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Abstract 30 

Parasitoid wasps are among the most speciose animals, yet have relatively few available genomic 31 

resources. We report a draft genome assembly of the wasp Diachasma alloeum (Hymenoptera: 32 

Braconidae), a host-specific parasitoid of the apple maggot fly Rhagoletis pomonella (Diptera: 33 

Tephritidae) and a developing model for understanding how ecological speciation can “cascade” 34 

across trophic levels. Identification of gene content confirmed the overall quality of the draft 35 

genome, and we manually annotated ~400 genes as part of this study, including those involved in 36 

oxidative phosphorylation, chemosensation, and reproduction. Through comparisons to model 37 

hymenopterans such as the European honeybee Apis mellifera and parasitoid wasp Nasonia 38 

vitripennis, as well as a more closely related braconid parasitoid Microplitis demolitor, we 39 

identified a proliferation of transposable elements in the genome, an expansion of chemosensory 40 

genes in D. alloeum and other parasitoid wasps, and the maintenance of several key genes with 41 

known roles in sexual reproduction and sex determination. The D. alloeum genome will provide 42 

a valuable resource for comparative genomics studies in Hymenoptera as well as specific 43 

investigations into the genomic changes associated with ecological speciation and transitions to 44 

asexuality.   45 

 46 
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Introduction 49 

The Hymenoptera may be the largest order of insects due to the immense diversity of parasitic 50 

wasps (i.e. “parasitoids”) that lay their eggs into or on other insect species (LaSalle & Gould, 51 

1993; Austin & Dowton, 2000; Whitfield, 2003; Forbes et al., 2018). The great diversity of 52 

parasitoid wasps may be a consequence of their close relationship with their insect hosts. When a 53 

specialist parasitoid shifts to a new host, this change can propel the evolution of reproductive 54 

isolating barriers between wasp populations using the new and ancestral hosts (Feder & Forbes, 55 

2010). The evolution of reproductive isolating barriers following a host shift is a well-56 

documented phenomenon in host specialist insects (Forbes et al., 2017), but the study of 57 

genomic changes that accompany such phenomena is still in its early stages.  58 

Diachasma alloeum (Hymenoptera: Braconidae) is a specialist parasitoid of the fruit fly 59 

Rhagoletis pomonella (Diptera: Tephritidae). After the introduction of domesticated apples to the 60 

United States from Europe, R. pomonella infesting native hawthorn fruits experienced a host 61 

shift and subsequently evolved reproductive isolating barriers in what has become a well-known 62 

example of incipient ecological speciation (Walsh, 1867; Bush, 1966; Bush, 1994; Nosil, 2012). 63 

This new “apple maggot fly” was sequentially colonized by D. alloeum, which appears to have 64 

shifted from its ancestral host, the blueberry maggot Rhagoletis mendax (Forbes et al., 2009). 65 

Two reproductive isolating barriers (i.e. diapause emergence and host fruit volatile 66 

discrimination) have evolved in parallel in R. pomonella and D. alloeum, and in both fly and 67 

wasp, these traits appear to have a genetic basis (Dambroski et al., 2005, Forbes & Feder, 2006, 68 

Forbes et al., 2009). This phenomenon of “sequential” or “cascading” speciation may be an 69 

important driver of new biodiversity (Stireman et al., 2006; Abrahamson & Blair, 2007; Hood et 70 

al., 2015).  71 
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Reproductive isolation in genus Diachasma has also arisen as a consequence of the loss 72 

of sexual reproduction, a general pattern observed in many hymenopteran insects (van der Kooi 73 

et al., 2017). Asexual D. muliebre appears to have split from its sexual sister D. ferrugineum 74 

between 0.5 and 1 mya (Wharton & Marsh, 1978; Forbes et al., 2013). Although the decay of 75 

genes involved in sexual traits has been observed in multiple asexual parasitoid wasps (e.g. Ma 76 

et al., 2014; Kraaijeveld et al., 2016), there is a dearth of comparative assessments of genomic 77 

molecular evolution between sexual and asexual Hymenoptera.  78 

Here, we report the de novo genome assembly of the parasitoid wasp D. alloeum, adding 79 

to the genomic resources for parasitoid wasps, which are underrepresented among available 80 

