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Abstract:  

Multiple statistical approaches have been proposed to validate reference genes in qPCR assays. However, 

conflicting results from these statistical methods pose a major hurdle in the choice of the best reference 

genes.  Recent studies have proposed the use of a minimum of three different methods but there is no 

consensus on how to interpret conflicting results. Researchers resort to averaging the ranks or attributing 

a weighted rank to candidate genes. However, we report here that the suitability of these validation 

methods can be influenced by the experimental setting. Therefore, averaging the ranks can lead to 

suboptimal assessment of stable reference genes if the method used is not suitable for analysis. As the 

respective approaches of these statistical methods are different, a clear understanding of the 

fundamental assumptions and the parameters that influence the reference gene stability calculation is 

necessary. In this study, the stability of 10 candidate reference genes (Actb, Gapdh, Tbp, Sdha, Pgk1, Ppia, 

Rpl13a, Hsp60, Mrpl10, Rps26) was assessed using four common statistical approaches (GeNorm, 

NormFinder, Coefficient of Variation or CV analysis and Pairwise ΔCt method) in a longitudinal 

experimental setting. We used the development of the cerebellum and the spinal cord of mice as a model 

to assess the suitability of these statistical methods for reference gene validation. GeNorm and the 

Pairwise ΔCt were found to be ill suited due to a fundamental assumption in their stability calculations. 

Highly correlated genes were given better stability ranks despite significant overall variation. NormFinder 

fares better but the presence of highly variable genes influences the ranking of all genes because of the 

algorithm’s construct. CV analysis estimates overall variation, but it fails to consider variation across 

groups. We thus highlight the assumptions and potential pit-falls of each method using our longitudinal 

data.  Based on our results, we have devised a workflow combining NormFinder, CV analysis along with 

visual representation of mRNA fold changes and one-way ANOVA for validating reference genes in 

longitudinal studies. This workflow proves to be more robust than any of these methods used individually. 
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Introduction:  

Relative expression of target genes in qPCR assays require accurate normalization of mRNA quantities 

using stably expressed internal standards also called reference genes (1). In theory, such a gene is 

presumed to be stably expressed across all groups and samples (2). This is seldom the case. There is no 

universal reference gene that fulfils this criterion and the choice of a good reference becomes highly 

subjective depending on several factors such as the sample/tissue type, experimental condition and 

sample integrity (3,4). Many statistical methods have been proposed to help researchers identify stable 

reference genes from a predetermined set of candidates. These statistical approaches determine the 

stability of these candidates based on a unique set of assumptions and calculations. Therefore, the 

predictions of these methods can vary rather significantly based on the method used and the 

experimental setting (5–7). This observation, to our knowledge, has been constantly neglected in recent 

studies that validate reference genes. However, to address this issue, researchers average the stability 

ranks across different methods and calculate an overall “geometric mean rank” (8,9). Some studies also 

attribute a weighted rank (10–14). This approach is rather questionable, as it does not consider the 

strengths and weaknesses of each method for a given experimental setting. 

In this study, we tested the stability of 10 candidate reference genes during early postnatal development 

of the cerebellum and spinal cord in mice. This experimental setup proves to be a good longitudinal model. 

The cellular microenvironment is both complex and dynamic complicating the determination of stable 

reference genes (15–17).  We first observed that the use of arbitrary reference genes gives highly variable 

profiles of the target gene depending on the reference chosen. Therefore, to identify stable reference 

genes, we used four different statistical approaches – GeNorm (18), NormFinder (19), Coefficient of 

Variation analysis (CV) (20) and Pairwise ΔCt method (21). However, the stability ranking also varied 

significantly depending on either the tissue in question or the method used.  

Instead of averaging the ranks or attributing a weighted rank, we analysed the suitability of these methods 

to identify their respective drawbacks in a longitudinal setting. We find that the ranking of all methods 

tested except CV analysis are influenced by the presence of genes with high overall variation. 

