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Abstract

Expectations and prior knowledge strongly affect and even shape our visual percep-

tion. Specifically, valid expectations speed up perceptual decisions, and determine what

we see in a noisy stimulus. Bayesian models have been remarkably successful to capture

the behavioral effects of expectation. On the other hand several more mechanistic neu-

ral models have also been put forward, which will be referred as “predictive computation

models” here. Both Bayesian and predictive computation models treat perception as

a probabilistic inference process, and combine prior information and sensory input.

Despite the well-established effects of expectation on recognition or decision-making,

its effects on low-level visual processing, and the computational mechanisms under-

lying those effects remain elusive. Here we investigate how expectations affect early

visual processing at the threshold level. Specifically, we measured temporal thresholds

(shortest duration of presentation to achieve a certain success level) for detecting the

spatial location of an intact image, which could be either a house or a face image.

Task-irrelevant cues provided prior information, thus forming an expectation, about

the category of the upcoming intact image. The validity of the cue was set to 100, 75

and 50% in different experimental sessions. In a separate session the cue was neutral
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and provided no information about the category of the upcoming intact image. Our

behavioral results showed that valid expectations do not reduce temporal thresholds,

rather violation of expectation increases the thresholds specifically when the expecta-

tion validity is high. Next, we implemented a recursive Bayesian model, in which the

prior is first set using the validity of the specific experimental condition, but in subse-

quent iterations it is updated using the posterior of the previous iteration. Simulations

using the model showed that the observed increase of the temporal thresholds in the

unexpected trials is not due to a change in the internal parameters of the system (e.g.

decision threshold or internal uncertainty). Rather, further processing is required for

a successful detection when the expectation and actual input disagree. These results

reveal some surprising behavioral effects of expectation at the threshold level, and show

that a simple parsimonious computational model can successfully predict those effects.

Keywords: expectation, visual perception, perceptual inference, Bayesian model,

predictive computation

Introduction1

Conventional models of perception postulate that perception is a process which is2

implemented by the bottom-up processing in the brain, where the physical properties of3

a stimulus is processed by different levels of the cortical hierarchy with increasing com-4

plexity. However, in a dynamic, contextually rich environment with an often ambiguous5

input, the visual system cannot process all sensory information accurately at once in6

detail. To decrease the computational burden of this process higher level mechanisms7

have been suggested to be involved in the information processing, which make our deci-8

sions become faster and more efficient (Summerfield and Egner, 2009; Summerfield and9

De Lange, 2014). For instance, while we are searching for a painting in a room, we look10

at the locations where the painting is more likely to be placed, i.e. the wall, instead of11

searching every single item/place in the room. Or when the sensory information we ex-12

perience is ambiguous or noisy, it may be sometimes difficult to recognize the stimulus13

because there may be several interpretations of it. However, we usually come up with14
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a single interpretation very quickly, because our prior knowledge facilitates perception15

while making decisions (Bar, 2004; Kok et al., 2012; Summerfield and De Lange, 2014).16

Accordingly, computational models that posit perception as an inference process17

emphasize the role of top-down effects of prior information on perceptual decisions18

(Rao and Ballard, 1999; Friston, 2005; Heeger, 2017). Consistent with these models,19

empirical findings have confirmed that perception is not a process solely determined20

by the bottom-up processing in the brain. While the low-level properties of a stimulus21

is processed, there is also a top-down influence (i.e. context-based) on the perceptual22

processing from higher levels of the cortical hierarchy (Bar, 2004; Gilbert and Sigman,23

2007; Summerfield and Koechlin, 2008; Muckli and Petro, 2013; Muckli et al., 2015;24

de Lange et al., 2018). It is by now well-established that visual perception is a process25

which results from an interplay of bottom-up and top-down information processing.26

Bayesian models of perception provide a mathematical framework for this inference27

process (Teufel et al., 2013). Specifically, because the sensory information we experience28

is often ambiguous or noisy, the system combines the incoming sensory input with the29

prior to decide on the most probable causes of the sensory input (Mamassian et al.,30

2002; Kersten et al., 2004; Yuille and Kersten, 2006; Maloney and Mamassian, 2009;31

Summerfield and De Lange, 2014; de Lange et al., 2018). This is why the system32

can reliably make a decision although there are several interpretations of a sensory33

input or very similar retinal input may result in totally different percepts. Several34

work support the idea that perception is a probabilistic inference process, where the35

perceptual decisions are made by combining the priors with the statistical regularities36

in the environment (Weiss et al., 2002; Kersten et al., 2004; Knill and Pouget, 2004;37

