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Abstract

Expectations and prior knowledge strongly affect and even shape our visual percep-
tion. Specifically, valid expectations speed up perceptual decisions, and determine what
we see in a noisy stimulus. Bayesian models have been remarkably successful to capture
the behavioral effects of expectation. On the other hand several more mechanistic neu-
ral models have also been put forward, which will be referred as “predictive computation
models” here. Both Bayesian and predictive computation models treat perception as
a probabilistic inference process, and combine prior information and sensory input.
Despite the well-established effects of expectation on recognition or decision-making,
its effects on low-level visual processing, and the computational mechanisms under-
lying those effects remain elusive. Here we investigate how expectations affect early
visual processing at the threshold level. Specifically, we measured temporal thresholds
(shortest duration of presentation to achieve a certain success level) for detecting the
spatial location of an intact image, which could be either a house or a face image.
Task-irrelevant cues provided prior information, thus forming an expectation, about
the category of the upcoming intact image. The validity of the cue was set to 100, 75

and 50% in different experimental sessions. In a separate session the cue was neutral
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and provided no information about the category of the upcoming intact image. Our
behavioral results showed that valid expectations do not reduce temporal thresholds,
rather violation of expectation increases the thresholds specifically when the expecta-
tion validity is high. Next, we implemented a recursive Bayesian model, in which the
prior is first set using the validity of the specific experimental condition, but in subse-
quent iterations it is updated using the posterior of the previous iteration. Simulations
using the model showed that the observed increase of the temporal thresholds in the
unexpected trials is not due to a change in the internal parameters of the system (e.g.
decision threshold or internal uncertainty). Rather, further processing is required for
a successful detection when the expectation and actual input disagree. These results
reveal some surprising behavioral effects of expectation at the threshold level, and show
that a simple parsimonious computational model can successfully predict those effects.
Keywords: expectation, visual perception, perceptual inference, Bayesian model,

predictive computation

. Introduction

2 Conventional models of perception postulate that perception is a process which is
3 implemented by the bottom-up processing in the brain, where the physical properties of
+ a stimulus is processed by different levels of the cortical hierarchy with increasing com-
s plexity. However, in a dynamic, contextually rich environment with an often ambiguous
¢ input, the visual system cannot process all sensory information accurately at once in
7 detail. To decrease the computational burden of this process higher level mechanisms
s have been suggested to be involved in the information processing, which make our deci-
o sions become faster and more efficient (Summerfield and Egner} |2009; Summerfield and
10 De Lange| 2014)). For instance, while we are searching for a painting in a room, we look
u at the locations where the painting is more likely to be placed, i.e. the wall, instead of
12 searching every single item/place in the room. Or when the sensory information we ex-
13 perience is ambiguous or noisy, it may be sometimes difficult to recognize the stimulus

14 because there may be several interpretations of it. However, we usually come up with
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a single interpretation very quickly, because our prior knowledge facilitates perception

16 while making decisions (Bar, 2004} Kok et al., 2012; Summerfield and De Lange, |2014)).

=
[

17 Accordingly, computational models that posit perception as an inference process
18 emphasize the role of top-down effects of prior information on perceptual decisions

1o (Rao and Ballard, 1999; [Friston, 2005} [Heeger, 2017)). Consistent with these models,

2 empirical findings have confirmed that perception is not a process solely determined
21 by the bottom-up processing in the brain. While the low-level properties of a stimulus

» is processed, there is also a top-down influence (i.e. context-based) on the perceptual

2z processing from higher levels of the cortical hierarchy (Bar, 2004; Gilbert and Sigman|,
2 [2007; Summerfield and Koechlinl, 2008 [Muckli and Petro|, 2013} Muckli et al.| 2015;

» de Lange et al., 2018). It is by now well-established that visual perception is a process

s which results from an interplay of bottom-up and top-down information processing.

27 Bayesian models of perception provide a mathematical framework for this inference

2 process (Teufel et al.,|2013). Specifically, because the sensory information we experience

20 18 often ambiguous or noisy, the system combines the incoming sensory input with the

% prior to decide on the most probable causes of the sensory input (Mamassian et al.|
a1 [2002; [Kersten et al. [2004}; [Yuille and Kerstenl, 2006} [Maloney and Mamassian|, 2009;
2 Summerfield and De Lange, 2014 lde Lange et al., |2018). This is why the system

