiple comparison adjustment using the B-H correction) 241 

(Fig. S6). Additionally, CD161+CD45RA+ Tregs had a weak, but significant positive correlation 242 

with CD161+ CD4+ T cells (Pearson’s r = 0.08, p = 0.001 after multiple comparison adjustment 243 

using the B-H correction), which had high variable importance score (Table S13, rank 9). Such 244 

correlation indicated that these subsets might describe similar family of CD4+ T cells contributing 245 

to the generation of antibody responses after influenza vaccination. Indeed, a recent study suggests 246 
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that expression of CD161 marks a distinct family of human T cells with a distinct lineage and with 247 

innate-like capabilities (33). 248 

To experimentally validate results from this model, we analyzed the phenotype and 249 

functionality of immune cells before and after vaccination in the independent samples from 14 250 

individuals (7 high and 7 low responders) (Table S14). We found that after stimulation with the 251 

influenza peptides, CD161+ CD4+ T cells from high, but not low responders, produced TNFα in 252 

the samples prior to vaccination (Fig. 4C). This indicated that CD161+ CD4+ T cells from high 253 

responders had a pool of pre-existing influenza-specific T cells. Additionally, after vaccination, 254 

the frequency of CD161+ CD4+ T cells with a CCR6+ CXCR3- (Th17) phenotype in high 255 

responders increased significantly (Fig. 4D).  256 

The second most important feature in this model was CXCR5+ CD8+ T cells (also known as 257 

follicular cytotoxic T cells) (34-36) with a CCR6+ CXCR3- (Tc17) phenotype (Table S13, rank 258 

2). Frequencies of CXCR5+ CD8+ T cells with Tc17 were significantly increased among the high 259 

responders (Fig. 4B, FDR < 0.01). Additionally, frequencies of CXCR5+ CD8+ T cells with a 260 

CCR6-CXCR3- (Tc2) phenotype were also increased in the same group (Fig. 4B, FDR < 0.01). 261 

CXCR5+ CD8+ T cells with Tc2 phenotype were also identified as important in this model (Table 262 

S13, rank 7) and had a significant positive correlation with Tc17 CXCR5+ CD8+ T cells (Pearson’s 263 

r = 0.66, p < 0.0001 after multiple comparison adjustment using the B-H correction) (Fig. S6). 264 

However, analysis of the experimental data showed no significant participation of CXCR5+ CD8+ 265 

T cells in vaccine-induced responses, even though in a few of the high responders there was an 266 

increase of CXCR5+ CD8+ T cells with a Tc2 and Tc17 phenotype (Fig. 4D). 267 

The results obtained in this model were confirmed using an R package, Boruta, that 268 

implements a novel feature selection algorithm for identifying all relevant features (22). CD127-269 
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CD25hi CD4+ T cells with the CD161 expression and CXCR5+ CD8+ T cells with Tc2 or Tc17 270 

phenotype were identified as important (p < 0.05, after multiple comparison adjustment using the 271 

Bonferroni method), confirming findings obtained by SIMON (Fig. S7A). 272 

Second, we explored the features selected in the better performing model built on dataset 36, 273 

comprising of 40 donors (Table S15). Out of 103 features, 88 had measurable variable importance 274 

scores ranging from 5 to 100 (Table S16). Of those, 17 features had a variable importance score 275 

above 50 (Fig. 4E), indicating a strong contribution for this classification model. Interestingly, the 276 

effector memory (EM) CD4+ T cells, previously reported to correlate with antibody responses to 277 

influenza vaccine (37), were ranked in 5th place in our model. Moreover, B cells with memory 278 

phenotype, including a subset of IgD+ CD27+ memory B cells identified in previous studies (3, 8, 279 

38), contributed to our model (Table S16). Obtaining results supported by other studies gave us 280 

confidence in further analysis of our classification model. Importantly the top four features 281 

identified have not previously been implicated as playing a major role in antibody responses to 282 

influenza vaccination, or indeed any antibody response. These included CD8+ T cells with 283 

expression of CD27 or CD85j markers, and CD8+ T cells with varying degree of expression of 284 

CCR7 and CD45RA markers, described as naïve, effector or terminally differentiated effector 285 

(TEMRA) and memory subsets (39). Analysis of the data particularly indicated that 286 

effector/TEMRA CD8+ T cells increased significantly among high responders (Fig. 4F, FDR < 287 

0.01). In contrast, low responders had significantly higher frequency of early CD27+/CD28+ CD8+ 288 