Yuille and Kersten, 2006; Chalk et al., 2010; de Lange et al., 2018). This indicates38

that under some circumstances the system makes optimal interpretations and human39

behavior may approximate Bayesian ideal observer (Ernst and Banks, 2002; Kersten40

et al., 2004; Yuille and Kersten, 2006).41

Accordingly, a growing body of literature have revealed that expectations that are42

formed based on our prior knowledge can bias perceptual decisions (Weiss et al., 2002;43
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Sterzer et al., 2008; Summerfield and Koechlin, 2008; Summerfield and Egner, 2009;44

Chalk et al., 2010; Kok et al., 2011; Sotiropoulos et al., 2011; Kok et al., 2012; Wyart45

et al., 2012; Kok et al., 2013; Summerfield and De Lange, 2014; de Lange et al., 2018).46

Empirical findings which reveal the role of expectations on perception mainly come47

from the perceptual decision-making studies where reaction time is commonly used48

as the measure, which is an index of both perceptual and decision-making processes.49

It is found that expected stimulus (or in a cued-paradigm congruent stimulus) is de-50

tected faster and more accurately than the unexpected (incongruent) stimulus (Wyart51

et al., 2012; Stein and Peelen, 2015). Even though the role of expectations on percep-52

tual decisions has gathered considerable support from these studies, the computational53

mechanisms giving rise to such a difference in detecting or recognizing the expected and54

unexpected stimuli remain unclear. In this study, by measuring perception at thresh-55

old level we aim to investigate how expectations affect early visual processes, which is56

distinct from motor and cognitive components of a decision-making process. We specifi-57

cally investigate whether expectation has an effect on detecting the spatial location of a58

stimulus (also called individuation) while systematically manipulating the expectation59

validity in different experimental conditions. We measure duration thresholds, which is60

the shortest duration of the presentation that participants can successfully determine61

the location of the stimulus. Next, we present a recursive Bayesian updating scheme in62

which the prior is not fixed, but updated at each iteration to model the empirical results63

of the current study. Our findings expand on the behavioral effects of expectation on64

low level visual processing by unraveling the computational mechanisms that underlie65

the perceptual effects we found. We also discuss our findings within the framework of66

predictive computational models.67
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Behavioral Experiment68

METHODS69

Participants70

Eight naive participants (4 female; 24.5± 2.33 years) participated in the behavioral71

experiment that included four separate experimental conditions. All participants had72

normal or corrected to normal vision and reported no history of neurological disor-73

der. Participants gave their written informed consent prior to the experiment. The74

experiment was approved by the Research Ethics Committee at Bilkent University.75

Stimuli76

Stimuli consisted of two category of images: ten face images (five female; age range77

was 19-69) taken from Face Database of the Park Aging Mind Laboratory (Minear and78

Park, 2004) and ten house images from Scene Understanding Database from the Prince-79

ton Vision Group (Xiao et al., 2010). Cues (informative: face, house; uninformative80

(neutral): question mark) used in different experimental conditions were taken from81

The Noun Project’s website (www.thenounproject.com; House by OCHA Visual Infor-82

mation Unit, Person by Alex Fuller, Question by Vicons Design from the Noun Project)83

and were scaled to 3.5 x 3.5◦ visual angle. As mask, scrambled version of the images84

were generated by dividing the image into 49 cells via creating 7 x 7 grids for each.85

After that each cell was randomly assigned to different locations. The stimuli including86

intact images (target stimuli) and mask images were scaled to 10.5 x 10.5◦ visual angle,87

converted to grayscale, histogram-matched (scaled to the mean luminance of all stimuli)88

by using SHINE Toolbox (Willenbockel et al., 2010), and adjusted and matched to a89

very low contrast value (2%). Experiments were programmed in MATLAB 2016a using90

Psychtoolbox (Brainard, 1997). Stimuli were shown on a CRT monitor (HP P1230, 2291

inches, 1024 x 768 resolution, refresh rate 120 Hz.)92

Experimental Design93

Stimuli were presented on a gray background (RGB: 128, 128, 128). Each trial94

started with a cue simultaneously with a fixation dot located on the center of the cue,95
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and presented for 2 seconds at the center of the screen. Cues were either informative96

(face and house) or neutral (question mark) depending on the experimental condition97

