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Abstract 

 

Trauma exposure is an important risk factor for several psychiatric disorders; however, the 

mechanisms that underlie emotional and behavioral responses to traumatic stress are unclear. To 

understand these mechanisms, this study investigated the genetic overlap and causal relationship 

between blood metabolites and traits related to trauma response using genome-wide data. Five 

traits related to trauma response “in the past month” ascertained in the UK Biobank (52 

816<N<117 900 individuals) were considered: i) “Avoided activities or situations because of 

previous stressful experience” (Avoidance); ii) “Felt distant from other people” (Distant); iii) 

“Felt irritable or had angry outbursts” (Irritable); iv) “Felt very upset when reminded of stressful 

experience” (Upset); v) “Repeated disturbing thoughts of stressful experience” (Repeated 

Thoughts). These were investigated with respect to 52 metabolites assessed using nuclear 

magnetic resonance metabolomics in a previous genome-wide association study (up to 24,925 

individuals of European descent). Applying linkage disequilibrium score regression (LDSC), 

polygenic risk scoring (PRS), and Mendelian randomization (MR), we observed that 14 

metabolites were significantly correlated with trauma response traits (p<0.05); PRS of 4 

metabolites (citrate (CIT); glycoprotein acetyls (GP); concentration of large very-low-density 

lipoproteins (VLDL) particles (LVLDLP); total cholesterol in medium particles of VLDL 

(MVLDLC)) were associated with traits related to trauma response (false discovery rate 

Q<10%). These associations were partially due to causal relationships (CIT→Upset β=-0.058, 

p=9.1×10-4; GP→Avoidance β=0.008, p=0.003; LVLDLP→Distant β=0.008, p=0.022; 

MVLDLC→Avoidance β=0.019, p=3×10-4). No reverse associations were observed. In 

conclusion, the genetics of certain blood-metabolites are potentially implicated in the response to 

traumatic experience. 
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Introduction 

Psychiatric disorders are comprised of multifactorial traits characterized by the interaction 

between multiple genes and environmental factors (1). Early child adversity and later exposure to 

traumatic events, for example, are key risk factors for multiple mental health disorders such as 

posttraumatic stress disorder (PTSD) (2) and depression (3). Approximately 60–90% of 

individuals experience at least one traumatic or violent event during their lifetimes, which can 

trigger a stress response (4, 5), leading to transient psychiatric symptoms and, in a relatively 

small proportion of trauma-exposed individuals, psychiatric disorders (5, 6). This susceptibility 

may be attributed to different factors including genetic and epigenetic variation, previous 

exposure to traumatic events, and neurobiological alterations (7, 8).  

The stress response after traumatic events involves a range of biological and behavioral 

systems, and leads to alterations in neural, endocrine, and immune activity. These alterations 

may in turn increase the risk of developing diseases (9-12). Prior studies have focused on 

investigation of genomics, transcriptomics, and epigenomics (13-15) aiming to understand the 

role of trauma in the etiology of psychiatric disorders and to identify genetic biomarkers for 

these conditions. Genome-wide association studies (GWAS) have found evidence of genetic 

associations with numerous psychiatric disorders (15-20), but evidence for the influence of 

genetic factors on the biological processes underlying the trauma response is still preliminary. 

Recent GWAS of PTSD suggested that more studies are necessary to identify robust genetic 

variants associated with PTSD due to complexity and heterogeneity of this phenotype (21). 

Evaluation of metabolites is a new approach to identify disease pathophysiological 

components. Metabolites are a group of end-products of cellular regulatory processes that 

potentially provide insight into those processes and are capable of informing the complex 

relationship between genotype and phenotype (22, 23). Psychiatric disorders, cognition, and 
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dementia have been associated with alterations in circulating metabolites (23-26). Despite this, 

the causal relationship between metabolite levels and biological mechanisms underlying these 

phenotypes remains unclear.  