T cells and naïve CD8+ T cells (Fig. 4F, FDR < 0.01). Moreover, the effector/TEMRA CD8+ T 289 

cells were confirmed to contribute to this model by Boruta (p < 0.05, after multiple comparison 290 

adjustment using the Bonferroni method) (Fig. S7B). 291 
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The top four features that contributed the most to this model, were CD8+ T cells in early or 292 

late effector or memory states, indicating they might all be contributing to the influenza response 293 

through the same underlying mechanism. Indeed, correlation analysis showed that the top ranked 294 

subset, CD27+ CD8+ T cells, had a significant correlation coefficient with other subsets (naïve 295 

CD8+ T cells r= 0.80, CD28+ CD8+ T cells r = 0.85, CD85j+ CD8+ T cells r = -0.69, 296 

effector/TEMRA CD8+ T cells r = -0.61 and EM CD8+ T cells r = -0.71, p < 0.0001 after multiple 297 

comparison adjustment using the B-H correction) (Fig. S8). Additionally, a specific subset of 298 

CD8+ T cells expressing NK-cell-related receptor CD85j was identified as the TEMRA subset 299 

(40), while the expression of CD27 or CD28 was indicative of the subsets of T cells with a naïve 300 

or early differentiation phenotype (41). 301 

In the analysis of the independent samples, EM CD8+ T cells from high responders produced 302 

IL17A after influenza peptide stimulation, demonstrating that this population contained influenza-303 

specific T cells (Fig. 4G). Furthermore, the frequency of EM CD8+ T cells with a Tc17 phenotype 304 

was significantly increased only in high responders after vaccination (Fig. 4H). Additionally, the 305 

frequency of EM CD4+ T cells with Th17 phenotype was also increased in the same group of high 306 

responders after vaccination (Fig. 4H).  307 

In summary, SIMON allowed us to identify both known and novel immune cell subsets that 308 

correlate with a robust antibody response to seasonal influenza vaccines. Particularly surprising 309 

were the number of different CD8+ T cell subsets, which are not typically thought of as playing 310 

any role in promoting robust antibody responses. We confirmed that IL17A producing EM CD8+ 311 

T cells, which contained a pool of pre-existing influenza T cells, were elevated in the high versus 312 

low responders with independent samples. 313 

Discussion  314 
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In this study, we developed a novel computational approach, SIMON, for the analysis of 315 

heterogenous data collected across years and from heterogenous datasets. SIMON increases the 316 

overall accuracy of predictive models by utilizing an automated machine learning process and 317 

feature selection. Using the results obtained by SIMON, we identified previously unrecognized 318 

CD4+ and CD8+ T cell subsets associated with robust antibody responses to seasonal influenza 319 

vaccines. 320 

The accuracy of the machine learning models presented in this work was improved in two 321 

stages. First, to interrogate the entire dataset across different clinical studies, we integrated into 322 

SIMON an algorithm, mulset, which generates datasets using multi-set intersections. This is 323 

particularly suitable for data with many missing values. In our case, due to the high sparsity of 324 

initial dataset, this step was essential for the further analysis. In general, clinical datasets are often 325 

faced with the same problem, namely, that many features are measured on a small number of 326 

donors. Due to the rapid advance of immune monitoring technology, many more parameters in our 327 

studies were measured in the later years than earlier. The same situation might arise when 328 

combining data collected in different facilities. An alternative approach might be the imputation 329 

of the missing values, but this would likely introduce bias. Moreover, the major limitation of 330 

effective imputation is the number of cases that could be used as prior knowledge. The sparsity of 331 

our initial dataset was too high for effective imputation. By using intersections, SIMON selects 332 

feature subsets by preserving the interpretation of the initial dataset and without introduction of a 333 

bias. Overall, an automated feature intersection process increases statistical power by accounting 334 

for variability among different individuals. Potentially, it could be applied across clinical studies. 335 

Additionally, by reducing the number of features, this process improves the performance of 336 

models. This will be particularly important for the application of SIMON on larger publicly 337 
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available datasets such as those stored in Gene Expression Omnibus repository (42) or ImmPort 338 

(43). 339 

Second, finding the machine learning algorithm most suitable for specific data distribution 340 

allows for a better understanding of the data and provides much higher accuracy. The current state-341 

of-the-art in building predictive models is to test several machine learning algorithms to find the 342 

optimal one. However, a single algorithm that fits all datasets doesn’t exist. If an algorithm 343 

performs well on a certain dataset, it doesn’t necessarily translate well to another dataset (even if 344 

it pertains to a closely related problem) (23). The overall accuracy of the predictive models depends 345 

on rigorous algorithm selection. With so many machine learning algorithms available, choosing 346 

the optimal one is a time-consuming task, often performed in a limited way (only dozens of 347 

algorithms are tested). Recent work has shown that automated machine learning can identify 348 

optimal algorithms more quickly and efficiently (44-46). Open competitions and crowdsourcing 349 

(e.g. www.kaggle.com), in which many groups contribute machine learning algorithms to build 350 

models for the same datasets, increases the accuracy and predictive performance of the models 351 