13 can reliably make a decision although there are several interpretations of a sensory
s input or very similar retinal input may result in totally different percepts. Several
35 work support the idea that perception is a probabilistic inference process, where the
35 perceptual decisions are made by combining the priors with the statistical regularities
w in the environment (Weiss et all [2002; Kersten et al., 2004; Knill and Pouget,, 2004}
s |Yuille and Kersten, [2006; (Chalk et al.), 2010; |de Lange et al., 2018). This indicates

3 that under some circumstances the system makes optimal interpretations and human

w0 behavior may approximate Bayesian ideal observer (Ernst and Banks| 2002; Kersten|

a et all [2004} Yuille and Kersten, |2006).

a2 Accordingly, a growing body of literature have revealed that ezpectations that are

i3 formed based on our prior knowledge can bias perceptual decisions (Weiss et al., 2002;
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wu Sterzer et all 2008; Summerfield and Koechlin), 2008; Summerfield and Egner| 2009}
s |Chalk et al.| 2010} Kok et al., 2011} [Sotiropoulos et al., 2011} [Kok et al., [2012; Wyart
s let al., [2012; Kok et al) 2013; |[Summertfield and De Lange, [2014; lde Lange et al., 2018)).
« Empirical findings which reveal the role of expectations on perception mainly come
s from the perceptual decision-making studies where reaction time is commonly used
s as the measure, which is an index of both perceptual and decision-making processes.
so It is found that expected stimulus (or in a cued-paradigm congruent stimulus) is de-
si tected faster and more accurately than the unexpected (incongruent) stimulus (Wyart
2 et al., 2012; |Stein and Peelen) 2015). Even though the role of expectations on percep-
53 tual decisions has gathered considerable support from these studies, the computational
s« mechanisms giving rise to such a difference in detecting or recognizing the expected and
55 unexpected stimuli remain unclear. In this study, by measuring perception at thresh-
ss old level we aim to investigate how expectations affect early visual processes, which is
s7  distinct from motor and cognitive components of a decision-making process. We specifi-
ss cally investigate whether expectation has an effect on detecting the spatial location of a
so stimulus (also called individuation) while systematically manipulating the expectation
s validity in different experimental conditions. We measure duration thresholds, which is
e1 the shortest duration of the presentation that participants can successfully determine
&2 the location of the stimulus. Next, we present a recursive Bayesian updating scheme in
63 which the prior is not fixed, but updated at each iteration to model the empirical results
¢« of the current study. Our findings expand on the behavioral effects of expectation on
es low level visual processing by unraveling the computational mechanisms that underlie
s the perceptual effects we found. We also discuss our findings within the framework of

o7 predictive computational models.
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s Behavioral Experiment

oo METHODS

0 Participants

7 Eight naive participants (4 female; 24.5 & 2.33 years) participated in the behavioral
7 experiment that included four separate experimental conditions. All participants had
7z normal or corrected to normal vision and reported no history of neurological disor-
7 der. Participants gave their written informed consent prior to the experiment. The

75 experiment was approved by the Research Ethics Committee at Bilkent University.

6 Stimuli

7 Stimuli consisted of two category of images: ten face images (five female; age range
7 was 19-69) taken from Face Database of the Park Aging Mind Laboratory (Minear and
7o Park] 2004) and ten house images from Scene Understanding Database from the Prince-
s ton Vision Group (Xiao et al., 2010). Cues (informative: face, house; uninformative
s (neutral): question mark) used in different experimental conditions were taken from
&2 The Noun Project’s website (www.thenounproject.com; House by OCHA Visual Infor-
&z mation Unit, Person by Alex Fuller, Question by Vicons Design from the Noun Project)
s and were scaled to 3.5 x 3.5° visual angle. As mask, scrambled version of the images
s were generated by dividing the image into 49 cells via creating 7 x 7 grids for each.
s After that each cell was randomly assigned to different locations. The stimuli including
& intact images (target stimuli) and mask images were scaled to 10.5 x 10.5° visual angle,
s converted to grayscale, histogram-matched (scaled to the mean luminance of all stimuli)
so by using SHINE Toolbox (Willenbockel et al.; 2010), and adjusted and matched to a
o very low contrast value (2%). Experiments were programmed in MATLAB 2016a using
a Psychtoolbox (Brainard, [1997). Stimuli were shown on a CRT monitor (HP P1230, 22
» inches, 1024 x 768 resolution, refresh rate 120 Hz.)