(See Experimental Session for details). Next, a target stimulus, which was an intact98

face or house image, and a scrambled version of the same image were simultaneously99

shown in left and right side of the cue at 10◦ eccentricity. Presentation duration of these100

images were determined by an adaptive staircase procedure (See Procedure for details).101

Next, as masks, different scrambled versions of that target stimulus were shown on the102

same locations for 64 ms. Following this, an empty display with a gray background103

was presented until a response is given by the participants. Participants’ task was to104

detect the spatial location of the target stimulus as soon as possible by pressing the105

left or right arrow key of the keyboard while maintaining their fixation on the fixation106

dot during the trial. Finally, a feedback message was given as “correct” or “wrong”107

to the participants for 752 ms. When the category of the cue and the image is the108

same, these trials are called congruent (expected) trials. When the category of the109

cue and the image is different, these trials are called incongruent (unexpected) trials.110

Note that equal number of each cue (face and house) appeared in random order in the111

experimental conditions where an informative cue is presented. Also note that equal112

number of each target stimulus (face and house image) was presented in all experimental113

conditions, and the target stimulus was randomly assigned to one of the two locations114

(left or right) in each trial. See Figure 1 for sample trials from the experiment.115

Procedure116

Behavioral experiment consisted of a training session and an experimental session117

which comprises four experimental conditions1. In both sessions, 2-down 1-up adaptive118

staircase procedure with a two alternative forced-choice (2-AFC) paradigm was applied119

to derive duration thresholds (70.7% accuracy) in different trial types: neutral trials,120

1To control for any possible confounding effects of training, we conducted a control experiment
on a separate group of participants who did not participate in a training session prior to the exper-
imental session. See Supplementary Material for methodological details of the experiment. Also see
Supplementary Figure S1 for results of the control experiment.
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Figure 1: Behavioral experiment. Sample trial sequences. a. Congruent trial. b. Incongruent
trial. c: Neutral trial. In all but the neutral trials a centrally presented cue predicted the category of
upcoming target with a certain validity (100, 75, and 50%). Duration threshold, which is the minimum
duration required to successfully detect the location of the target intact image, is determined per
participant under each condition. See text for more details.

congruent trials and incongruent trials in different conditions (see Experimental Session121

for details). Presentation duration of the target image and scrambled version of it were122

varied adaptively from trial to trial. The duration of each trial was determined by123

the accuracy of the participants’ responses in previous trials. Specifically, each wrong124

answer or two consecutive correct answers resulted in approximately 8 ms (step size)125

increase or decrease of the duration of the following trial target presentation respectively.126

At the beginning of each experimental condition, one staircase started from a relatively127

short duration (varied for each participant, minimum 8 ms), and the other staircase128

started from a relatively long duration (varied for each participant). There were 30129

trials in each staircase in all experimental conditions, but number of staircases varied130

for each experimental condition.131

Training Session. Prior to the experimental session, each participant completed a train-132

ing session in order to stabilize their perceptual thresholds. Participants were seated 60133

cm away from the screen and their heads were stabilized with a chin-rest. The training134

session consisted of 2 to 5 short experiments where the cue was always informative135

(face and house cue) and 100% valid in indicating the target stimulus category. Each136
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experiment in the training phase had 120 trials and there were equal number of face137

and house cue trials. Number of experiments completed in the training phase varied138

for each participant, and it is determined by whether the participant’s threshold stayed139

within an interval of 8 ms (step size) for at least two sequential experiments.140

Experimental Session. All participants completed four experimental conditions in ran-141

domized order in separate sessions. Participants were informed about the cue-validity142

prior to the experiments. Cue validity refers to the probability that the cue correctly143

predicts the category of the upcoming intact image.144

100%-validity condition. In this experimental condition the cue (face or house)145

informed participants about the upcoming target stimulus category (either face or house146

image) with a 100% validity so that there was no violation of expectations. There were147

120 (congruent) trials in total including 60 trials where the target was a face image148

following a face-cue, and 60 trials where the target was a house image following the149

house-cue.150

75%-validity condition. In this experimental condition the cue informed about151

the correct category of the intact image with 75% probability (face or house). Equal152

number of each cue (face and house) were presented, and there were 480 trials in total.153

There were 360 congruent trials where the image category was correctly predicted by154

the cue, and 120 incongruent trials where the cue misled the participants about the155

upcoming image category.156

50%-validity condition. In this experimental condition the cue validity was at157