Mendelian randomization (MR) is a method that relies on genetic data to infer causal 

relationships, for example, between an exposure (e.g., a metabolite) and an outcome (e.g., 

psychiatric disorder) using genetic variants as instrumental variables (27-31). There are few 

studies evaluating the role of metabolites on phenotypes resulting from exposure to trauma and 

no study to date has examined the putative causality between these factors using the MR 

approach. Therefore, the aim of this study was to investigate the genetic correlation between 

trauma-related traits and metabolites, as well as their causal relationship. 

 

Materials and Methods 

Study Design and Data Sources 

We conducted two sample MR (32) to estimate the causal relationship between genetic 

variants associated with metabolite levels and traits related to trauma response using publicly 

available summary data.  

GWAS summary data pertaining to phenotypic traits included in the category “traumatic 

events” (Field ID: 145) were obtained from the UK Biobank (UKB) (33, 34). UKB is an open-

access international health research which provides genetic information about thousands of 

individuals (aged 40–69 years) (33, 34). For characterization of mental health phenotypes, all 

participants (including females and males, N=157 366) provide a self-report about lifetime 

symptoms of mental disorders answering an online mental health questionnaire (MHQ), which 

includes trauma measures that were previously validated (35). 
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Among the traits available in this UKB category, we selected those related to trauma 

response based on recent response to stressful past experiences from the UKB online "Thoughts 

and Feelings" MHQ about: “Avoided activities or situations because of previous stressful 

experience in past month” (Avoidance; UKB Field ID: 20495; N=117 868), “Felt distant from 

other people in past month” (Distant; UKB Field ID: 20496; N=52 822), “Felt irritable or had 

angry outbursts in past month” (Irritable; UKB Field ID: 20494; N=52 816), “Felt very upset 

when reminded of stressful experience in past month” (Upset; UKB Field ID: 20498; N=117 

893), and “Repeated disturbing thoughts of stressful experience in past month” (Repeated 

Thoughts; UKB Field ID: 20497; N=117 900) and the answers options for these questions were: 

“Not at all”, “A little bit”, “Moderately”, “Quite a bit”, “Extremely”. Supplemental Figure S1 

shows the distribution of UKB participants’ answers to the trauma-response questions. These 

responses can also be thought of as common symptoms of PTSD, i.e., re-experiencing, 

avoidance, and hyperarousal (36, 37). 

To investigate the metabolic traits, we used the GWAS data published by MAGNETIC NMR 

(nuclear magnetic resonance) study, which investigated 123 circulating metabolites quantified by 

nuclear magnetic resonance metabolomics in up to 24 925 individuals of European descent (38). 

The characteristics of each GWAS used in this study are provided in Table 1. For more 

information about the quality control and GWAS methods applied in relation to trauma-related 

traits (UKB) and metabolites see, respectively, 

https://github.com/Nealelab/UK_Biobank_GWAS/tree/master/imputed-v2-gwas  and 

MAGNETIC NMR GWAS summary statistics 

(http://www.computationalmedicine.fi/data#NMR_GWAS) (38). 
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Heritability and Genetic Correlation  

Linkage disequilibrium score regression (LDSC) was used to calculate metabolite heritability 

estimates and to test the genetic correlation between trauma-related traits and metabolites. Also, 

we calculated the genetic correlation among the five traits related to trauma response to verify 

how these traits are correlated with each other. 

In addition, we derived the heritability z-score for all traits, which is defined as the 

heritability estimate produced by LDSC regression divided by its standard error. The value of z-

score may be affected by sample size, SNP-based heritability and the proportion of causal 

variants (39). In other words, the heritability z-score can capture information about the genetic 

basis of a trait. In our analyses, we considered heritability z-score > 3 as suitable to conduct the 

genetic correlation analysis. 

Summary statistics were formatted according to the pipeline described by Bulik-Sullivan et 

al. (40, 41). We used the HapMap 3 reference panel (42) and pre-computed LD scores based on 

the 1000 Genomes Project data (43) for European ancestry (available at 

https://github.com/bulik/ldsc) to estimate the genetic correlation between traits.  