hymenopteran genomes (Branstetter et al., 2017). We performed a series of descriptive analyses 81 

to assess the overall quality and content of the D. alloeum genome, and then focused on 82 

annotation and evolutionary analyses of gene families with potential relevance to speciation and 83 

sex determination in Diachasma.  84 

Results and Discussion 85 

Quality assessment of genome assembly 86 

Libraries from a combination of single and pooled wasp samples contained 182.88 GB total 87 

sequence data. The de novo genome assembly Dall1.0 (GenBank accession: GCA_001412515.1) 88 

had 3,968 scaffolds with a total scaffold length of 388.8 Mb and a scaffold N50 of 645,583 bp 89 

(Table 1). The presence of prokaryotic-like sequences in eukaryotic genome projects may reflect 90 

contamination in sequencing libraries or an actual association between microorganisms and 91 

hosts. Of the D. alloeum scaffolds, we annotated 656 as likely bacterial contaminants and an 92 

additional scaffold (RefSeq accession: NW_015145431.1) as an apparent lateral gene transfer 93 

event from a Rickettsia species (Supplementary Material online). The likely bacterial 94 
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contaminating scaffolds were removed from the D. alloeum assembly, and the remaining 3,313 95 

scaffolds will be made available as genome assembly Dall2.0.  96 

A common metric used to assess the relative completeness of a genome assembly is the 97 

identification of conserved single-copy genes, performed here using BUSCO v3 (Simão et al., 98 

2015). We found 1060/1066 (99%) arthropod-specific BUSCO genes in the D. alloeum genome, 99 

including 1053/1066 complete genes. These values are similar to BUSCO gene content in other 100 

published hymenopteran genomes (Table 2, Supplementary Material online). Our de novo 101 

assembly of the D. alloeum mitochondrial sequence using NOVOplasty (Dierckxsens et al., 102 

2017) produced a 15,936 bp sequence with a complete set of thirteen protein coding genes, two 103 

rRNA sequences, and 20 tRNA sequences. In addition, our annotation of 65/68 (96%) of the 104 

canonical suite of nuclear-encoded mitochondrial genes provided additional evidence for a high-105 

quality genome assembly (Supplementary Material online).  106 

We used RepeatModeler (Smit et al., 2015), PASTEClassifier (Hoede et al., 2014, 107 

version 1.0) and RepeatMasker (Smit et al., 2010) for de novo repeat identification, repeat 108 

reclassification, and repeat quantification, respectively (Supplementary Material online). 109 

Remarkably, nearly half (49%) of the D. alloeum genome consisted of repetitive sequences, 110 

although a substantial contributor (30%) was from unclassified repetitive sequences.  111 

 112 

Expansion of species-specific chemosensory genes in D. alloeum 113 

Chemoreception in arthropods is mediated by three major families of receptors: odorant 114 

receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs) (Clyne et al., 1999; 115 

Clyne et al. 2000; Benton et al., 2009). In addition, two major families of water-soluble proteins 116 

are responsible for transport and/or quenching of ligands to chemosensory receptors: odorant 117 
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binding proteins (OBPs) and chemosensory proteins (CSPs) (Vieira & Rozas, 2011; Pelosi et al., 118 

2014; Larter et al., 2016). Chemosensory discrimination of fruit volatiles is an important axis of 119 

divergence among host fly-associated populations of D. alloeum, initiating reproductive isolating 120 

barriers between these wasps (Forbes et al., 2009).  121 

Previous characterizations of chemosensory genes in hymenopteran insects, in particular 122 

the gene-rich receptor families, demonstrate that automated gene prediction pipelines are 123 

generally poor at accurately predicting these gene models (Robertson & Wanner, 2006; 124 

Robertson et al., 2010; Croset et al., 2010; Zhou et al., 2015; Robertson et al., 2018). We 125 

therefore manually annotated a total of 321 gene models that represents the full inventory of five 126 

chemosensory gene families in D. alloeum (Table 3, Supplementary Material online). Consistent 127 

with GO-enrichment analyses produced by OrthoVenn, we found lineages of OR expansions in 128 