50%. Therefore, in total there were 240 trials, of which 120 were congruent and 120158

were incongruent. Equal number of each cue was presented.159

Neutral (no expectation) condition. This experimental condition was in-160

cluded as a control condition because there was no informative cue (face or house)161
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that informs participants about the upcoming image category. Rather, the cue was162

neutral, a question mark, during the experiment. Therefore, expectations about the163

upcoming stimuli were not formed. Except the cue type, all experimental stimuli and164

design were the same as the other conditions. There were 120 trials in total, and equal165

number of each image category was presented.166

Statistical Analysis167

Duration thresholds (70.7% accuracy) for spatial location detection in congruent,168

incongruent and neutral trials were estimated using the Palamedes toolbox (Kingdom169

and Prins, 2010) with Logistic function using Matlab 2016a. A 2 (congruency: congru-170

ent, incongruent) x 2 (validity: 75%, 50%) repeated measures ANOVA was conducted171

to investigate the effect of expectation on duration thresholds. Also, we conducted two-172

sample paired t-test to compare the thresholds between the 100%-validity condition and173

the neutral (no-expectation) condition.174

RESULTS175

Figure 2 shows duration thresholds of participants in each validity condition. We176

conducted 2 (congruency: congruent, incongruent) x 2 (validity: 75%, 50%) repeated177

measures ANOVA to investigate the effect of expectation on duration thresholds. We178

found that the main effect of congruency is statistically significant (F (1,7) = 6.554, p179

= 0.034). However, the main effect of validity and interaction were not significant (p180

> 0.05). Next, we conducted post-hoc comparison tests to compare the thresholds of181

congruent and incongruent trials in each validity condition. We found that incongru-182

ent trials had longer duration thresholds than the congruent trials in the 75%-validity183

condition (t(7) = -3.85, p = 0.005). There was no difference between congruent and184

incongruent trials in the 50%-validity condition (p > 0.05). Finally, we conducted two-185

sample paired t-tests between (1) the 100%-validity and neutral conditions, (2) the186

congruent trials of 75%- and 100%-validity conditions, and (3) the congruent trials of187

50%- and 100%-validity conditions. All three tests showed that the thresholds of the188

conditions were not statistically significantly different from each other (p > 0.05).189
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Figure 2: Results of the behavioral experiment. Duration thresholds of a. 100%-validity and
neutral conditions; b. congruent and incongruent trials in 75%-validity condition; c. congruent and
incongruent trials in 50%-validity condition.

INTERMEDIATE DISCUSSION190

Our behavioral results show that the thresholds of congruent (expected) and incon-191

gruent (unexpected) trials are different under the 75%-validity condition, but not under192

any other conditions. Specifically, unexpected stimuli led to longer duration thresholds193

than expected stimuli when the cue had 75% validity. This result is inline with pre-194

vious findings which showed that unexpected stimulus is detected or recognized more195

slowly and less accurately than the expected one (Wyart et al., 2012; Stein and Peelen,196

2015). Surprisingly, we also found that the thresholds of neutral- and 100%-validity197

conditions are not different from each other. This suggests that valid expectations do198

not reduce perceptual thresholds compared to the condition where there is no expecta-199

tion. Also, thresholds do not differ between congruent trials of 75%- and 100%-validity200

conditions as well as between congruent trials of 50%- and 100%-validity conditions.201

Taken together, our findings suggest that valid expectations do not reduce the thresh-202

olds. Rather, the perceptual thresholds increase when the expectations are not met but203

highly valid for a given task.204

There are two possible alternatives that may explain the underlying computational205

mechanism of this finding. First, it is possible that the underlying parameters of the206

system (e.g. internal noise or decision threshold) may vary based on expectation (con-207

gruency) and/or its validity. Specifically, in congruent and incongruent trials internal208
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parameters of the system may be different so that incongruent trials are detected in209

longer duration than the congruent trials (De Loof et al., 2016). Alternatively, it is pos-210

sible that in incongruent trials further processing may be required to make a decision,211

because prediction and the actual input disagree. The standard psychophysical analysis212

alone cannot inform as to which of these alternatives better explains the behavioral re-213

sults. In order to test these alternatives we introduce a Bayesian computational model214

explained next.215

Modeling216

Here we implement a recursive Bayesian updating scheme, in which the prior is not217

fixed but updated at each iteration, to model the behavioral results. By manipulating218

the system’s underlying parameters in different models we tested whether expectation219

has an effect on the underlying parameters. To test the alternative possibility, namely220

to test whether further processing is required in incongruent trials we compared the221

number of iterations calculated in congruent and incongruent trials.222

IMPLEMENTATION OF THE BAYESIAN MODEL223

We used a generative model for which Bayesian inference equations were derived224