(47). By developing an automated machine learning process in SIMON, we can quickly identify 352 

the most appropriate machine learning algorithm (of the 128 tested) for any given dataset. 353 

Additionally, SIMON offers an alternative perspective on the application of algorithms that might 354 

never be used due to lack of expertise or knowledge necessary for their implementation. These 355 

features of SIMON also allow biologists with domain knowledge but who are not computationally 356 

adept to find the most effective tools with which to analyze their data. 357 

In this study, we demonstrate the utility of SIMON and its automated machine learning 358 

processes to discover the principal features that correlate with high versus low influenza vaccine 359 

responders. We found it to be essential for identifying the best-performing models and extracting 360 
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the most important features that contribute to those models. Performance of each model built in 361 

SIMON was automatically evaluated on both training and left-out test sets using well-known 362 

measures, such as AUROC, specificity, and sensitivity. This ensured that the model was not 363 

overfitted and that it could generalize to unseen data. Both models were selected by stringent 364 

restrictions in the exploratory analysis and were built with AUROC scores between 0.7 - 0.8. 365 

Nevertheless, since the goal of the study was to identify features that discriminate between high 366 

and low responders in a high-throughput manner, these models were built using the algorithms 367 

without any user-defined parameters. Therefore, each model could be fine-tuned, and its predictive 368 

performance might be increased. This could be of interest for researchers interested in building 369 

predictive models to identify features for use in diagnostic tests. In the future, we plan to improve 370 

SIMON by implementing an automated tuning process for each model.  371 

This study demonstrated the advantage of SIMON over the conventional approach, in which 372 

one machine learning program is chosen by successfully identifying the immune signature driving 373 

influenza immunity. Some of our findings, such as the importance of effector memory CD4+ T 374 

cells and subsets of memory B cells, had been identified in previous studies (2, 8, 9) serving to 375 

validate our approach. Additionally, SIMON has identified previously unappreciated T cell subsets 376 

that discriminate between high and low responders. It is well known that T cells, in contrast to 377 

antibodies produced by cells of B lineage, have the ability to provide durable and cross-protective 378 

immunity by targeting internal conserved viral epitopes (48, 49). Therefore, the CD4+ and CD8+ 379 

T cell subsets identified in this study could be useful targets for the development of broadly 380 

protective influenza vaccines. Influenza-specific CD4+ T cells have already been shown to be 381 

important for the generation of influenza immunity (50, 51). This was confirmed in the current 382 

study by showing that high responders had a pre-existing pool of influenza-specific CD4+ T cells 383 
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expressing CD161. Additionally, we found that CD8+ T cells with an effector/TEMRA, EM and 384 

Tc17 phenotype and CXCR5 expression correlated with improved vaccine responses. These 385 

subsets are particularly interesting candidates and it will be of considerable interest to understand 386 

how they contribute to more robust antibody responses. CXCR5+ CD8+ T cells are enriched in the 387 

B cell follicles of germinal centers (35, 52) and they can promote B cell survival and antibody 388 

generation (36). CD8+ T cells with a Tc17 phenotype have been detected in the lungs of mice 389 

challenged with influenza A virus (53). Using independent samples from donors that weren’t 390 

included in the building and testing of our model, we found that CD8+ T cells from high responders 391 

contained influenza-specific cells with the ability to produce IL17A in response to peptide 392 

stimulation. In a mouse model, IL17A has been shown to be important for the generation of the 393 

antibody responses necessary to clear an influenza virus infection (54). This apparent role of 394 

IL17A in the modulation of antibody responses and proper functioning of germinal centers has 395 

only recently been described (55). Interestingly, CD161+ CD45RA+ Tregs, the other subset we 396 

identified, have also been described as memory cells with the ability to produce IL17A (56). 397 

Therefore, both cell types may provide IL17A. 398 

Here, we demonstrate that a combination of systems biology tools, advances in the field of 399 

machine learning, and experimental investigation, provides a new and more efficient way to gain 400 

biological insight from complex datasets, despite high sparsity. 401 

Materials and Methods 402 

Subjects, sample and data collection 403 

All clinical studies were approved by the Stanford Institutional Review Board and performed 404 

in accordance with guidelines on human cell research. Peripheral blood samples were obtained at 405 

the Clinical and Translational Research Unit at Stanford University after written informed 406 
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consent/assent was obtained from participants. Samples were processed and cryopreserved by the 407 

Stanford HIMC BioBank according to the standard operating protocols (57). All materials and data 408 

were analyzed anonymously.  409 

In this study, we used data from one hundred and eighty-seven healthy donors that were 410 

enrolled in influenza vaccine studies at the Stanford-LPCH Vaccine Program from the 2007 to 411 