 

Polygenic Risk Score and Definition of the Genetic Instruments 

We conducted a polygenic risk score (PRS) analysis to define the genetic instruments for MR 

using PRSice v1.25 software (44). PRS was calculated using the following parameters: clumping 

with an LD cutoff of R2 = 0.001 within a 10 000-kb window and removal of the major 

histocompatibility complex (MHC) region of the genome because of its complex LD structure. 

European samples from the 1000 Genomes Project were used as the LD reference panel.  
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PRS analysis was conducted using GWAS summary data for both base and target datasets 

(i.e., traits related to trauma response and blood metabolites). The p-values were adjusted for 

multiple testing correction using the false discovery rate (FDR) and we considered Q < 10% as 

the significance threshold. 

 

Mendelian Randomization 

To assess causal relationship between the phenotypes investigated in this study, we selected 

single nucleotide polymorphisms (SNPs) associated with the risk factor according to the best-fit 

PRS estimates for each metabolite surviving multiple testing correction (FDR Q < 10%). 

To estimate the causal relationship between trauma-related traits and metabolites, we used 

different MR methods available in the TwoSampleMR R package (32): random-effects inverse 

variance weighted (IVW) (32), MR-Egger (45), weighted median (46), simple mode (47) and 

weighted mode (46).  

We conducted sensitivity analyses to estimate the heterogeneity of the data using the IVW 

and MR-Egger heterogeneity tests to exclude the presence of possible biases in the MR 

estimates. Additionally, we conducted a reverse analysis with respect to these phenotypes to 

verify whether traits related to trauma response have a causal effect on the metabolite levels. 

Furthermore, we performed MR-Egger regression intercept and a MR-PRESSO (Pleiotropy 

RESidual Sum and Outlier) global test to estimate pleiotropy (48). We used a leave-one-out 

analysis to identify potential outliers in the genetic instruments indicative of significant 

pleiotropy or heterogeneity.  
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Enrichment analysis 

Based on the MR results, we conducted Gene Ontology (GO) enrichment analysis to 

investigate possible biological, molecular, or cellular processes associated with metabolite levels 

using eSNPO (eQTL based SNP Ontology) (49). We performed the enrichment analysis for 

eQTLs present in two tissues: blood and brain. FDR multiple testing correction was applied to 

adjust the results of these analyses considering Q < 5% as the significance threshold. The GO 

enrichment results were analyzed using REVIGO (http://revigo.irb.hr/) to generate a graph-based 

visualization (50), which was done considering a similarity of 0.7 between GO terms, UniProt as 

the reference database, and the Jian and Conrath method as the semantic similarity measure.  

 

Results 

Genetic Correlation 

SNP heritability was calculated with respect to 123 blood metabolites (Supplemental Table 

S1). Considering those metabolites with strong heritability estimates (z score > 3), we observed 

52 traits with heritability ranging from 6.1% (valine) to 16.6% (double bonds in fatty acids). We 

observed 17 genetic correlations (p < 0.05) with respect to these 52 metabolites and the five 

UKB traits related to trauma response (Figure 1). The strongest genetic correlation was observed 

between glycoprotein acetyls (GP) and Upset (rg = 0.318, p = 0.003). The same metabolite was 

also genetically correlated with Avoidance and Repeated Thoughts (rg = 0.349, p = 0.004; rg = 

0.221, p = 0.034; respectively). This is due to the fact that the traits related to trauma response 

investigated showed a high genetic correlation among each other (Supplemental Table S2). 
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Figure 1: Genetic correlation results between metabolites and traits related to trauma response. 

CIT: Citrate. FAW3: Omega-3 fatty acids. GP: Glycoproteins acetyls. HDLC: Total cholesterol 

in HDL (High-density lipoprotein). LHDLPL: Phospholipids in large HDL. LVLDLL: Total 

lipids in large VLDL (Very-low-density lipoprotein). LVLDLP: Concentration of large VLDL 

particles. LVLDLPL: Phospholipids in large VLDL. MVLDLC: Total cholesterol in medium 

VLDL. MVLDLCE: Cholesterol esters in medium VLDL. MVLDLP: Concentration of medium 

VLDL particles. SVLDLL: Total lipids in small VLDL. SVLDLP: Concentration of small VLDL 

particles. SVLDLPL: Phospholipids in small VLDL. 