o3 Fxperimental Design
o Stimuli were presented on a gray background (RGB: 128, 128, 128). Each trial

os started with a cue simultaneously with a fixation dot located on the center of the cue,
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o6 and presented for 2 seconds at the center of the screen. Cues were either informative
o (face and house) or neutral (question mark) depending on the experimental condition
e (See Ezperimental Session for details). Next, a target stimulus, which was an intact
o face or house image, and a scrambled version of the same image were simultaneously
wo shown in left and right side of the cue at 10° eccentricity. Presentation duration of these
1 images were determined by an adaptive staircase procedure (See Procedure for details).
102 Next, as masks, different scrambled versions of that target stimulus were shown on the
103 same locations for 64 ms. Following this, an empty display with a gray background
s was presented until a response is given by the participants. Participants’ task was to
s detect the spatial location of the target stimulus as soon as possible by pressing the
s left or right arrow key of the keyboard while maintaining their fixation on the fixation
w7 dot during the trial. Finally, a feedback message was given as “correct” or “wrong”
s to the participants for 752 ms. When the category of the cue and the image is the
w0 same, these trials are called congruent (expected) trials. When the category of the
o cue and the image is different, these trials are called incongruent (unexpected) trials.
u Note that equal number of each cue (face and house) appeared in random order in the
12 experimental conditions where an informative cue is presented. Also note that equal
us  number of each target stimulus (face and house image) was presented in all experimental
us conditions, and the target stimulus was randomly assigned to one of the two locations

us  (left or right) in each trial. See Figure [1] for sample trials from the experiment.

us  Procedure

17 Behavioral experiment consisted of a training session and an experimental session
us  which comprises four experimental conditionﬂ. In both sessions, 2-down 1-up adaptive
uo  staircase procedure with a two alternative forced-choice (2-AFC) paradigm was applied

1o to derive duration thresholds (70.7% accuracy) in different trial types: neutral trials,

ITo control for any possible confounding effects of training, we conducted a control experiment
on a separate group of participants who did not participate in a training session prior to the exper-
imental session. See Supplementary Material for methodological details of the experiment. Also see
Supplementary Figure S1 for results of the control experiment.
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Figure 1: Behavioral experiment. Sample trial sequences. a. Congruent trial. b. Incongruent
trial. ¢: Neutral trial. In all but the neutral trials a centrally presented cue predicted the category of
upcoming target with a certain validity (100, 75, and 50%). Duration threshold, which is the minimum
duration required to successfully detect the location of the target intact image, is determined per
participant under each condition. See text for more details.

w1 congruent trials and incongruent trials in different conditions (see Experimental Session
122 for details). Presentation duration of the target image and scrambled version of it were
123 varied adaptively from trial to trial. The duration of each trial was determined by
124 the accuracy of the participants’ responses in previous trials. Specifically, each wrong
125 answer or two consecutive correct answers resulted in approximately 8 ms (step size)
126 increase or decrease of the duration of the following trial target presentation respectively.
127 At the beginning of each experimental condition, one staircase started from a relatively
s short duration (varied for each participant, minimum 8 ms), and the other staircase
1o started from a relatively long duration (varied for each participant). There were 30
130 trials in each staircase in all experimental conditions, but number of staircases varied

11 for each experimental condition.

12 Training Session. Prior to the experimental session, each participant completed a train-
133 ing session in order to stabilize their perceptual thresholds. Participants were seated 60
13« cm away from the screen and their heads were stabilized with a chin-rest. The training
135 session consisted of 2 to 5 short experiments where the cue was always informative

s (face and house cue) and 100% valid in indicating the target stimulus category. Each
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137 experiment in the training phase had 120 trials and there were equal number of face
s and house cue trials. Number of experiments completed in the training phase varied
139 for each participant, and it is determined by whether the participant’s threshold stayed

1o within an interval of 8 ms (step size) for at least two sequential experiments.

w Erperimental Session. All participants completed four experimental conditions in ran-
12 domized order in separate sessions. Participants were informed about the cue-validity
w3 prior to the experiments. Cue validity refers to the probability that the cue correctly

s predicts the category of the upcoming intact image.

145 100%-validity condition. In this experimental condition the cue (face or house)
1s informed participants about the upcoming target stimulus category (either face or house
17 image) with a 100% validity so that there was no violation of expectations. There were
s 120 (congruent) trials in total including 60 trials where the target was a face image
1o following a face-cue, and 60 trials where the target was a house image following the

150 house-cue.

151 75%-validity condition. In this experimental condition the cue informed about
152 the correct category of the intact image with 75% probability (face or house). Equal
153 number of each cue (face and house) were presented, and there were 480 trials in total.
15« There were 360 congruent trials where the image category was correctly predicted by
155 the cue, and 120 incongruent trials where the cue misled the participants about the

156 Upcoming image category.

157 50%-validity condition. In this experimental condition the cue validity was at
15 50%. Therefore, in total there were 240 trials, of which 120 were congruent and 120

159 were incongruent. Equal number of each cue was presented.