Furthermore, GeNorm and the Pairwise ΔCt method rankings are influenced by the expression pattern of 

all genes making their ranking inter-dependent. On the other hand, NormFinder and CV analysis prove to 

be more robust, only when they are used complementarily but not individually. Hence, we devised an 

integrated approach by combining CV analysis, NormFinder and visual representation of mRNA fold 

changes across experimental groups. We believe that this method provides more accurate estimates of 

stable reference genes. In summation, our study highlights the importance of choosing the right set of 

statistical methods and proposes a sound workflow to validate reference genes in a longitudinal setting.  
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Results  

Normalization with an arbitrary reference gene 

To demonstrate the bias in results that arise by using a single arbitrary reference gene, we chose 3 

candidate reference genes – Actb, Gapdh and Mrpl10 to normalize Myelin Basic Protein (Mbp) mRNA 

expression levels in the cerebellum (Fig. 1a). Mbp levels showed a sudden increase by 35 folds at P10 

when normalized to Gapdh, peaking at around 50 folds at P15 before coming down to 30 folds at P23. On 

the contrary, when normalized to Mrpl10, Mbp expression showed a rather linear relationship with time, 

gradually increasing from 12 to 41 folds between P10 and P23. When normalized to Actb, the MBP levels 

increase by 15 and 30 folds at P10 and P15 then shoot up to more than 90 folds at P23. However, the un-

normalised profile of Mbp using P5 as a calibrator (Fig. 1b) shows an almost linear profile increasing from 

18 to 56 folds between P10 and P23. 

We observed similar contradictions in the spinal cord (Fig. 1c). Mbp levels normalized to Gapdh peak at 

P10 by 18 folds before reducing gradually to about 3 folds at P23. Normalizing with Mrpl10 reveals a 

different kinetic where Mbp levels reach a plateau between P10 and P15 (around 4 and 6 folds 

respectively) before dropping down to 3 folds at P23. Whereas, normalizing with Actb reveals yet another 

profile where Mbp levels steadily increase from P5 to P15 in an almost linear fashion and decrease at P23 

to around 5 folds. The un-normalised profile of Mbp (Fig. 1d) however remains linear till P15 and drops at 

P23. 

Raw expression profiles of candidate reference genes 

Given the stark differences in Mbp expression profiles, we reasoned that the differences could be induced 

by intrinsic changes in the mRNA levels of candidate reference genes during development. To 

demonstrate this, we calculated the raw expression profiles of reference genes as fold changes of mRNA 

quantities across groups (Fig. 2&3). These intrinsic differences could indeed be shown as changes in Cq 

values for each gene across sample groups. However, Cq values are in the logarithmic scale and do not 

faithfully represent the magnitude of change in relative mRNA quantities that are always calculated as 

fold changes using a calibrator. Therefore, this data is better represented as fold changes.  

The first statistical test to assess stability after visually representing the data was One-way ANOVA to 

determine if the mean mRNA levels across groups are significantly different from one another. In the 

cerebellum, 8 of the 10 reference genes tested (Actb, Hsp60, Gapdh, Sdha, Tbp, Pgk1, Rpl13a and Rps26) 

showed significant variation in the mRNA levels across time points (Fig. 2) Only 2 genes (Mrpl10, Ppia) 

showed no significant change. In the spinal cord, all tested genes showed significant variation in mRNA 

levels across the four time points (Fig 3). 

These results taken together with the raw expression profiles of Mbp (Fig. 1b & 1d) show that intrinsic 

changes in mRNA levels of reference genes can indeed skew the normalized profile of Mbp. As a result, it 

causes a significant bias in the results and interpretations that ensue highlighting the importance of 

validating reference gene stability in longitudinal studies. 
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Assessment of expression stability using multiple statistical approaches 

The expression stability of candidate reference genes was analysed in both tissues using four well known 

statistical methods - CV analysis (20), NormFinder (19), GeNorm (18) and the Pairwise ΔCt method (21) 

(Table 2). 

CV analysis: 

The CV analysis estimates the variation in the linearized Cq values (2-Cq) of a reference gene across all 

samples taken together (Supplementary Table S1). Therefore, lower CV would mean higher stability. CV 

analysis on the cerebellum samples revealed Mrpl10, Actb and Rps26 as the top three stable reference 

genes. In the spinal cord, the top three reference genes are Actb, Ppia, Rps26. 

NormFinder analysis:  

We next analysed our data using NormFinder which calculates a stability score (S) based on the intergroup 

and intragroup variations. In the cerebellum, NormFinder identified Ppia, Mrpl10 and Sdha as the top 

three stable genes. In the spinal cord, the algorithm identified Mrpl10, Ppia and Hsp60 as the top three 

stable reference genes. 