D. alloeum, and clusters of GR homologs present in the braconid wasps D. alloeum and M. 129 

demolitor but absent in the well-studied hymenopterans Nasonia vitripennis or Apis mellifera. 130 

We also observed a notable expansion of IRs in D. alloeum relative to another Microplitis 131 

species, M. mediator (Figure 2). As odor discrimination has likely contributed to reproductive 132 

isolation following a host shift in D. alloeum, this dataset will be important for the study of 133 

chemosensory gene composition and evolutionary rate differences within and between 134 

Diachasma species.   135 

 136 

D. alloeum contains canonical genes involved in reproduction and sex determination 137 

Hymenoptera is an insect order characterized by haplodiploid sex determination, providing an 138 

opportunity for studying the evolution of reproductive modes, including transitions from sexual 139 

to asexual systems. Meiosis is essential to obligate sexual reproduction, such that loss of sex may 140 
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be accompanied by the subsequent degradation of meiotic genetic machinery (Schurko & 141 

Logsdon, 2008). However, identical sets of meiosis genes in D. alloeum (sexual) and D. 142 

muliebre (asexual) (Tvedte et al., 2017) and population genetic data implying that the asexual D. 143 

muliebre undergoes recombination (Forbes et al., 2013) together suggests that asexual wasps 144 

retain meiotic production of gametes despite the loss of sexual reproduction. Given the apparent 145 

lack of male production in D. muliebre, a non-canonical form of meiosis could facilitate the 146 

maintenance of genetic variation and promote the persistence of this asexual lineage.  147 

In many hymenopterans, development into male vs. female forms is based on allelic 148 

states at a single locus, a mechanism known as complementary sex determination (CSD) (van 149 

Wilgenburg et al., 2006). In A. mellifera specifically, sex determination depends on the csd gene 150 

(Hasselmann et al., 2008). We found no evidence of the csd locus in D. alloeum, however our 151 

inability to consistently rear wasps in the laboratory at the current time precludes our ability to 152 

definitively rule out CSD as a sex determination mechanism. In CSD and non-CSD 153 

hymenopterans, a well-conserved sex determination regulatory cascade includes transformer and 154 

doublesex, both displaying sex-specific splicing (Geuverink & Beukeboom, 2014). We identified 155 

single copies of transformer and doublesex genes in D. alloeum (Genbank TBD). 156 

Sex determination genes may be targets of selection in asexual Hymenoptera. Across 157 

insects, male production occurs due to alternative splicing of transformer rendering the protein 158 

nonfunctional, leading to male-splicing of doublesex. Conversely, translation of full-length 159 

transformer into functional protein mediates the splicing of female-specific doublesex isoforms 160 

(Verhulst et al., 2010). RNA-seq read mapping patterns supported sex-specific transformer 161 

isoforms in D. alloeum (Supplementary Figure S10). In all-female Diachasma species, we would 162 

expect selection to preserve the full-length transformer gene. In doublesex, the female isoform in 163 
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D. alloeum is shorter (Supplementary Figure S11), similar to splicing patterns in other insects 164 

(Cho et al., 2007; Oliveira et al., 2009). The single exon specific to males may be subject to 165 

future degradation following sex loss in asexual Diachasma species.  166 

Additional genes contributing to sex-specific traits (e.g. sperm production, pheromones, 167 

pigmentation) may be candidates for degradation in asexual wasps (van der Kooi & Schwander, 168 

2014; Kraaijeveld et al., 2016). The high quality of D. alloeum assembly provides a suitable 169 

framework for future studies of the effects of sexual and asexual reproductive modes on patterns 170 

of molecular evolution across the wasp genome.  171 

 172 

Materials and Methods 173 

We isolated genomic DNA from a single haploid male and separately from pooled animals of 174 

both sexes collected in Fennville, Michigan, USA. A combination of Illumina paired-end, mate 175 

pair, and TruSeq Synthetic Long Read (TSLR) libraries were each sequenced on an Illumina 176 

HiSeq2000 separately for the single male and pooled samples. Paired-end and mate pair reads 177 

were de novo assembled using SOAPdenovo2 v2.04 (Li et al., 2010) and added TSLR “reads” 178 

using PBJelly v2 (English et al., 2012). We removed putative microbial contaminant sequences 179 

from the assembly that were identified by both BlobTools (Laetsch & Blaster, 2017) and a 180 

separate custom pipeline developed by Wheeler et al. (2013) and modified as described in 181 