160 Neutral (no expectation) condition. This experimental condition was in-

61 cluded as a control condition because there was no informative cue (face or house)
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12 that informs participants about the upcoming image category. Rather, the cue was
163 neutral, a question mark, during the experiment. Therefore, expectations about the
s upcoming stimuli were not formed. Except the cue type, all experimental stimuli and
15 design were the same as the other conditions. There were 120 trials in total, and equal

166 number of each image category was presented.

w7 Statistical Analysis

168 Duration thresholds (70.7% accuracy) for spatial location detection in congruent,
160 incongruent and neutral trials were estimated using the Palamedes toolbox (Kingdom
wo Jand Prins, [2010) with Logistic function using Matlab 2016a. A 2 (congruency: congru-
- ent, incongruent) x 2 (validity: 75%, 50%) repeated measures ANOVA was conducted
2 to investigate the effect of expectation on duration thresholds. Also, we conducted two-
173 sample paired f-test to compare the thresholds between the 100%-validity condition and

s the neutral (no-expectation) condition.

s RESULTS

176 Figure [2| shows duration thresholds of participants in each validity condition. We
w7 conducted 2 (congruency: congruent, incongruent) x 2 (validity: 75%, 50%) repeated
s measures ANOVA to investigate the effect of expectation on duration thresholds. We
o found that the main effect of congruency is statistically significant (F'(1,7) = 6.554, p
o = 0.034). However, the main effect of validity and interaction were not significant (p
s > 0.05). Next, we conducted post-hoc comparison tests to compare the thresholds of
12 congruent and incongruent trials in each validity condition. We found that incongru-
183 ent trials had longer duration thresholds than the congruent trials in the 75%-validity
e condition (£(7) = -3.85, p = 0.005). There was no difference between congruent and
185 incongruent trials in the 50%-validity condition (p > 0.05). Finally, we conducted two-
s sample paired t-tests between (1) the 100%-validity and neutral conditions, (2) the
17 congruent trials of 75%- and 100%-validity conditions, and (3) the congruent trials of
s 50%- and 100%-validity conditions. All three tests showed that the thresholds of the

1o conditions were not statistically significantly different from each other (p > 0.05).
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Figure 2: Results of the behavioral experiment. Duration thresholds of a. 100%-validity and
neutral conditions; b. congruent and incongruent trials in 75%-validity condition; c. congruent and
incongruent trials in 50%-validity condition.

w INTERMEDIATE DISCUSSION

101 Our behavioral results show that the thresholds of congruent (expected) and incon-
w2 gruent (unexpected) trials are different under the 75%-validity condition, but not under
13 any other conditions. Specifically, unexpected stimuli led to longer duration thresholds
s than expected stimuli when the cue had 75% validity. This result is inline with pre-

15 vious findings which showed that unexpected stimulus is detected or recognized more

1w slowly and less accurately than the expected one (Wyart et al., 2012; Stein and Peelen),
17 [2015). Surprisingly, we also found that the thresholds of neutral- and 100%-validity

108 conditions are not different from each other. This suggests that valid expectations do
190 not reduce perceptual thresholds compared to the condition where there is no expecta-
20 tion. Also, thresholds do not differ between congruent trials of 75%- and 100%-validity
20 conditions as well as between congruent trials of 50%- and 100%-validity conditions.
22 Taken together, our findings suggest that valid expectations do not reduce the thresh-
203 olds. Rather, the perceptual thresholds increase when the expectations are not met but
20 highly valid for a given task.

205 There are two possible alternatives that may explain the underlying computational
206 mechanism of this finding. First, it is possible that the underlying parameters of the
207 system (e.g. internal noise or decision threshold) may vary based on expectation (con-

208 gruency) and/or its validity. Specifically, in congruent and incongruent trials internal

10


https://doi.org/10.1101/545244
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/545244; this version posted February 11, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

200 parameters of the system may be different so that incongruent trials are detected in
20 longer duration than the congruent trials (De Loof et al., 2016). Alternatively, it is pos-
o sible that in incongruent trials further processing may be required to make a decision,
212 because prediction and the actual input disagree. The standard psychophysical analysis
213 alone cannot inform as to which of these alternatives better explains the behavioral re-
a2 sults. In order to test these alternatives we introduce a Bayesian computational model

a5 explained next.

xs Modeling

217 Here we implement a recursive Bayesian updating scheme, in which the prior is not
218 fixed but updated at each iteration, to model the behavioral results. By manipulating
219 the system’s underlying parameters in different models we tested whether expectation
20 has an effect on the underlying parameters. To test the alternative possibility, namely
a1 to test whether further processing is required in incongruent trials we compared the

22 number of iterations calculated in congruent and incongruent trials.