GeNorm analysis:  

GeNorm calculates stability based on pairwise variation. The rationale is that if two genes vary similarly 

across all samples, then they are the most stable reference genes for that dataset. All other genes are 

ranked on their similarity to the expression of the top two genes. In the cerebellum, the GeNorm algorithm 

identified Gapdh and Tbp to be the most stable reference genes followed by Hsp60. This is in stark contrast 

to the genes identified by the previous two methods. In the spinal cord, the most stable reference genes 

were identified as Mrpl10 and Rpl13a followed by Pgk1. 

Pairwise ΔCt analysis: 

This method works on the same rationale as GeNorm but calculates the stability value (Mean SD) 

differently. It is calculated as the average standard deviation of the Cq value differences that the gene 

exhibits with other genes (Supplementary Table S2). In the cerebellum, Pairwise ΔCt analysis identified 

Mrpl10, Ppia and Sdha as the top three most stable reference genes. The ranking of this method and 

NormFinder are quite similar in the cerebellum. However, in the spinal cord the top three genes were 

identified as Hsp60, Mrpl10 and Pgk1, noticeably different from the NormFinder rankings. 

The overall ranking of genes across all methods recapitulated in Table 2 show that the stability ranking of 

reference genes can indeed vary significantly depending on the tissue studied and the method used for 

validation. This makes the identification of the best reference genes very cumbersome.  
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Suitability of validation methods for longitudinal studies 

We next analysed the suitability of these methods in a longitudinal setting highlighting the assumptions 

of each method and the factors that influence the stability scores.  

CV analysis: 

As mentioned, the CV analysis adopts a direct approach by calculating the variance of a gene across all 

samples taken together. However, this method does not consider the variation across different time 

points or groups. For example, Actb is ranked 2nd in the cerebellum (Table 2) as it exhibits low overall 

variation but the profile of the gene (Fig. 2a) tells us that it does vary across time points. This is a major 

concern in a longitudinal study as this method determines variation in just one dimension whereas the 

dataset exists in two dimensions.  

NormFinder analysis: 

The NormFinder approach is more robust as it calculates the stability based on the intergroup and 

intragroup variation. However, on inspecting the algorithm further, we found that including genes with 

high overall variation can affect the stability rankings of all the genes. Consider the overall variation of 

Actb in the spinal cord (Fig. 3a). It has a CV of 28.1% (Table 2), which is the least among all genes in that 

group. Furthermore, the profile of Actb in the spinal cord is almost flat with minimal variation across 

groups (Fig 3a). Nevertheless, it is ranked 6th in the NormFinder method. Hsp60 and Rpl13a, on the other 

hand, with a higher overall variance and significant intergroup variation when compared to Actb (Fig. 3a, 

b and h) are ranked 3rd and 4th. Hsp60 is in fact attributed the same stability value as PPIA which is ranked 

2nd. This possible flaw in the algorithm is because of the presence of genes with high overall variations. 

Hence, the NormFinder algorithm can potentially be improved after identifying and removing genes with 

high overall variation (See Towards an integrated approach). 

GeNorm analysis: 

The GeNorm algorithm as explained earlier ranks genes based on pairwise correlation. Hence, there is 

always a possibility that this method could estimate correlated and co-regulated genes to be highly stable. 

To validate the rankings of this algorithm we performed Pearson’s correlation on the linearized Cq values 

of all genes and samples (Fig. 4a & 4b, Supplementary Table S3 & S4 for the correlation matrices). We 

observed two distinct patterns of correlation in the cerebellum and the spinal cord, the cerebellum being 

more heterogeneous. In the spinal cord, almost all genes tested exhibit a positive correlation except Actb 

which correlates less and Rps26 which exhibits negative correlation with most of the other genes. This is 

also evident from the raw expression profiles where we see that the raw expression profiles in the 

cerebellum are heterogeneous (Fig. 2). In the spinal cord, however, all the reference genes seem to have 

a similar profile except for Actb and Rps26 (Fig. 3). 
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Interestingly, the highest correlation in the cerebellum dataset was observed in Gapdh/Tbp with a 