2014. This included the following studies: SLVP015 (NCT01827462, NIAID ImmPort accession 412 

number SDY212, data analysis described in (58)), SLVP017 (NCT02133781, NCT03020498, 413 

NCT03020537), SLVP018 (NCT01987349, NCT03022396, NCT03022422, NCT03022435, 414 

NCT3023176, data analysis published in (59)), SLVP021 (NCT02141581), SLVP028 415 

(NCT03088904) and SLVP029 (NCT03028974). Individuals were selected for this study based on 416 

the following criteria: (1) age range from 8-40 years, (2) received inactivated influenza vaccine 417 

(IIV, Fluzone, intramuscularly), (3) only data from the first visit (some donors came in consecutive 418 

years), (4) HAI titer measured and (5) information about gender and age available. 419 

Exclusion/inclusion criteria, samples that were acquired with timepoints and analyses performed 420 

are described in the study record details at website repository for clinical studies 421 

(www.ClinicalTrials.gov) using provided identifiers. All the protocols for sample analysis such as 422 

immunophenotyping and determination of signaling responses to stimulation using flow or mass 423 

cytometry, HAI titer determination and determination of cytokines/chemokines in samples using 424 

Luminex assay are available online (57). Additionally,  immunophenotyping using mass cytometry 425 

was published in Leipold and Maecker (60). Phosphoflow assay using flow cytometry (for studies 426 

SLVP15, SLVP18 and SLVP21 from 2007 to 2011), was described in (58, 59) or for mass 427 

cytometry (for study SLVP21 in 2013) (61).  Luminex assay was described in (58, 59). The HAI 428 
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assay was performed on sera from day 0 and day 28 using a well-established method (62) and was 429 

described before (2, 58). 430 

All data used were analyzed and processed at the HIMC, as previously described (63) and 431 

uploaded to the Stanford Data Miner (64). Briefly, data from both Luminex assays were 432 

normalized at the plate level to mitigate batch and plate effects. The two median fluorescence 433 

intensity (MFI) values for each sample for each analyte were averaged, and then log-base 2 434 

transformed. Z-scores ((value–mean)/standard deviation) were computed, with means and 435 

standard deviations computed for each analyte for each plate. Thus, units of measurement were 436 

Zlog2 for serum Luminex. For phospho-flow data acquired on flow cytometer a fold change value 437 

was computed as the stimulated readout divided by the unstimulated readout (e.g. 90th percentile 438 

of MFI of CD4+ pSTAT5 IFNα stimulated / 90th percentile of CD4+ pSTAT5 unstimulated cells), 439 

while for data acquired using mass cytometry a fold change was calculated by subtracting the 440 

arcsinh (intensity) between stimulated and unstimulated (arsinh stim – arcsing unstim). For 441 

immunophenotyping using mass cytometer units of measurement were percentage of parent 442 

population. 443 

Aggregation of data and generation of feature subsets 444 

The preprocessed data from Stanford influenza datasets were obtained from HIMC Stanford 445 

Data Miner (64). This included total of 177 csv files, which were automatically imported to the 446 

MySQL database to facilitate further analysis. Datasets were merged using shared variables, such 447 

as Donor ID, Study ID, gender, age, race, Donor visit ID, Visit year, Experimental data (connected 448 

to Donor visit ID), Assay, Name and value of the measured analyte. Data harmonization across 449 

different clinical studies was accomplished by introduction of feature termed Visit internal ID, 450 

which allowed us to discriminate between different visits of the unique donor in different years. 451 
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We standardized names of the vaccines, for example TIV and IIV3 were named Inactivated 452 

influenza vaccine. Finally, we calculated the vaccine outcome parameter using HAI antibody titers. 453 

High responders were determined as individuals that have HAI antibody titer for all vaccine strains 454 

above 40 and geometric mean (GeoMean) HAI fold change >4. The fold change is calculated as: 455 

GeoMean HAI antibody titer for all vaccine strains on day 28 / GeoMean HAI antibody titer for 456 

all vaccine strains on day 0. To facilitate analysis, vaccine outcome was expressed as binary value: 457 

high responders were given value of 1, while low responders value zero.  458 

The aggregated dataset contained 187 donors and 3,284 features, yielding a total of 614,108 459 

datapoints. The dataset had 93.2% of missing values (572,081 missing values). To deal with 460 

missing values, in the first step of the SIMON we implemented a novel algorithm, mulset that 461 

allows for faster generation of datasets with all possible combinations of features and donors across 462 

initial dataset. To efficiently compute shared features and find quickly similarity between donors, 463 

mulset algorithm generated unique feature identifier for each donor. Then, intersection between 464 

the identifiers was used to identify shared variables. The identified, shared variables are then 465 

converted to unique shared features identifiers using hash function. Finally, data was exported 466 

from the database according to the shared features. In total, mulset generated 45 different datasets. 467 