(see also Bitzer et al. (2014)). Figure 3 shows a schematic of the components of the225

Bayesian model (for a trial with 75%-validity) adapted to the present study’s exper-226

imental paradigm. As can be seen in Figure 3 the calculations were done separately227

for the observation on the left side and right side of the screen in each trial of the228

experiment.229

We first defined feature values for the input (light gray boxes in Figure 3)230

µ1 = −1, for a house image,

µ2 = 0, for a scrambled image, (1)

µ3 = 1, for a face image.
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These would be the abstracted values received by the system if there were no noise.231

Next, it is postulated that the abstracted observation extracted by the system, xt, is232

drawn from a normal distribution with the corresponding µi as follows:233

xt ∼ N(µi, σ
2). (2)

In each trial we calculated xt based on the presented images on the corresponding sides.234

Next, we defined generative models for each decision alternative, Ai: A1 for house, A2235

for scrambled, and A3 for face-image. We calculated the likelihood of xt under each236

decision alternative as237

p(xt|Ai) =
1

σ̂
√

2π
exp

(
−(xt − µi)

2

2σ̂2

)
. (3)

We then defined the initial values of the priors as indicated by the dark gray box in238

Figure 3. In each trial we defined the prior probability of observing a house-, scrambled-,239

and face-image:240

p(A1) = c1,

p(A2) = c2, (4)

p(A3) = c3,

where c1, c2, and c3 are defined based on the cue validity (i.e. 100%, 75%, 50%), and241

the cue presented at each trial (i.e. face or house). For example in a trial under the242

75%-validity condition if the cue is a face then the priors are243

c1 = 1/8,

c2 = 4/8,

c3 = 3/8.
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If cue is a house, then244

c1 = 3/8,

c2 = 4/8,

c3 = 1/8.

Next, we combined the likelihoods with the priors to compute posterior estimates for245

each decision alternative for both sides as follows246

p(Ai|x1) =
p(x1|Ai)p(Ai)

3∑
j=1

p(x1|Aj)p(Aj)

. (5)

Within a single trial posterior estimates are updated recursively over time (N times:247

number of iterations) until a decision is made by the model248

p(Ai|x1:t) =
p(xt|Ai)p(Ai|x1:t−1)

3∑
j=1

p(xt|Aj)p(Aj|x1:t−1)

. (6)

Note that, this amounts to using priors that are not fixed but updated in each iteration:249

posterior of the previous iteration becomes the prior for the next iteration. Number of250

iterations, N, in a single trial is determined by251

N = τ/∆t (7)

where τ represents the duration of presentation of the target images in this particular252

trial, and ∆t defines how long each iteration lasts in the system. Next, we calculated253

probability of observing an intact image (target stimulus: face or house) for both sides,254

TLEFT and TRIGHT , by calculating the sum of last posterior of face-image and house-255

image as shown in blue boxes in Figure 3. At the last step, a final decision is made by256

the model using the criteria shown in black box in Figure 3. Specifically, the ratio of257

TLEFT to TRIGHT is compared to the decision threshold, λ. This evaluation determines258
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whether the model decides left or right. If this criteria cannot be met, then a decision259

is made randomly.260

MODEL SIMULATIONS FOR INDIVIDUAL DATA261

There were three free parameters in the model; λ (decision threshold), ∆t (how262

long each iteration lasts in the system), and σ̂ (the internal uncertainty of the decision263

makers representation of its observations, Eq.3). Using the optimized parameter values264

(that minimize the error between the model’s prediction and the real data) we ran265

1000 simulations of the model to ensure the stability of the model’s predictions (Ritter266

et al., 2011) for each participants data. We generated separate models for 100%-, 75%-,267

50%-validity conditions, and the model simulations were compared to the data of these268

validity conditions for each participant. Note that there was only a single difference269

between the models of different validity conditions, and it was the initial values of the270

priors (See gray box in Figure 3). Also note that there was no explicit (informative)271

cue in the neutral condition, which made it inherently different than other conditions.272

Therefore the neutral condition was not included in the simulations.273

MODEL COMPARISON274

To test the first possible alternative, that is whether underlying parameters of the275

system differ in different trial types, we defined two models: in the restricted model a276

single set of parameters (3 parameters: λ, ∆t, and σ̂) was optimized for all validity con-277

ditions and trial types (all trials in 100%-, 75%-, 50%-validity conditions) for each par-278

ticipant. In the unrestricted (free) model 5 different sets of parameters (15 parameters:279