Pearson’s r score of 0.937. This gene pair is ranked first in the GeNorm analysis (Table 2) but have the 

highest overall variation in the group (CV=59.1% and 57.2%). In the spinal cord, however, the top two 

genes according to GeNorm are Mrpl10/Rpl13a while the highest correlation is observed in Sdha/Pgk1 

with a Pearson’s r score of 0.97. Intriguingly, the genes that are classed below - Pgk1, Hsp60 and Tbp have 

CV values of 57.8%, 49.4% and 58.6%, which are among the highest in the spinal cord group. This is 

because of their expression agreement with the top two genes.  Seemingly stable genes such as Ppia 

(CV=32.8%, Fig. 3i) and Actb (CV=28.1%, Fig. 3a) are pushed to the lower half of the ranking (Table 2).  

 

These results suggest that GeNorm tends to favour highly correlated genes in a heterogeneously 

correlated set of genes (cerebellum dataset). In a less heterogenous dataset (spinal cord) the ranking does 

not concur with the overall stability of the genes across samples assessed by visual representation (Fig. 3) 

and CV analysis (Table 2). These results taken together show that GeNorm’s ranking can be influenced by 

the extent of correlation in the dataset. This exclusion of possibly stable genes by GeNorm because of 

negative or less correlation was indeed foreseen by Anderson and colleagues when they proposed the 

NormFinder model. We find that to be true in our analysis. 

  

Pairwise ΔCt Analysis: 

The pairwise ΔCt approach seems to work better in a heterogeneously correlated set of genes. The 

rankings of NormFinder and the pairwise ΔCt method are rather identical in the cerebellum. However, in 

the spinal cord apart from Mrpl10 the other top genes - Pgk1 and Hsp60 - show high variation across 

samples as explained earlier. The limitations of this method can also be observed in the spinal cord. Actb, 

which shows a rather flat profile (Fig. 3a) is very distinct when compared to the others. It correlated very 

little with other genes (Fig. 4b, Supplementary Table S4). This increases the difference in the Cq values 

between Actb and others resulting in a high Mean SD (stability value) thereby attributing it with a lower 

rank. Therefore, although a gene varies very little across samples and groups, the pairwise ΔCt approach 

might attribute it with a lower rank if the profiles of the other genes are different. The same argument is 

also true for Rps26 in the spinal cord (Fig. 3j, 4b) 

In conclusion, we find that the ranking of all the methods except CV analysis is influenced by the inclusion 

of genes with high overall variation. Additionally, the pairwise expression stability methods (GeNorm and 

Pairwise ΔCt) could produce misleading results depending on the profile of the highly variable genes 

together with the extent of expression correlation between all the genes. 

Towards an integrated approach 

The first step towards an integrated approach was to remove genes with high overall variance. CV analysis 

calculates the overall variance of each gene and it is the only method where the stability ranking of a gene 

is not influenced by others. We therefore used this method to objectively identify genes with high overall 

variance. We defined a threshold of CV = 50%. Genes that exhibit a CV above this value are taken to be 

highly variable and are excluded from further analysis. In the cerebellum, Gapdh and Tbp were removed 

and in the spinal cord Gapdh, Tbp, Pgk1 and Sdha were removed from analysis. We next determined how 

this exclusion impacts the stability ranking of NormFinder, GeNorm and the Pairwise ΔCt approach in both 

tissues (Table 3).  
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Ranking changes in NormFinder: 

As expected, exclusion of highly variable genes changed the overall ranking of the NormFinder algorithm 

in the cerebellum (Table 3). Although the top two genes remained the same, the ranking of other genes 

changed. Sdha, Hsp60 and Pgk1 that were ranked higher than Actb (Table 2) now obtained ranks lower 

than Actb (Table 3). The top three genes after exclusion of Gapdh and Tbp were identified as Mrpl10, Ppia 

and the third position is shared between Rps26 and Actb. The most stable genes identified by NormFinder 

after exclusion (Table 3) concurs with the CV analysis (Table 2) and with the expression profiles of the 

genes (Fig. 2a, 2f, 2i & 2j) wherein the most stable genes exhibit minimal variation across time points. 

In the spinal cord, similar changes were observed. Ppia was now ranked above Mrpl10 and these two were 

identified as the top two (Table 3). However, the third rank was now attributed to Actb. Hsp60, which was 

previously third finds itself in the lower half of the ranking. Again, the top three genes identified exhibit 

low overall variation in the spinal cord and their profiles exhibit minimal variation across timepoints (Fig 

3a, f and i). 