To avoid proceeding with machine learning process using datasets with misleading results, we 468 

removed datasets with less than 5 features and less than 15 donors. After applying that restriction, 469 

11 datasets were deleted, and final analysis was performed on 34 datasets. 470 

Overview of SIMON - Sequential Iterative Modeling “Overnight” 471 

To identify baseline immune predictors that can discriminate between high and low 472 

responders following influenza vaccination, we applied sequential, iterative modeling “overnight”, 473 

shortly SIMON. The SIMON allows for dataset generation, feature subset selection, classification, 474 
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evaluation of the classification performance and determination of feature importance in the 475 

selected models. The SIMON was implemented in R programming language (65) (Data file S1). 476 

First in SIMON we automated the process of dataset generation using mulset algorithm as 477 

described above. Next, each dataset was partitioned into 75% training and 25% test set with 478 

balanced class distribution of high and low responders using the function createDataPartition 479 

from the Caret package (31). To prevent evaluation of small test sets that would lead to misleading 480 

performance parameters, datasets with less than 10 donors in test sets were discarded. Next, the 481 

model training using 128 machine learning algorithms suitable for classification training (Table 482 

S6) was initiated for each train dataset. Test sets were hold-out for evaluation of model 483 

performance on unseen datasets. This step was crucial to prevent overfitting. All algorithms were 484 

processed in an automated way through the Caret library (31). Each model was evaluated using 485 

10-fold cross-validation (24) repeated 3-times. Additionally, performance of each model was 486 

evaluated on the test set which was held out before model training by calculating performance 487 

from a confusion matrix using available R package (66). Furthermore, contribution of each feature 488 

to the trained model was evaluated and variable importance score is calculated as described (31). 489 

All prediction metrics and performance variables are stored in the MySQL database for the final 490 

exploratory analysis. Detailed description of the overall processes is as follows. 491 

Model training and performance evaluation. For each dataset, model training was performed 492 

on train set using 128 machine learning algorithms (Table S6). All algorithms were implemented 493 

without any user-defined parameters and with the default tuning parameters, as described in the 494 

Caret library (31). For each model we defined type of resampling. In this study10-fold cross-495 

validation repeated three times was used. Each model was then evaluated by calculating 496 

performance measures using the confusion matrix. Confusion matrix or contingency table is used 497 
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to evaluate the performance of a classification model on a set of data for which the true values are 498 

known. The confusion matrix has four categories (see illustration below).  499 

 
Actual 

Positive 
(High responder) 

Negative 
(Low responder) 

Predicted 

Positive 
(High responder) True positives (TP) False negatives (FN) 

Negative 
(Low responder) False positives (FP) True negatives (TN) 

True positives (TP) are cases in which classification model predicted they are high responders and 500 

indeed those cases were high responders, while true negatives (TN) correspond to cases correctly 501 

labeled as low responders. Finally, false negatives (FN) and false positives (FP) refer to low 502 

responders or high responders that were incorrectly labeled. From a confusion matrix, to evaluate 503 

classification models we calculated following performance measures. Accuracy, a measure how 504 

often the classifier is correct was calculated as (TP+TN)/total number of observations. Specificity, 505 

the proportion of actual negative cases (low responders) that were correctly identified was 506 

calculated as TN/(FP+TN), while sensitivity (also known as recall or true positive rate), the 507 

proportion of actual positive cases (high responders) correctly labeled was calculated as 508 

TP/(TP+FN). To summarize the performance of classification models over all possible thresholds, 509 

we generated the Receiver Operating Characteristic (ROC) curve by plotting the sensitivity (y-510 

axis) and the false positive rate (the proportion of low responders misclassified as high responders), 511 

which was calculated as 1-specificity (x-axis). Finally, we calculated the are under the ROC curve 512 

(AUROC) using an R package (66) and used this measure to summarize the performance of the 513 

models. AUROC has values between zero and one, and higher values indicate better performance. 514 

Value of 0.5 indicates a random classifier, and this was used as a cutoff to remove classifiers that 515 

could not distinguish between high and low responders better than by random chance. In this study, 516 
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10-fold cross validation was applied three times, the AUROC was calculated for each repeated 517 

iteration, and the average AUROC (and other measures) are reported as an overall quantitative 518 

estimate of classification performance. Additionally, before model training, same seed for random 519 

number generator was applied (set.seed 1234). This resulted in the uniformity where for each 520 

model same resamples were used for performance evaluation. From this, we compared models and 521 

evaluated which model was performing better in terms of AUROC values by comparing 522 

performance of the resampling distributions using functions described in the Caret (31).  523 

Independent evaluation of the trained model. The performance of each model was 524 

additionally evaluated on the test set which was held out before training the model (25% of the 525 

dataset). The performance on the test set was evaluated exactly as described for the train set above. 526 