3 parameters x 5 conditions (100%, 75%-congruent, 75%-incongruent, 50%-congruent,280

50%-incongruent)) were optimized; one for each trial type and each validity condition281

for each participant.282

Next, for each participant’s data we performed a nested hypothesis test to see283

whether the unrestricted model models the empirical data better than the restricted284

model. For this aim, we performed a chi-square nested hypothesis test. Under the null285

hypothesis, twice the difference between the log-likelihoods of the two models has an286
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approximate chi-square distribution, with degrees of freedom equal to 12, which is the287

difference in the number of parameters between the two models. Thus we reject the288

null hypothesis if289

2× (logL1 − logL0) ≥ χ2
12, (8)

where the likelihoods L0 and L1 are calculated for the restricted and unrestricted model290

respectively. Note that L is defined as291

L =
n∏

i=1

P (Yi|Bmodel), (9)

where n is equal to the total number of trials in each experimental condition, Yi corre-292

sponds to the participant’s response in each trial, and Bmodel corresponds to the model’s293

prediction at each duration presentation level.294

RESULTS295

Figure 4, 5, 6 and 7 show Bayesian model simulations of all validity conditions and296

trial types for restricted and unrestricted model for each participant. It is clear that our297

Bayesian scheme can successfully capture the pattern observed in the empirical data.298

Similar to the results of 75%-validity condition in psychophysical findings, Bayesian299

simulations of incongruent trials (in both models) are also shifted to the right (i.e.300

longer duration thresholds) compared to the congruent trials. This shows that the301

Bayesian model, just as the human participants, require a longer duration to detect the302

location of the intact image in an incongruent trial. Moreover, under the 50%-validity303

condition there is not such a clear shift, again just as in human data.304

The results of the likelihood-ratio tests showed that the two models are not different305

from each other in any participant (p > 0.05). This suggests that the internal param-306

eters (λ, ∆t, σ̂) do not change with congruency (trial types: congruent, incongruent)307

and/or validity. This speaks against the first alternative to explain the human data we308

postulated earlier.309

If the second alternative, that is if the system requires more time to process the visual310

input under the incongruent trials then the number of iterations that are needed to make311
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Figure 4: Bayesian model simulations of restricted and unrestricted model for participant
1 and 2.
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Figure 5: Bayesian model simulations of restricted and unrestricted model for participant
3 and 4.
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Figure 6: Bayesian model simulations of restricted and unrestricted model for participant
5 and 6.

19

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2019. ; https://doi.org/10.1101/545244doi: bioRxiv preprint 

https://doi.org/10.1101/545244
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7: Bayesian model simulations of restricted and unrestricted model for participant
7 and 8.
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Figure 8: Number of iterations, N (posterior computations) in congruent and incongruent
trials in all validity conditions. a. 100%-validity condition. b. 75%-validity condition. c. 50%-
validity condition.

a decision would be larger in those trials. To test this alternative, we calculated the312

number of iterations computed by the (restricted) model in congruent and incongruent313

trials in all validity conditions. Figure 8 shows results of number of iterations performed314

(posteriors computed) in each validity condition and trial type.315

We performed a 2 (congruency: congruent, incongruent) x 2 (validity: 75%, 50%)316

repeated measures ANOVA to investigate the effect of congruency and validity on num-317

ber of iterations (posteriors). As expected, the main effect of congruency was significant318

(F (1,7) = 11.731, p = 0.011). However, the main effect of validity and interaction were319

not significant (p > 0.05).320

Next, we performed post-hoc comparison tests to see whether the number of itera-321

tions differ based on congruency speficially in each validity condition. In 75%-validity322

condition number of posteriors computed in incongruent trials are higher than the con-323

gruent trials (t(7) = -3.4798, p = 0.0103). However, there was no difference between324

congruent and incongruent trials in 50%-validity condition (p > 0.05). Also, there was325

no difference in number of iterations between (1) congruent trials of 50%- and 100%-326

validity conditions as well as between (2) congruent trials of 75%- and 100%-validity327

conditions (p > 0.05). Overall these results agree with the behavioral data remarkably328

well.329
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General Discussion330