 

Polygenic Risk Score and Definition of the Genetic Instruments 

Given the 17 genetic correlations observed, we conducted a PRS analysis to investigate these 

genetic overlaps further and to determine genetic instruments to use in the MR analysis. After 

FDR 10% correction for the number of PRS thresholds tested, 5 associations remain significant 

(Table 2). GP PRS was associated with Avoidance and Repeated Thoughts (FDR Q = 0.06 and Q 
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= 0.057, respectively). Citrate PRS was associated with Upset phenotype (FDR Q = 0.006). The 

two remaining associations were observed with respect to two subclasses of very low-density 

lipoproteins (VLDL): concentration of large very-low-density particles (LVLDLP) was 

associated with Distant (FDR Q = 0.018) and the total cholesterol in medium of very-low-

density lipoprotein (MVLDLC) was associated with Avoidance (FDR Q = 0.055). No reverse 

association between PRS of trauma-response phenotype and these blood metabolites was found 

(FDR Q > 0.1). 

 

Mendelian Randomization 

Based on the PRS associations, we assessed the possible causal relationships using MR 

methods (Figure 2a, Supplemental Table S3). We found a negative causal effect of citrate levels 

on the Upset trauma response trait (IVW β = -0.058, p = 9.1×10–4). This estimate was consistent 

across multiple MR methods (Supplemental Table S3) and no heterogeneity or pleiotropy was 

observed in this analysis (Supplemental Tables S4 and S5). 

 We verified that the GP levels appear to have a small causal effect on Avoidance (IVW β: 

0.008, p = 0.003), but did not have an effect on Repeated Thoughts (p-value > 0.05). No 

evidence of bias due to pleiotropy and heterogeneity was observed in the GP genetic instrument 

(Supplemental Tables S4 and S5). We also observed that LVLDLP levels may have a small 

causal effect on the Distant trait (IVW β = 0.008, p = 0.022) without any indication of pleiotropy 

or heterogeneity in the genetic instrument (Supplemental Tables S4 and S5). We observed 

significant horizontal pleiotropy between MVLDLC and Avoidance (MR-Egger intercept = -

0.001, p = 0.006), which appears to underlie a causal effect between them (MR-Egger β = 0.019, 

p = 3×10-4). To verify that the horizontal pleiotropy did not affect the causal estimate, we 
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conducted a leave-one-out analysis to identify the pleiotropic variants from the MVLDLC 

genetic instrument (Supplemental Figure S2). When the pleiotropic variants from the genetic 

instrument were removed (MR-Egger intercept = -5×10-4, p = 0.21), the causal effect of 

MVLDLC levels on Avoidance was confirmed (IVW β = 0.007, p = 0.01; MR-Egger β = 0.013, 

p = 0.017; Weighted median β = 0.011, p = 0.012) (Figure 2b).  

 

 

Figure 2: Mendelian randomization (MR) summary. a. Causal effects (beta) and p-values of 

IVW method for the relationship of the SNP effects on the metabolites against the SNP effects 

on the traits related to trauma response. b. Causal effects (beta) and p-values of IVW and MR-

Egger for the relationship of the MVLDLC on Avoidance considering variants with pleiotropy 

(in red) and no pleiotropy (in cyan). 

Cit: Citrate. GP: Glycoproteins acetyls. LVLDLP: Concentration of large VLDL particles (Very-

low-density lipoprotein). MVLDLC: Total cholesterol in medium VLDL. IVW: inverse variance 

weighted. 