This indeed shows that exclusion of highly variable genes potentially improves the performance of the 

NormFinder method and can help in improving the quality of the results.  

Ranking changes in GeNorm:  

The changes observed in GeNorm were more drastic in the cerebellum. The new rankings were almost 

the inverse of the previous rankings (Table 2 & Table 3) with Actb/Rpl13a now identified as the most stable 

genes followed by Rps26, Mrpl10 and Ppia. These results, although astonishing, made sense when 

interpreted with the raw expression profiles (Fig. 2). In the absence of Gapdh and Tbp, the algorithm has 

chosen Actb/Rpl13a to be the most stable. Notice how the profiles of these two genes are very similar (Fig 

2a & 2h). The genes ranked just below also have as similar profile to these two. In effect, the previous 

GeNorm rankings (Table 2) were based on genes that had profiles similar to  Gapdh/Tbp (U shaped curve) 

whereas the new rankings are based on genes with the exact inverted profile exhibited by Actb and 

Rpl13a. This change in ranking brings to evidence the possible biases that can occur when using GeNorm 

in a heterogeneously correlated data set.  

In the spinal cord, however, the changes were not so drastic. The top two genes Mrpl10/Rpl13a remained 

the same (Table 2 & Table 3). Nevertheless, the genes that were ranked below showed some noticeable 

change. Actb and Ppia are now ranked above Hsp60. In the spinal cord, most of the genes are correlated 

(Fig. 4b) and their profiles look alike except Rps26 (Fig. 3j). Therefore, the top two genes did not change 

even after the exclusion of the highly variable genes. However, in the absence of these genes, the profile 

of Actb (Fig. 3a) now looks more like Mrpl10/Rpl13a than Ppia or Hsp60 (Fig. 3b, 3f, 3h & 3i). This is a 

possible reason for the change in ranks observed. 

These results taken together yet again show that GeNorm results can prove to be highly biased depending 

on the correlation observed in the dataset and the expression agreement between candidate genes. 
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Ranking Changes in Pairwise ΔCt method: 

In the cerebellum, the changes observed are very similar to the changes observed in the NormFinder 

algorithm (Table 3). Mrpl10 and Ppia are still ranked as the top two. However, Actb and Rpl13a are now 

ranked above Sdha, Pgk1 and Hsp60. Indeed, the removal of Gapdh and Tbp decreased the difference in 

Cq values between Actb and other genes thereby leading to lower Mean SD (higher ranks). The same is 

true for Rpl13a. Similarly, genes that resembled Gapdh and Tbp were now pushed to the bottom as their 

profiles look much different from the top ranked reference genes. In other words, the difference between 

their Cq values and the others have increased across all samples. Interestingly, the ranking of the Pairwise 

ΔCt method and NormFinder seem to concur a lot both before and after exclusion of highly variable genes 

(Table 2 & Table 3). 

However, in the spinal cord, which shows high extent of homogenous correlation, the changes are rather 

significant. The top two genes now are Mrpl10 and Ppia. This is followed by Actb. Hsp60 which was ranked 

1st before exclusion (Table 2) is now close to the bottom of the ranking along with Rps26 (Table 3). The 

reason for this change is the same as stated for the cerebellum. Removal of genes with high overall 

variation results in genes that had a similar profile to the genes removed being classed lower. However, 

this also depends on the similarity of the rest of the genes with the profile of the new highly ranked genes. 

This is a significant hurdle as the ranking of genes becomes inter dependent even after the removal of 

highly variable genes. In the spinal cord, the ranking of this method after exclusion concurs with 

NormFinder (Table 3), that was previously not the case (Table 2). 

Discussion 

As each method analysed in the study has its own advantages and drawbacks, using any of these methods 

alone would not be enough to have bias-free results. Neither would averaging the ranks of genes 

determined from all these methods.  Hence, there is a need to devise an integrated approach that is based 

on the suitability of the method in a longitudinal setting. 

Among the different methods tested in this developmental study, we find that the methods that rely on 

pairwise variation (GeNorm and Pairwise ΔCt method) are ill suited for reference gene validation. 