In this study we investigated the effect of expectation on early visual processing331

by measuring perceptual thresholds. To this aim, we systematically manipulated the332

expectation validity in different experimental conditions, and measured duration thresh-333

olds to examine whether the perceptual thresholds to detect a stimulus vary depending334

on expectation and/or its validity. We then presented a recursive Bayesian updat-335

ing scheme to elucidate the underlying mechanisms of the findings we observe in the336

behavioral experiment. Previous findings already showed that under several circum-337

stances human behavior is nearly Bayes-optimal. And it is also clear that perceptual338

decision-making processes are strongly influenced by expectations. However, our study339

goes beyond these findings because, to our knowledge, this is the first study that sys-340

tematically investigates the behavioral effect of expectation on early visual processes341

at the threshold level, and unravels possible computational mechanisms underlying the342

behavioral results using a recursive Bayesian updating scheme.343

Expectation affects visual perceptual thresholds only when the expectation344

validity is relatively high345

Our behavioral results showed that unmet expectations can shape early visual pro-346

cesses only when the cue has a relatively high validity (i.e. 75%). In a similar individ-347

uation task, under 80%-validity and neutral conditions, De Loof et al. (2016) showed348

that expectations speed up perceptual decisions by measuring response times (RT),349

which reflect the time required by a combination of early visual, cognitive and decision-350

making processes to give a response. Our study furthers these findings and shows that351

not only the perceptual decisions, but even the early visual processes in isolation are af-352

fected by expectations. Furthermore, surprisingly, we found no difference in perceptual353

thresholds of 100%-validity and neutral conditions as well as congruent trials of 75%-354

and 100%-validity condition, and congruent trials of 50%- and 100%-validity condition.355

Taken together, our findings show that the perceptual thresholds do not decrease if a356
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stimulus is expected, rather that the thresholds increase if expectations are not met,357

specifically when those expectations were high.358

Unexpected stimulus leads to further processing, rather than a change in359

the internal parameters of the system360

The behavioral findings above led us to consider two non-mutually exclusive possi-361

bilities that may explain the observed results. First, internal parameters of the system362

(e.g. the decision threshold) may differ with expectation and/or its validity. Second,363

further processing may be required to make a decision when the expectations are not364

met. To test these hypotheses, we used a recursive Bayesian updating scheme where365

the prior is not fixed but updated at each iteration to model our behavioral findings366

under the 100%-, 75%-, and 50%-validity conditions.367

First, to examine the first alternative, we performed Bayesian simulations using a368

restricted model and a unrestricted model, and compared how successfully they fit the369

empirical data. In general, our findings on both models revealed that our recursive370

Bayesian scheme can capture the pattern observed in the empirical data. Specifically,371

as in the psychophysical results Bayesian model simulations for 75%-validity condition372

showed that incongruent trials are detected in longer duration than the congruent trials.373

However, this pattern is not observed in 50%-validity condition. This finding further374

supports the idea that humans behave in a Bayes-optimal fashion in which perceptual375

decisions are made by combining the sensory input with the prior in a probabilistic376

manner (Ernst and Banks, 2002; Kersten et al., 2004). Critically our model compari-377

son analysis showed that the two models, restricted and unrestricted, are not different378

from each other in any participant. This shows that expectation and its validity do379

not modulate the underlying parameters of the system (i.e. decision threshold, inter-380

nal uncertainty, how long each iteration lasts in the system), argues against the first381

alternative mechanism to explain the behavioral data.382

Next, for the second alternative, we calculated the number of iterations computed383

in congruent (expected) and incongruent (unexpected) trials. Our results showed that384

more number of iterations are calculated in incongruent trials only when the expecta-385
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tion’s validity is relatively high (75%). This reveals that in order to make a decision386

more posteriors should be updated in incongruent trials, which is an indicator of further387

processing within a single trial. This finding is remarkably consistent with our behav-388

ioral findings and suggests that the observed increase in the perceptual thresholds of389

incongruent trials in 75%-validity condition is due to an additional processing rather390

than a change in the system’s internal parameters.391

In a study that we introduced earlier, De Loof et al. (2016) studied the response392

times using a similar experimental design. In that study, the authors used drift-diffusion393

model (DDM) (Ratcliff, 1978) to model the empirical results, and found that the unex-394

pected stimuli led to increased boundary separation parameters, which is defined as the395

internal threshold that is required to reach a decision (De Loof et al., 2016). This result396

appears at odds with our findings. We argue that, even though the DDM model is a397

well-studied and highly useful model to understand the underlying processes in percep-398

tual decisions, it does not capture certain characteristics of the current experimental399

paradigm because, for example, the validity of the expectation or more importantly400

the temporal dynamics throughout a trial cannot be modeled with DDM (Huk et al.,401