Poynton et al. (2018). We separately assembled the mitochondrial genome de novo using 182 

NOVOplasty v2.6.3 (Dierckxsens et al., 2017).  183 

We used ten wasps of each sex to generate two (pooled male and pooled female) paired-184 

end RNASeq libraries, and sequenced read libraries using an Illumina HiSeq2500. We combined 185 

read datasets and assembled a transcriptome de novo with Trinity (Release 2014-04-13) 186 
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(http://trinityrnaseq.github.io/) (Grabherr et al. 2011; Haas et al. 2013). Annotation of the D. 187 

alloeum genome assembly was performed by the NCBI using their Eukaryotic Genome 188 

Annotation Pipeline (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/), with 189 

experimental support from the RNAseq and transcriptome. Manual annotations were added to a 190 

D. alloeum project on the i5k workspace (https://apollo.nal.usda.gov/diaall/jbrowse/; Poelchau et 191 

al., 2014). See Supplementary Material online for additional information on genome sequencing, 192 

assembly, and annotation. 193 
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Figure Legends 374 

Figure 1. Phylogenetic tree of ionotropic receptors (IRs) from sampled hymenopteran insects. 375 

Dall = Diachasma alloeum, Mmed = Microplitis mediator, Nvit = Nasonia vitripennis, Amel = 376 

Apis mellifera. Maximum likelihood tree generated using 656 alignment columns. Dots on nodes 377 

indicate > 90% bootstrap support. The scale bar indicates the number of amino acid substitutions 378 

per site.  379 
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Tables 380 

Table 1. Summary statistics and feature counts of D. alloeum genome assembly. 381 

Assembly Dall1.0 Dall2.0  
Total Sequence Length 388,752,668 384,371,871 
Scaffold Count 3,968 3,313 
Scaffold N50 645,483 657,001 
Contig Count 25,534 24,824 
Contig N50 44,932 45,492 
GC% 38.45 38.30 
  382 
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Table 2. Summary statistics and BUSCO gene content for genome assemblies in four 383 

hymenopteran insects.  384 

  385 

Organism Assembly Accession Assembly 
Size 

Scaffold 
Count 

Scaffold 
N50 

Complete 
arthropod 
BUSCOs 

Diachasma alloeum GCA_001412515.1 
(this study) 388,752,668 3,698 645,483 1053 (99%) 

Apis mellifera GCA_000002195.1 
(Elsik et al., 2014) 250,287,000 5,645 997,192 1044 (98%) 

Nasonia vitripennis GCA_000002325.2 
(Werren et al., 2010) 295,780,872 6,169 708,988 1038 (97%) 

Microplitis demolitor GCA_000572035.2 
(Burke et al., 2018) 241,190,213 1,794 1,139,389 1057 (99%) 
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Table 3. Chemosensory gene content of selected hymenopteran insects.  386 

Organism ORs GRs IRs OBPs CSPs Citations 

D. alloeum 187(14) 39(1) 51(5) 15(0) 9(0) 

 
This study 

 
 

A. mellifera 163 (11) 10(0) 10(0a) 21(0a) 6(0a) 

Robertson & Wanner, 2006 
Foret & Maleszka, 2006 

Foret et al., 2007 
Croset et al., 2010 

N. vitripennis 225 (76) 47(11) 99(54) 90(8) 9(0) 

Robertson et al., 2010 
Robertson et al., 2018 

Werren et al., 2010 
Vieira et al., 2012 

M. demolitorb 218 (4) 85(1)    

 
Zhou et al., 2015 

 
 

M. mediator   17(0a) 20(0a) 3(0a) 

Zhang et al., 2009 
Wang et al., 2016 
Peng et al., 2017 

 
Intact gene counts are outside parentheses and pseudogene counts are inside parentheses. apseudogene counts were not addressed 387 

explicitly in the study. bZhou et al., 2015 provided counts of truncated models and pseudogenes for ORs and GRs, however these 388 

sequences were not published and therefore were not used in building phylogenies. 389 
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Figures 390 

Figure 1.  391 

 392 
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