However, it should be noted that the predictions of the Pairwise ΔCt method did improve after the 

exclusion of highly variable genes. Nevertheless, the ranking inter-dependency does pose a major problem 

for a longitudinal study. 

Regarding the other two methods, the major drawback of the CV analysis is that it does not factor in the 

variation between groups but can however determine the absolute overall variation. The major drawback 

of the NormFinder method is that the stability ranking of the method is influenced by genes with high 

overall variation. It can however calculate stability based on both intergroup and intragroup variation. 

Hence, using these two methods in tandem would negate their respective drawbacks. It goes without 

saying that visual representation of the raw expression profiles is also an additional tool that can be used 

to validate the findings of these two methods.  

Taking all these factors into account, we propose an integrated approach that uses CV analysis, visual 

representation (with ANOVA) and NormFinder to assess the best set of reference genes for a longitudinal 

study (Fig. 5). This method also recapitulates the method used in this study.  
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Once the Cq values of all samples and genes are obtained from qPCR, they are linearized, and CV analysis 

is performed. Parallelly, using the experimental calibrator, the raw experimental profiles of all candidate 

genes are plotted as fold changes (2-ΔCq). This is followed by One-way ANOVA to assess the variation 

among all groups. It should be noted that ANOVA is used just to assess if there is significant statistical 

variation among the means of the groups. It does not assess, by any means, the extent of this variation. 

Thus, visual representation along with the results of CV analysis and ANOVA can help us obtain a rough 

estimate of the most stable reference genes. At this stage, genes that exhibit CV>50% are removed. The 

rest of the genes are then subjected to the NormFinder algorithm. The algorithm then ranks the genes 

based on intergroup and intragroup variation. It also detects the best two genes that can be used for 

normalization with a grouped stability value. These two genes are then used to calculate a normalizing 

factor to normalize all target genes. 

In our study, the integrated approach detected Mrpl10 and Ppia as the two best genes in both tissues with 

a grouped stability of S=0.17 in the cerebellum and S=0.11 in the spinal cord. Nevertheless, we cannot be 

sure if the same genes would be the best references if another time point was added or if one of the time 

points studied here is removed. This limitation indeed exists for all reference gene validation studies. In 

other words, the best reference gene(s) identified by any study using any method is only suitable for that 

experimental setting and cannot be extrapolated.  

Apart from the parameters that have been identified in this study that contribute to the suitability of a 

method, certain other factors are to be considered while constructing a validation study. Indeed, simple 

factors such as the total sample size and number of candidate reference genes play an important role on 

the suitability of a statistical method (22). Similar issues have been detailed and standard guidelines have 

been established to facilitate standardization and reproducibility of qPCR assays (23). 

A notable limitation of this study is the choice of the candidate reference genes. The candidates were 

chosen as they have been conventionally used for normalization of differential expression in the CNS. This 

means that we could have potentially excluded unknown and undiscovered stable references. A more 

thorough approach would be to choose candidate genes from high-throughput data to avoid this inherent 

bias (24–26).  

Furthermore, the commonly used methods described in this study assess stability based on the expression 

variation of reference genes alone. None of these methods consider the eventual variations that would 

be present in the target genes tested. Indeed, a reference gene that faithfully mimics the variation 

observed in the target gene can potentially help in identifying variations caused by the sample and other 

experimental errors. Including this crucial parameter could indeed increase the reliability of a validation 

method.  

Finally, the integrated approach proposed in this study is only applicable for a longitudinal setting. How 

these methods would fare in cross sectional studies remains to be explored. However, the approach 

proposed in this study addresses an important observation that has been constantly made but 

systematically overlooked in validation studies. Our integrated approach, in effect, is contradictory to 

previously held notions that all statistical approaches are applicable to any experimental setting and that 

a minimum of three different statistical approaches are required for robust analyses (27). We remark that 

these notions can be detrimental to the primary motive of a validation study and it is advisable to devise 

integrated approaches based on suitability.  
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Methods 

Animal Tissue Samples:  

C57Bl6/J mice at 4 postnatal time points - P5, P10, P15 and P23 were chosen. For each time point, between 

5 to 7 animals were sacrificed and their spinal cord and cerebellum were isolated for further experiments. 