23 IMPLEMENTATION OF THE BAYESIAN MODEL

22 We used a generative model for which Bayesian inference equations were derived
25 (see also Bitzer et al| (2014)). Figure [3[ shows a schematic of the components of the
26 Bayesian model (for a trial with 75%-validity) adapted to the present study’s exper-
227 imental paradigm. As can be seen in Figure [3] the calculations were done separately
28 for the observation on the left side and right side of the screen in each trial of the
»0  experiment.

230 We first defined feature values for the input (light gray boxes in Figure [3))

iy = —1, for a house image,
2 = 0, for a scrambled image, (1)
pus = 1, for a face image.

11
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21 These would be the abstracted values received by the system if there were no noise.
22 Next, it is postulated that the abstracted observation extracted by the system, x;, is

233 drawn from a normal distribution with the corresponding pu; as follows:
71~ N, 0?). (2)

2 In each trial we calculated x; based on the presented images on the corresponding sides.
255 Next, we defined generative models for each decision alternative, A;: A; for house, A,
236 for scrambled, and As for face-image. We calculated the likelihood of x; under each

237 decision alternative as

plada) = ——ep (-1, 3)

1
oV 21 202
28 We then defined the initial values of the priors as indicated by the dark gray box in
2z Figure[d] In each trial we defined the prior probability of observing a house-, scrambled-,

a0 and face-image:

P(A1) = O,
p(A2) = 0, (4)
p(As) = cs,

21 where ¢1, ¢o, and ¢z are defined based on the cue validity (i.e. 100%, 75%, 50%), and
22 the cue presented at each trial (i.e. face or house). For example in a trial under the

a3 75%-validity condition if the cue is a face then the priors are

C1 = 1/8,
(6)) :4/8,
C3 = 3/8

12
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24 If cue is a house, then

C1 = 3/8,
Co :4/8,
C3 = ]_/8

s Next, we combined the likelihoods with the priors to compute posterior estimates for

26 each decision alternative for both sides as follows
p(x1|A;)p(A;)
3 )
le(xllAj)p(Aj)
J:

p(Aifry) = (5)

27 Within a single trial posterior estimates are updated recursively over time (N times:

2s number of iterations) until a decision is made by the model

p(Ai|z1e) = p<xt’Ai)p(Ai‘x1:tfl) ‘ (6)

3
le(a:t\Aj)p(Aj\xl;tfl)
]:

20 Note that, this amounts to using priors that are not fixed but updated in each iteration:
0 posterior of the previous iteration becomes the prior for the next iteration. Number of

51 iterations, N, in a single trial is determined by
N=rT1/At (7)

2 where 7 represents the duration of presentation of the target images in this particular
»3 trial, and At defines how long each iteration lasts in the system. Next, we calculated
2s¢ probability of observing an intact image (target stimulus: face or house) for both sides,
s 1Trprr and Trigur, by calculating the sum of last posterior of face-image and house-
6 image as shown in blue boxes in Figure [3| At the last step, a final decision is made by
257 the model using the criteria shown in black box in Figure [3 Specifically, the ratio of

s8I eppr to Trigur is compared to the decision threshold, A. This evaluation determines

13
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50 whether the model decides left or right. If this criteria cannot be met, then a decision

20 1S made randomly.

20 MODEL SIMULATIONS FOR INDIVIDUAL DATA

262 There were three free parameters in the model; A (decision threshold), At (how
263 long each iteration lasts in the system), and & (the internal uncertainty of the decision
s Makers representation of its observations, Eq.. Using the optimized parameter values
265 (that minimize the error between the model’s prediction and the real data) we ran
26 1000 simulations of the model to ensure the stability of the model’s predictions (Ritter
7 let al.l [2011)) for each participants data. We generated separate models for 100%-, 75%-,
s H0%-validity conditions, and the model simulations were compared to the data of these
x0  validity conditions for each participant. Note that there was only a single difference
a0 between the models of different validity conditions, and it was the initial values of the
o priors (See gray box in Figure [3). Also note that there was no explicit (informative)
o2 cue in the neutral condition, which made it inherently different than other conditions.

o3 Therefore the neutral condition was not included in the simulations.

on MODEL COMPARISON

275 To test the first possible alternative, that is whether underlying parameters of the
ae - system differ in different trial types, we defined two models: in the restricted model a
o single set of parameters (3 parameters: A, At, and ¢) was optimized for all validity con-
s ditions and trial types (all trials in 100%-, 75%-, 50%-validity conditions) for each par-
20 ticipant. In the unrestricted (free) model 5 different sets of parameters (15 parameters:
20 3 parameters x 5 conditions (100%, 75%-congruent, 75%-incongruent, 50%-congruent,
21 H0%-incongruent)) were optimized; one for each trial type and each validity condition
22 for each participant.