 

Enrichment analysis 

We performed a GO enrichment analysis based on the genetic instruments with significant 

causal effects on trauma-related traits to understand the biological processes involved. After 

FDR multiple testing correction (Q < 5%), we found several GO terms associated with Citrate 
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levels (N=24), GP (N=28), LVLDLP (N=5) and MVLDLC (N=4) with respect to transcriptomic 

data from blood, but no enrichment based on brain transcriptomic information survived multiple 

testing correction (Supplemental Tables S6 and S7). Among the significant enrichments 

observed with respect to the genetic instrument tested, we verified a large similarity network that 

included multiple GO terms related to biological pathways implicated in brain development 

(Figure 3). Additionally, four GO terms were significant across GP, LVLDLP, and MVLDLC: 

GO:0001694~histamine biosynthetic process; GO:0004398~histidine decarboxylase activity; 

GO:0006547~histidine metabolic process; and GO:0042423~catecholamine biosynthetic 

process. Additionally, GO:0021954~central nervous system neuron development was significant 

in both GP and MVLDLC analyses (respectively, p = 2.29×10-5 and p = 3.73×10-4). The GP 

genetic instrument also showed enrichments for multiple GO terms related to brain function and 

regulation: GO:2000178~negative regulation of neural precursor cell proliferation (p = 3.08×10-

7); GO:0097154~GABAergic neuron differentiation (p = 7.63×10-4); GO:2000977~regulation of 

forebrain neuron differentiation (p = 7.63×10-4);  GO:0021533~cell differentiation in hindbrain 

(p = 1.37×10-3); GO:0021514~ventral spinal cord interneuron differentiation (p = 1.68×10-3); 

and GO:0021542~dentate gyrus development (p = 1.98×10-3). No brain enrichment or overlap to 

other analysis was observed with respect to the citrate genetic instrument, which showed 

enrichments with several metabolic processes with the most significant results observed for: 

GO:0015137~citrate transmembrane transporter activity (p = 2.88×10-4) and 

GO:0015746~citrate transport (p = 2.88×10-4).  
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Figure 3: Similarity network based on GO enrichment results. Bubble color shading is 

proportional to the GO enrichment; bubble size is proportional to the frequency of the GO term 

in the Gene Ontology Annotation (UniProt) database. Edges in the graph represent the high 

similarity among the GO terms evaluated and the line width indicates the degree of similarity. 

 
 
Discussion 

In the first study of its kind, our findings indicate that blood metabolite levels may be 

causally related to trauma response traits. Conversely, we did not find evidence of causal effects 

of trauma response traits on the metabolite levels investigated. These results reinforce the idea 

that metabolites may play a role in the pathophysiology of emotional and behavioral responses 
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(23), and physical conditions (51) that occur after psychological trauma. In particular, we found 

evidence of causal effects with respect to four blood metabolites - citrate, GP, and two subclasses 

of VLDL (LVLDLP and MVLDLC). 

Citrate is an important component of tricarboxylic acid (TCA). It is a substrate in the cellular 

energy metabolism cycle involved in the fatty acid synthesis, glycolysis, and gluconeogenesis 

(52). Furthermore, citrate is a chelating agent for divalent cations (e.g., Ca2+, Zn2+, and Mg2+), 

regulating these ions and potentially influencing the excitability of neurons acting, for example, 

via activity of glutamate receptors and NMDA receptors (52). Citrate has been linked with 

numerous biological processes, such as neurotransmitter synthesis and release, inflammation, 

insulin secretion, and histone acetylation (52-54). Low plasma citrate level was reported to be 

related to depression, suggesting that a reduction of TCA cycle substrates is associated with 

depressive symptoms (55). Our current analysis supports the causal relationship between low 

citrate levels and increased feelings of upset in response to traumatic events. This could be 

related to the role of citrate in several brain processes.   

GP are acute-phase proteins, which are mainly represented by α-1-acid glycoprotein (AGP), 

also called orosomucoid (56). Increased GP plasma levels have been associated with immuno-

modulating effects, drug-transporting proteins (e.g., histamine, serotonin), regulation of 

metabolism, and neuroinflammation (56, 57). AGP expression in astrocytes also appears to 

mediate astrocyte-microglia interactions during neuroinflammation (58, 59). In addition, GPs 

have been investigated as potential biomarkers for depression due to their ability to bind major 

classes of antidepressant drugs, such as tricyclic antidepressants and selective serotonin reuptake 

inhibitors (60). Furthermore, a recent study suggested that GPs were significantly associated with 

increased risk of dementia and lower general cognitive ability (26), which has in turn been 
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correlated with risk for PTSD (61). These results support our findings suggesting an effect of 

glycoproteins on Avoidance. 