All aspects of animal care and animal experimentation were performed in accordance with the relevant 

guidelines and regulations of INSERM, Université Paris Descartes and approved by the French National 

Committee of Animal experimentation and ethics (Ref n°: 2016092216181520). 

Total RNA isolation:  

Tissues were dissected out from mice at the stipulated time points, immediately frozen in liquid nitrogen 

and stored at -80°C. Samples were later thawed in 1mL of TRIzol reagent (Ambion Life Technologies 

15596018) on ice followed by homogenization in a bead mill homogenizer (RETSCH MM300) with 5mm 

RNase free stainless-steel beads. Homogenization was carried out for 4 minutes at 20Hz (2 x 2 minutes) 

with a 3-minute pause in between when the samples were placed on ice to cool down. Next, RNA was 

extracted from the homogenate using the manufacturer’s instructions with slight modifications. Briefly, 

100% Ethanol was substituted for Isopropanol to reduce the precipitation of salts. Also, RNA precipitation 

was carried out overnight at -20°C in the presence of glycogen. The following day, precipitated RNA was 

pelleted by centrifugation and washed at least 3 times with 70% Ethanol to eliminate any residual 

contamination. Tubes were then spin dried in vacuum for 10 minutes and RNA was resuspended in 30µL 

of RNase Free water (Ambion AM9937). RNA was then stored at -80°C till RT-PCR.  

RNA Quality, Integrity and Assay: 

RNA quantity was assayed using UV spectrophotometry on Nanodrop One (Thermo Scientific). Optical 

density absorption ratios A260/A280 & A260/A230 of the cerebellum samples were 1.86(±0.03 SD) and 

2.29 (±0.07 SD) respectively.  The corresponding values for the spinal cord samples were 1.95 (±0.03 SD) 

and 2.08 (±0.32 SD) respectively. Furthermore, RNA integrity was verified using denaturing formaldehyde 

agarose gel electrophoresis. All samples showed intact bands for 28S and 18S rRNA and were 

subsequently used for RTqPCR. 

RTqPCR:  

500ng of Total RNA was first subjected to DNase digestion (Promega M6101) at 37°C for 30 minutes to 

eliminate contaminating genomic DNA. Next, DNase activity was stopped using DNase Stop Solution 

(Promega M199A) and RNA was reverse transcribed with Random Primers (Promega C1181) and MMLV 

Reverse Transcriptase (Sigma M1302) according to prescribed protocols. Quantitative Real time PCR 

(qPCR) was performed using Takyon ROX SYBR 2X MasterMix (Eurogentec UF-RSMT-B0701) as a 

fluorescent detection dye. All reactions were carried out in a final volume of 7μl in 384 well plates with 

300 nM gene specific primers, around 7ng of cDNA (at 100% RT efficiency) and 1X SYBR Master Mix in 

each well. Each reaction was performed in triplicates. All qPCR experiments were performed on BioRad 

CFX384. 
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Primer Design:  

All primers used in the study were designed using the Primer 3 plus software 

(https://primer3plus.com/cgi-bin/dev/primer3plus.cgi). Splice variants and the protein coding sequence 

of the genes were identified using the Ensembl database (www.ensembl.org). Constitutively expressed 

exons among all splice variants were then identified using the ExonMine database 

(www.imm.fm.ul.pt/exonmine/). Primer sequences that generated amplicons spanning two constitutively 

expressed exons were then designed using the Primer 3 plus software. For detailed information on Primer 

sequences refer to Table 1. 

Amplification Efficiencies:  

The amplification efficiencies of primers were calculated using serial dilution of cDNA molecules. Briefly, 

cDNA preparations from Cerebella and Spinal cords from different age groups of mice were pooled and 

serially diluted three times by a factor of 10. qPCR was then performed using these dilutions and the 

results were plotted as a standard curve against the respective concentration of cDNA. Amplification 

efficiency (E) was calculated by linear regression of standard curves using the following equation  

E = 10(-1/Slope) 

Primer pairs that exhibited an Amplification Efficiency (E) of 1.93 to 2.05 and an R2 value (Determination 

Coefficient) of 0.98 or above were chosen for this study. 

Data analysis & visualization: 

qPCR readouts were analyzed in Precision Melt Analysis Software v1.2 and the Cq data was exported to 

Microsoft Excel for further calculations. Differential expression was calculated using the 2-ΔΔCt method 

(28,29) and data was visualized using Graph Pad Prism v7.0. 