283 Next, for each participant’s data we performed a nested hypothesis test to see
28 whether the unrestricted model models the empirical data better than the restricted
s model. For this aim, we performed a chi-square nested hypothesis test. Under the null

26 hypothesis, twice the difference between the log-likelihoods of the two models has an
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27 approximate chi-square distribution, with degrees of freedom equal to 12, which is the
xs  difference in the number of parameters between the two models. Thus we reject the
250 null hypothesis if

2 x (log Ly —log Lo) > X3y, (8)

200 where the likelihoods Ly and L; are calculated for the restricted and unrestricted model

201 respectively. Note that L is defined as

n

L= HP<Y;|Bmodel)7 (9)

i=1
22 where n is equal to the total number of trials in each experimental condition, Y; corre-
203 sponds to the participant’s response in each trial, and B,,,q4¢ corresponds to the model’s

2a  prediction at each duration presentation level.

205 RESULTS

206 Figure 6] and [7] show Bayesian model simulations of all validity conditions and
207 trial types for restricted and unrestricted model for each participant. It is clear that our
28 Bayesian scheme can successfully capture the pattern observed in the empirical data.
200 Similar to the results of 75%-validity condition in psychophysical findings, Bayesian
30 simulations of incongruent trials (in both models) are also shifted to the right (i.e.
s longer duration thresholds) compared to the congruent trials. This shows that the
;2 Bayesian model, just as the human participants, require a longer duration to detect the
303 location of the intact image in an incongruent trial. Moreover, under the 50%-validity
sa  condition there is not such a clear shift, again just as in human data.

305 The results of the likelihood-ratio tests showed that the two models are not different
w6 from each other in any participant (p > 0.05). This suggests that the internal param-
a7 eters (A, At, ) do not change with congruency (trial types: congruent, incongruent)
28 and/or validity. This speaks against the first alternative to explain the human data we
;0 postulated earlier.

310 If the second alternative, that is if the system requires more time to process the visual

s input under the incongruent trials then the number of iterations that are needed to make
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trials in all validity conditions. a. 100%-validity condition. b. 75%-validity condition. c. 50%-
validity condition.

si2 - a decision would be larger in those trials. To test this alternative, we calculated the
a3 number of iterations computed by the (restricted) model in congruent and incongruent
s trials in all validity conditions. Figure [§[shows results of number of iterations performed
a5 (posteriors computed) in each validity condition and trial type.

316 We performed a 2 (congruency: congruent, incongruent) x 2 (validity: 75%, 50%)
a7 repeated measures ANOVA to investigate the effect of congruency and validity on num-
as ber of iterations (posteriors). As expected, the main effect of congruency was significant
a0 (F(1,7) = 11.731, p = 0.011). However, the main effect of validity and interaction were
20 mot significant (p > 0.05).

31 Next, we performed post-hoc comparison tests to see whether the number of itera-
s tions differ based on congruency speficially in each validity condition. In 75%-validity
33 condition number of posteriors computed in incongruent trials are higher than the con-
24 gruent trials (¢£(7) = -3.4798, p = 0.0103). However, there was no difference between
»s congruent and incongruent trials in 50%-validity condition (p > 0.05). Also, there was
»s 1o difference in number of iterations between (1) congruent trials of 50%- and 100%-
27 validity conditions as well as between (2) congruent trials of 75%- and 100%-validity
»s conditions (p > 0.05). Overall these results agree with the behavioral data remarkably

329 Well
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;0 General Discussion

331 In this study we investigated the effect of expectation on early visual processing
32 by measuring perceptual thresholds. To this aim, we systematically manipulated the
;3 expectation validity in different experimental conditions, and measured duration thresh-
s olds to examine whether the perceptual thresholds to detect a stimulus vary depending
15 on expectation and/or its validity. We then presented a recursive Bayesian updat-
336 ing scheme to elucidate the underlying mechanisms of the findings we observe in the
a7 behavioral experiment. Previous findings already showed that under several circum-
138 stances human behavior is nearly Bayes-optimal. And it is also clear that perceptual
;30 decision-making processes are strongly influenced by expectations. However, our study
uo  goes beyond these findings because, to our knowledge, this is the first study that sys-
s tematically investigates the behavioral effect of expectation on early visual processes
sz at the threshold level, and unravels possible computational mechanisms underlying the

s behavioral results using a recursive Bayesian updating scheme.