Confusion matrix was built and all the performance measures, including the AUROC, as for train 527 

set were computed. Test AUROC was used to select models, in addition to train AUROC.  528 

Variable importance score. Contribution of each feature to the model i.e. variable 529 

importance score was calculated using the Caret library (31). Briefly, evaluation of the variable 530 

importance was calculated directly from the model specific metrics and the variable importance 531 

scores were scaled to have a maximum value of 100. Since in SIMON we utilized many different 532 

algorithms, the contribution of each feature to the model was estimated using the methods 533 

appropriate for each algorithm, as described in R packages (see reference list for the Table S6).  534 

Feature selection using Boruta algorithm 535 

To evaluate the all-relevant features for the selected top-performing models built on datasets 536 

13 and 36, we used an R package Boruta (22). Boruta algorithm performs as a wrapper algorithm 537 

around Random Forest (22). The method is suitable for selection of all-relevant features, and this 538 

is accomplished by comparing original features’ importance with importance achievable at random 539 
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(estimated using permuted copies of the original features, called shadow features). In each 540 

iteration, Boruta removes irrelevant features and evaluates the performance of the model. Finally, 541 

analysis is finished either when all features are confirmed or rejected or when Boruta reaches a 542 

specified limit of runs. Boruta was performed using following parameters: maximal number of 543 

importance source runs, maxRuns at 1000, pValue confidence level 0.05, a multiple comparisons 544 

adjustment using Bonferroni method was applied (mcAdj set to TRUE), feature importance was 545 

obtained using Random Ferns (function getImpFerns) and to ensure reproducibility of the results 546 

we set the seed for the random number generator (set.seed 1337). Tentative features were also 547 

included returned in the Boruta results (withTentative argument was set to TRUE).  548 

Peptide stimulation and intracellular cytokine staining using mass cytometry 549 

Thawed PBMC were rested in X-VIVO™ 15 medium (Lonza) supplemented with 10% FCS 550 

and human serum AB (Sigma) for 2 days at 107 cells/ml in 24-well plate following “RESTORE” 551 

protocol (67, 68). For stimulation assay, 5x106 PBMC were seeded in 96-well V-bottom plates 552 

(106 PBMC/well) and stimulated overnight (12-16h) with the influenza overlapping peptide pool. 553 

Influenza peptide pool contained 483 peptides (20mers with 11aa overlap, Sigma Aldrich) 554 

spanning the entire influenza proteome from the influenza strain A/California/07/2009 (dissolved 555 

in DMSO at 20mg/ml, working concentration 0.2ug/ml/peptide) and 24 peptides with HLA-556 

A*0201-specificity (9-10mers, Sigma Aldrich) generated against influenza proteins 557 

(hemagglutinin, nucleocapsid protein, matrix protein 1, nonstructural protein 1 and 2) from the 558 

influenza strain A/California/07/2009 using prediction software NetCTL-1.2 (69) (dissolved in 559 

water or PBS/DMSO at 20mg/ml, working concentration 2ug/ml/peptide) (Table S18). In both 560 

assay unstimulated sample was prepared in which only medium without peptides containing 0.5% 561 

DMSO was added. Protein transport inhibitor cocktail (eBioscience/Thermo Fisher) and antibody 562 
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against CD107a were added at the beginning of the assay. After peptide stimulations, PBMC were 563 

washed with the CyFACS buffer (PBS supplemented with 2% BSA, 2 mM EDTA, and 0.1% soium 564 

azide) and stained with surface antibody cocktail (Table S17), filtered through 0.1um spin filter 565 

with 20uL/sample of Fc block (ThermoFisher) for 30min at 4°C. Cells were then washed with 566 

CyFACS buffer and incubated for 5min at RT in 1xPBS (Lonza) with 1/1000 diluted cisplatin 567 

(Fluidigm). Cells were then incubated for 1h at RT (or left at 4°C overnight) in the Iridium-568 

intercalator solution in fixation and permeabilization buffer (BD Cytofix/Cytoperm™, BD 569 

Biosciences). Then cells were washed with 1x permeabilization buffer (BD Perm/Wash™, BD 570 

Biosciences) and stained for 30min at RT with intracellular antibody cocktail diluted in 1x 571 

permeabilization buffer (Table S17). Cells were fixed with BD Cytofix/Cytoperm™ and left 572 

overnight until analysis, or immediately used for mass cytometry. Immediately before starting the 573 

analysis, cells were washed in CyFACS buffer, then PBS and finally with MiliQ water. Prior to 574 

data acquisition, cells were resuspended in MilliQ water containing 1/10 diluted normalization 575 

beads (EQ Four Element Calibration Beads, Fludigm) to the concentration of less than 8x105 576 

cells/ml to achieve an acquisition rate of 400 events/s on the CyTOF Helios mass cytometer 577 