VLDLs are categorized according to their molecular size (62). We identified two subclasses 

of VLDL (LVLDLP and MVLDLC) that may have causal effects on traits related to trauma 

response. LVLDLP and MVLDLC are lipoprotein particle subclasses of triglyceride-containing 

VLDL (62). Higher levels of VLDLs have been related to cardiovascular disorders (63) and type 

2 diabetes (64), which are associated with traumatic stress and psychiatric disorders (65, 66). 

Elevated lipid levels have been previously observed in individuals affected by PTSD (67), but it 

is still unclear whether this relationship is due to potential confounding factors. Our findings 

suggest that two subclasses of VLDLs influence the trauma response, but further investigations 

will be needed to fully understand the molecular mechanisms involved. 

The direction of causality between metabolites and trauma response was confirmed by 

enrichment analysis. Furthermore, the enrichment analysis showed that important biological 

processes for neuropsychiatric disorders were enriched in the genetic instruments related to the 

blood metabolites tested: histidine process (68), histamine (68), catecholamines (69) and citrate 

transport (52). 

Previous studies have indicated that an exacerbated response to traumatic events is associated 

with both physiological and psychological dysfunction (9, 11). The response to emotional trauma 

is a complex phenomenon which triggers different regulatory systems in the brain and the body, 

with alterations in the hypothalamic‐ pituitary‐ adrenal axis (HPA) axis, neuroinflammatory 

processes and sympathetic nervous system, as well as hormonal and neurotransmitter responses 

(10, 11, 70). Our enrichment results suggest that biological processes linked with these 
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metabolites (i.e., citrate, GP, LVLDLP, and MVLDLC) may be involved in the mechanism of 

trauma response.  

Several previous studies have investigated the role of metabolites on trauma- and stressor-

related disorders (71), but none investigated the same metabolites evaluated here. Different 

metabolites and glycans released from glycoproteins may be associated with mechanisms 

underlying PTSD (71). Our data suggest that some metabolites may be related to PTSD-related 

symptoms, for example, Avoidance.  

In conclusion, this study is the first MR analysis to evaluate the causal relationship between 

metabolites and traits related to trauma response using genome-wide data. Our findings provide 

evidence that some metabolites (i.e., citrate, GP, and two VLDL subclasses) may have causal 

effects on emotional and behavioral responses to trauma: that is, they may modify mechanisms 

involved in the stress response. Future studies examining more metabolites and larger samples 

will be needed to dissect the molecular mechanisms by which blood metabolites affect brain 

regulation and function in determining the inter-individual variability in stress responses. 
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Tables 

 

Table 1: Characteristics of cohorts evaluated 

Trait Abbreviation Sample Size 

Felt irritable or had angry outbursts in past month 

(UKB Field ID: 20494) 
Irritable 52 816 

Avoided activities or situations because of previous 

stressful experience in past month (UKB Field ID: 

20495) 

Avoidance 117 868 

Felt distant from other people in past month  

(UKB Field ID: 20496) 
Distant 52 822 

Repeated disturbing thoughts of stressful experience 

in past month (UKB Field ID: 20497) 

Repeated 

Thoughts 
117 900 

Felt very upset when reminded of stressful 

experience in past month (UKB Field ID: 20498) 
Upset 117 893 

Metabolites -- 24 925 

UKB: UK Biobank 

 

Table 2: PRS results 

Base Target Nagelkerke’s R2 FDR Q-value 

Citrate Upset 0.009% 0.006 

Glycoproteins Avoidance 0.01% 0.06 

Glycoproteins Repeated Thoughts 0.003% 0.057 

LVLDLP Distant 0.01% 0.018 

MVLDLC Avoidance 0.005% 0.055 

Nagelkerke’s R2: variance explained. FDR Q: false discovery rate. LVLDLP: Concentration of 

large VLDL particles (Very-low-density lipoprotein). MVLDLC: Total cholesterol in medium 

VLDL. 
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