s Fxpectation affects visual perceptual thresholds only when the expectation
ws  validity is relatively high

346 Our behavioral results showed that unmet expectations can shape early visual pro-
w7 cesses only when the cue has a relatively high validity (i.e. 75%). In a similar individ-
ug uation task, under 80%-validity and neutral conditions, De Loof et al. (2016) showed
s that expectations speed up perceptual decisions by measuring response times (RT),
0 which reflect the time required by a combination of early visual, cognitive and decision-
;51 making processes to give a response. Our study furthers these findings and shows that
;2 not only the perceptual decisions, but even the early visual processes in isolation are af-
i3 fected by expectations. Furthermore, surprisingly, we found no difference in perceptual
s« thresholds of 100%-validity and neutral conditions as well as congruent trials of 75%-
555 and 100%-validity condition, and congruent trials of 50%- and 100%-validity condition.

6 Taken together, our findings show that the perceptual thresholds do not decrease if a
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7 stimulus is expected, rather that the thresholds increase if expectations are not met,

18 specifically when those expectations were high.

s Unexpected stimulus leads to further processing, rather than a change in
w0 the internal parameters of the system

361 The behavioral findings above led us to consider two non-mutually exclusive possi-
w2 bilities that may explain the observed results. First, internal parameters of the system
33 (e.g. the decision threshold) may differ with expectation and/or its validity. Second,
s further processing may be required to make a decision when the expectations are not
s met. To test these hypotheses, we used a recursive Bayesian updating scheme where
6 the prior is not fixed but updated at each iteration to model our behavioral findings
se7 - under the 100%-, 75%-, and 50%-validity conditions.

368 First, to examine the first alternative, we performed Bayesian simulations using a
w0 restricted model and a unrestricted model, and compared how successfully they fit the
s empirical data. In general, our findings on both models revealed that our recursive
sn Bayesian scheme can capture the pattern observed in the empirical data. Specifically,
;2 as in the psychophysical results Bayesian model simulations for 75%-validity condition
a3 showed that incongruent trials are detected in longer duration than the congruent trials.
ss  However, this pattern is not observed in 50%-validity condition. This finding further
a5 supports the idea that humans behave in a Bayes-optimal fashion in which perceptual
srs  decisions are made by combining the sensory input with the prior in a probabilistic
s manner (Ernst and Banks| 2002; Kersten et al., 2004). Critically our model compari-
srs - son analysis showed that the two models, restricted and unrestricted, are not different
sro from each other in any participant. This shows that expectation and its validity do
s0 not modulate the underlying parameters of the system (i.e. decision threshold, inter-
s nal uncertainty, how long each iteration lasts in the system), argues against the first
;2 alternative mechanism to explain the behavioral data.

383 Next, for the second alternative, we calculated the number of iterations computed
;¢ in congruent (expected) and incongruent (unexpected) trials. Our results showed that

;s more number of iterations are calculated in incongruent trials only when the expecta-
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s6  tion’s validity is relatively high (75%). This reveals that in order to make a decision
;7 more posteriors should be updated in incongruent trials, which is an indicator of further
;s processing within a single trial. This finding is remarkably consistent with our behav-
;0 ioral findings and suggests that the observed increase in the perceptual thresholds of
s0 incongruent trials in 75%-validity condition is due to an additional processing rather
s than a change in the system’s internal parameters.

392 In a study that we introduced earlier, De Loof et al. (2016) studied the response
303 times using a similar experimental design. In that study, the authors used drift-diffusion
3¢ model (DDM) (Ratcliff, 1978) to model the empirical results, and found that the unex-
;s pected stimuli led to increased boundary separation parameters, which is defined as the
ws internal threshold that is required to reach a decision (De Loof et al., [2016]). This result
37 appears at odds with our findings. We argue that, even though the DDM model is a
38 well-studied and highly useful model to understand the underlying processes in percep-
;0 tual decisions, it does not capture certain characteristics of the current experimental
wo paradigm because, for example, the validity of the expectation or more importantly
s the temporal dynamics throughout a trial cannot be modeled with DDM (Huk et al.,
w2 [2018). On the other hand, our Bayesian scheme provides us the opportunity to (1)
w3 define task-irrelevant prior, (2) set its validity, and (3) recursively update posterior es-
ws  timates within a single trial considering that perception is a dynamic inference process.
w5 Indeed, when we performed a DDM analysis using the behavioral threshold values, we
ws found that the model estimates of the boundary separation increased under the incon-
a7 gruent conditions (analyses and results not reported here). This outcome further shows
ws that the recursive Bayesian model captures some important details about the dynamics
w0 of the underlying processes that the DDM model cannot.