(Fluidigm). In each sample 1-1.5 million cells were acquired. After acquisition, data were 578 

normalized with the reference EQ passport P13H2302 (70) and further data analysis was 579 

performed using FlowJo v10. 580 

Statistical Analysis 581 

All the statistical parameters (sample size, statistical tests, and statistical significance) are 582 

reported in the Figures and Figure Legends. Significance of differences in frequencies of the 583 

immune cell subsets between high and low responders in the datasets was calculated using the 584 

Significance analysis of microarrays (SAM) (71) at false discover rate (FDR) < 1%. Mass 585 
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cytometry data between two groups after peptide stimulation were analyzed using the one-way 586 

ANOVA Kruskal-Wallis test followed by Dunn’s multiple comparison test, while paired samples 587 

within groups were compared with two-tailed Wilcoxon matched-pairs signed rank test. 588 

Additionally, pairwise t-test with the Benjamini-Hochberg (B-H) correction for multiple testing 589 

adjustment with 0.95 confidence level was used to evaluate changes in the cell frequencies after 590 

vaccination within groups. Pearson’s correlation coefficient was used to evaluate the correlations 591 

between features from the top-performing models. The Corrplot package in R was used to calculate 592 

correlation coefficients, statistics and for visualization of the correlation matrix (72). P-values were 593 

adjusted for multiple comparisons by using the Benjamini-Hochberg correction (73). Statistical 594 

analyses were performed with GraphPad PRISM 7.04 (Graph Pad Software) or in R, and p values 595 

above 0.05 were considered not significant.  596 

Code and data availability 597 

The source code of the mulset algorithm is available from https://github.com/LogIN-/mulset. 598 

The mulset is available as an R package in CRAN, a repository of open-source software. Pseudo-599 

code for SIMON is available as Data file S1. All data used in SIMON analysis are available from 600 

the Stanford Data Miner (www.datamt.net). Mass cytometry fcs files related to Figure 4 601 

(https://zenodo.org/record/1328286) are available on a research data repository Zenodo 602 

maintained by OpenAIRE and CERN (www.zenodo.org).  603 

Supplementary Materials 604 

Fig. S1. Distribution of high and low responders included in the initial dataset based on gender, 605 

CMV status and study year 606 

Fig. S2. Assays performed across different clinical studies and study years. 607 
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Fig. S3. Staining profiles and gating scheme of immune cell subsets analyzed using mass 608 

cytometry. 609 

Fig. S4. Visualization of the initial dataset in the context of missing values. 610 

Fig. S5. Performance evaluation of models build on datasets 13 and 36 after applying restriction 611 

filters. 612 

Fig. S6. Heatmap of the correlation coefficients calculated between features from the dataset 13. 613 

Fig. S7. Importance of features determined by Boruta. 614 

Fig. S8. Heatmap of the correlation coefficients calculated between features from the dataset 36. 615 

Table S1. List of 102 analyzed immune cell subsets showing gating strategy.  616 

Table S2. Immune cell subsets and phosphorylation of proteins identified using phosphorylated 617 

cytometry. 618 

Table S3. Cytokines, chemokines and growth factors analyzed by Luminex. 619 

Table S4. Sparsity calculated by column. 620 

Table S5. 34 datasets generated using intersections. 621 

Table S6. List of machine learning algorithms implemented in SIMON. 622 

Table S7. List of all models built and their minimal and maximal AUROC values. 623 

Table S8. List of all models with minimal and maximal AUROC values after applying 624 

performance restriction filters. 625 

Table S9. List of models with maximal train and test AUROC. 626 

Table S10. All models built on dataset 36 after restriction filters applied. 627 
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Table S11. All models built on dataset 13 after restriction filters applied. 628 

Table S12. Characteristics of individuals with high and low response to influenza vaccination 629 

selected in the dataset 13. 630 

Table S13. List of features and their variable importance score in dataset 13. 631 

Table S14. Characteristics of individuals with high and low response to influenza vaccination 632 

used for experimental validations. 633 

Table S15. Characteristics of individuals with high and low response to influenza vaccination 634 

selected in the dataset 36. 635 

Table S16. List of features and their variable importance score in dataset 36. 636 

Table S17. Antibody panel for ICS mass cytometry. 637 

Table S18. List of peptides in the influenza peptide pool. 638 

Data file S1. Pseudocode for SIMON. 639 
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Figure legends 903 

Fig. 1. Study design. (A) One hundred and eighty-seven healthy donors (8-40 years of age) were 904 

recruited across eight consecutive influenza seasons. Data acquired at the baseline (day 0) 905 

included phenotypical and functional state (phosphorylated proteins) of immune cells 906 

analyzed using flow or mass cytometry and serum analysis using Luminex assay. Individuals 907 

were labelled as high or low responders, depending on the HAI antibody titers determined 908 

on day 28 after vaccination. (B) HAI antibody responses to influenza vaccine strains in high 909 