2018). On the other hand, our Bayesian scheme provides us the opportunity to (1)402

define task-irrelevant prior, (2) set its validity, and (3) recursively update posterior es-403

timates within a single trial considering that perception is a dynamic inference process.404

Indeed, when we performed a DDM analysis using the behavioral threshold values, we405

found that the model estimates of the boundary separation increased under the incon-406

gruent conditions (analyses and results not reported here). This outcome further shows407

that the recursive Bayesian model captures some important details about the dynamics408

of the underlying processes that the DDM model cannot.409

Cortical Models, Predictive Coding: Do expectation violations require pre-410

diction error computation of the ‘error units’?411

Bayesian approaches to understand the brain function, not only behavior, have412

gathered considerable support in the literature. Accordingly, several generic models413

for brain function have been proposed, which have computational concepts that are414
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analogous to the ones in Bayesian framework (Rao and Ballard, 1999; Friston, 2005;415

Heeger, 2017). Several fMRI studies showed that there is an increased BOLD activity416

in response to an unexpected stimulus compared to an expected one (Yoshiura et al.,417

1999; Marois et al., 2000; Kok et al., 2011). One interpretation of this finding is that418

it reflects the prediction error signal of the error units (Summerfield and Egner, 2009;419

Kok et al., 2011), which are introduced in the predictive coding theory (Friston, 2005).420

Predictive coding theory (PCT) proposes a generic model for brain function and posits421

that based on prior information the brain computes internal predictions about the up-422

coming sensory input. When there is a mismatch between the predictions and the423

sensory input, a mismatch signal is computed which is called the prediction error. The424

PCT postulates that the prediction- and the error signals are computed by specific neu-425

ron units called representation units (RU) and error units (EU) respectively, which are426

hypothesized to exist at each level of the cortical hierarchy. In the case of a mismatch,427

the error signal is conveyed to the higher levels of the cortical hierarchy to update the428

predictions. If there is a match between the predictions and the sensory input, then the429

error neurons do not respond vigorously, which is interpreted as the silencing of predic-430

tion error. Therefore, the PCT posits that the information processing in the brain is431

a dynamic interplay between the prediction signals by RU and prediction error signals432

by EU, which are conveyed by feedforward and feedback connections. Even though433

a growing number of studies suggest that the observed increase of BOLD response is434

an indicator of the prediction error signal of the error units, there is still no empirical435

evidence that reveals the existence of the error units in the cortex.436

Alternative to PCT, the cortical function theory of Heeger (2017) posits that the437

whole process can be executed without the existence of specific error- and representation438

units posited by the PCT. Heeger (2017) claims that the information processing can439

be accomplished and explained only by feedforward-feedback connections in the brain.440

The findings of the current study show that in the case of a mismatch condition further441

processing is required to make a decision. We suggest that further processing may be442

an indicator of a change in the feedforward-feedback connections during information443
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processing. When an unexpected stimulus is presented, an additional processing may444

be required compared to an expected stimulus presentation, and this processing can445

be implemented with additional feedforward and feedback interactions. In this sense446

the brain does not need to have separate “error units” that compute prediction error447

as posited by predictive coding models (Friston, 2005). Rather, the same processing448

may be implemented with additional computations to process an unexpected stimulus449

compared to the expected one.450

In short, we suggest that an increase in BOLD response to an unexpected stimulus451

does not necessarily reflect the “error unit” activity posited by the PCT. Rather, it may452

indicate an additional processing of the neural populations via feedforward-feedback453

connections as suggested by Heeger (2017), and this would be consistent with our454

findings on human behavior and Bayesian model. It should be noted that our Bayesian455

scheme is useful to investigate why there is such a difference between the perception of456

expected and unexpected stimuli. However, it does not reveal how this process can be457

executed at the level of cortex. Predictive computation models (Friston, 2005; Heeger,458

2017) should be employed to empirically test how this is accomplished, and it is the459

subject for future research.460

Conclusion461

In summary, our results offer several surprising and interesting results about the462

role of expectation on early visual processing. Firstly, we showed that expectations463

do not make the participants faster, rather unmet expectations make them slower.464

Secondly, using a simple and parsimonious model we found that this slow-down in465

human behavior can be explained by further processing required in the visual system466

when the expectations are violated. Furthermore, the experimental paradigm and the467

computational model introduced here have the potential to be expanded and used for468

new and novel studies.469
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