a0 Cortical Models, Predictive Coding: Do expectation violations require pre-
w  diction error computation of the ‘error units’?

a2 Bayesian approaches to understand the brain function, not only behavior, have
sz gathered considerable support in the literature. Accordingly, several generic models

sia for brain function have been proposed, which have computational concepts that are
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a5 analogous to the ones in Bayesian framework (Rao and Ballard, [1999; Friston, |2005;
ne |[Heeger} 2017). Several fMRI studies showed that there is an increased BOLD activity
a7 in response to an unexpected stimulus compared to an expected one (Yoshiura et al.
as [1999; [Marois et al., [2000; Kok et al., 2011). One interpretation of this finding is that
no it reflects the prediction error signal of the error units (Summerfield and Egner, [2009;
20 Kok et al., 2011)), which are introduced in the predictive coding theory (Friston) |2005).
a2 Predictive coding theory (PCT) proposes a generic model for brain function and posits
122 that based on prior information the brain computes internal predictions about the up-
23 coming sensory input. When there is a mismatch between the predictions and the
24 sensory input, a mismatch signal is computed which is called the prediction error. The
w5 PCT postulates that the prediction- and the error signals are computed by specific neu-
26 ron units called representation units (RU) and error units (EU) respectively, which are
227 hypothesized to exist at each level of the cortical hierarchy. In the case of a mismatch,
w28 the error signal is conveyed to the higher levels of the cortical hierarchy to update the
w0 predictions. If there is a match between the predictions and the sensory input, then the
10 error neurons do not respond vigorously, which is interpreted as the silencing of predic-
s tion error. Therefore, the PCT posits that the information processing in the brain is
12 a dynamic interplay between the prediction signals by RU and prediction error signals
s by EU, which are conveyed by feedforward and feedback connections. Even though
s a growing number of studies suggest that the observed increase of BOLD response is
135 an indicator of the prediction error signal of the error units, there is still no empirical
16 evidence that reveals the existence of the error units in the cortex.

437 Alternative to PCT, the cortical function theory of Heeger| (2017)) posits that the
s38 whole process can be executed without the existence of specific error- and representation
a0 units posited by the PCT. Heeger| (2017)) claims that the information processing can
wo  be accomplished and explained only by feedforward-feedback connections in the brain.
s The findings of the current study show that in the case of a mismatch condition further
a2 processing is required to make a decision. We suggest that further processing may be

a3 an indicator of a change in the feedforward-feedback connections during information
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sa  processing. When an unexpected stimulus is presented, an additional processing may
us  be required compared to an expected stimulus presentation, and this processing can
us  be implemented with additional feedforward and feedback interactions. In this sense
a7 the brain does not need to have separate “error units” that compute prediction error
ms as posited by predictive coding models (Friston, 2005). Rather, the same processing
uo  Mmay be implemented with additional computations to process an unexpected stimulus
0 compared to the expected one.

451 In short, we suggest that an increase in BOLD response to an unexpected stimulus
2 does not necessarily reflect the “error unit” activity posited by the PCT. Rather, it may
553 indicate an additional processing of the neural populations via feedforward-feedback
sse  connections as suggested by |Heeger| (2017)), and this would be consistent with our
»5 findings on human behavior and Bayesian model. It should be noted that our Bayesian
ss6  scheme is useful to investigate why there is such a difference between the perception of
7 expected and unexpected stimuli. However, it does not reveal how this process can be
s executed at the level of cortex. Predictive computation models (Friston, 2005; |Heeger,
w50 2017) should be employed to empirically test how this is accomplished, and it is the

w0 subject for future research.

« Conclusion

462 In summary, our results offer several surprising and interesting results about the
w3 role of expectation on early visual processing. Firstly, we showed that expectations
e do not make the participants faster, rather unmet expectations make them slower.
w5 Secondly, using a simple and parsimonious model we found that this slow-down in
w6 human behavior can be explained by further processing required in the visual system
w7 when the expectations are violated. Furthermore, the experimental paradigm and the
w8 computational model introduced here have the potential to be expanded and used for

w60 new and novel studies.
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