(H, red) and low (L, grey) responders across years. Numbers below x-axis indicate the 910 

number of donors in each group. HAI responses are shown as geometric mean titer (GMT) 911 

calculated as a fold change between day 0 and day 28 after vaccination for all vaccine strains. 912 

Violin plots show distribution of individuals. The line shows the median. Seroconversion is 913 

defined as 4-fold increase in HAI titer for all vaccine strains (denoted by a grey line). 914 

915 
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Fig. 2. Automated feature subset generation using multi-set intersect function. Schematic 916 

example showing the initial dataset with four features and four donors. Missing values are 917 

indicated by white circles. Missing values are present is such a way that either removal of 918 

donors or features would result in no data for analysis. (A) Using a multi-set intersect 919 

function, the mulset algorithm, identified shared feature sets between donors. First, for each 920 

donor, the algorithm determined the unique feature ID. Second, using the intersect function, 921 

it identified shared features, which were then converted to shared features ID using hash 922 

functions. Finally, the mulset algorithm searched the database and identified donors with 923 

shared feature sets. (B) Mulset generated ten distinct datasets with defined feature and donor 924 

numbers, as indicated.  925 

926 
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Fig. 3. Automated feature selection and machine learning process integrated in SIMON. 927 

Before building a model, raw data were processed (cleaned, corrected, normalized, etc.) 928 

using extract-transform-load (ETL) operations and the database was built. In the second step, 929 

new features were created from the existing data, GMT of the HAI response was calculated, 930 

and individuals were labelled as high or low responders. Third, datasets were generated using 931 

multi-set intersection function. Each dataset was then used for model training in a fully 932 

automated machine learning process, implemented in SIMON. Briefly, before training 933 

started, each dataset was partitioned into training and test sets, which were excluded from 934 

the model-building phase. Finally, in the exploratory analysis, each model was evaluated 935 

based on its performance, and features were selected based on the importance score. 936 

937 
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Fig. 4. SIMON identifies cellular signature associated with the successful generation of 938 

influenza immunity after vaccination. (A) Features with variable importance score above 939 

50 from the model built on dataset 13 are shown. (B) Raw data confirmed by SAM analysis 940 

to be significantly changed in the donors from dataset 13, indicating frequency of cells (as a 941 

percentage of the parent population). (C) Representative plot showing TNFα intracellular 942 

staining of CD161+ CD4+ T cells in the unstimulated (-) or influenza peptide pool (+) 943 

stimulated PBMC from high responder obtained before vaccination. Graph on the right 944 

shows the frequency of TNFα+ CD161+ CD4+ T cells from high responders (red circles) and 945 

low responders (grey circles) in the samples before vaccination. Individual donors are 946 

connected with lines. (D) Violin plots show distribution of frequency of CD161+ CD4+ T 947 

cells and CXCR5+ CD8+ T with Tc2 and Tc17 phenotype in the PBMC samples derived 948 

from high (red, n = 7) and low responders (grey, n = 7) analyzed before vaccination (-) and 949 

on day 28 after vaccination (+). (E) Variable importance score of features selected in the 950 

model built on dataset 36 with score above 50. (F) Significant immune cell subsets selected 951 

by SAM analysis shown as raw data corresponding to donors from dataset 36, indicating 952 

frequency of cells (as percentage of parent population). (G) Representative plot showing 953 

IL17A intracellular staining of EM CD8+ T cells in the unstimulated (-) or influenza peptide 954 

pool stimulated (+) PBMC from high responders, obtained after vaccination. The graph on 955 

the right shows the frequency of IL17A+ EM CD8+ T cells from high (red circles) and low 956 

(grey circles) responders in the samples after vaccination. (H) Violin plots show distribution 957 

of frequency of CD4+ and CD8+ T cells, with indicated phenotypes analyzed in the PBMC 958 

samples derived from high (red, n = 7) and low responders (grey, n = 7) before (-) and on 959 

day 28 after (+) vaccination. Graphs shown in (C, D, G and H) represent combined data 960 
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from seven independent experiments. Violin plots show distribution of individuals. These 961 

are represented by red circles for high responders and grey circles for low responders. The 962 

line indicates the median. Statistical analysis between high and low responders was 963 

performed with one-way ANOVA Kruskal-Wallis test followed by Dunn’s multiple 964 

comparison test. Analysis within groups before and after vaccination was calculated using 965 

two-tailed Wilcoxon matched-pairs signed rank test. Significance in SAM analysis was 966 

considered at FDR < 0.01. ns - not significant, *p < 0.05, **p < 0.01. 967 
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