Statistical Analysis: 

Statistical analysis for reference gene validation was performed using R software packages and Microsoft 

Excel. GeNorm (18) and Normfinder (19) analysis were performed using published script in R package(30). 

Co-efficient of Variance Analysis and the pairwise ΔCt analysis was performed in Microsoft Excel. To assess 

statistical difference in RNA quantities between groups, One-way ANOVA was performed in Graph Pad 

Prism v7.0. Pearson’s correlation matrix of reference genes and the heat maps were also generated in 

Graph Pad Prism v7.0. 
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Figure Legends 

Figure 1: Mbp mRNA levels at post-natal day (P)5, 10, 15 and 23 in the cerebellum and spinal cord. 

P5 group is the experimental calibrator. 

(a) Cerebellar Mbp mRNA levels normalized using either Actb, Mrpl10 or Gapdh mRNA quantities. 

(b) Un-normalized profile of cerebellar Mbp expressed as a fold change of mRNA quantities across groups 

(2-ΔCq). 

(c) Spinal cord Mbp mRNA levels normalized using either Actb, Mrpl10 or Gapdh mRNA quantities. 

(d) Un-normalised profile of spinal cord Mbp expressed as a fold change of mRNA quantities across groups 

(2-ΔCq). 

Results are expressed as the Mean ± SD for each time point. 

 

Figure 2: Raw expression profiles of reference genes expressed as fold changes across experimental 

groups (2-ΔCq) at P5, 10, 15 and 23 in the cerebellum. 

P5 group is the experimental calibrator. 

(a) Actb, (b) Hsp60, (c) Gapdh, (d) Sdha, (e) Tbp, (f) Mrpl10, (g) Pgk1, (h) Rpl13a, (i) Ppia and (j) Rps26. 

Results are expressed as the Mean ± SD for each time point. One-way ANOVA was performed to assess 

differences between the means of all groups. Statistical significance is denoted by P values: *P<0.05, 

**P<0.01, ***P<0.001. The grey area around each profile denotes the evolution of the intergroup and 

intragroup variation across time points.  

 

Figure 3: Raw expression profiles of reference genes expressed as fold changes across experimental 

groups (2-ΔCq) at P5, 10, 15 and 23 in the spinal cord. 

P5 group is the experimental calibrator. 

(a) Actb, (b) Hsp60, (c) Gapdh, (d) Sdha, (e) Tbp, (f) Mrpl10, (g) Pgk1, (h) Rpl13a, (i) Ppia and (j) Rps26. 

Results are expressed as the Mean ± SD for each time point. One-way ANOVA was performed to assess 

differences between the means of all groups. Statistical significance is denoted by P values: *P<0.05, 

**P<0.01, ***P<0.001. The grey area around each profile denotes the evolution of the intergroup and 

intragroup variation across time points.  

 

Figure 4: Pearson’s correlation heatmap of the linearized Cq values (2-Cq) of all genes 

Pearson’s correlation of all genes was performed to identify the extent of expression correlation in (a) 

cerebellum and (b) spinal cord. The colour scheme is denoted next to each heatmap. The numerical values 

used in the colour scheme represent the Pearson’s r score. r = 0 (no correlation), r = +0.5 (positive 

correlation), r = -0.5 (negative correlation). r values closer to +1 or -1 denote strong positive and negative 

correlations respectively. The diagonal lines marked with an “X” are indicative of the correlation of a gene 

with itself and therefore is omitted from analysis. 

 

Figure 5: Integrated approach to determine the best reference genes in a longitudinal study. 

The proposed integrated approach starts by linearizing the Cq values. CV analysis is performed on the 

linearized values. Genes with CV>50% are omitted from further analysis. Parallelly, using the experimental 

calibrator, the raw expression profiles are visualised. One-way ANOVA is the applied to check for variation 

across groups. These two results give a rough estimate of stable references. Then the rest of the genes 
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are subjected to the NormFinder algorithm which determines the two best reference genes which are 

then used for normalizing target genes.  

 

Tables and Table legends 

GENE Gene Name Refseq ID Sequence Primers 
Primer 
size 

Amplicon 
length Efficiency 

Actb Actin  Beta NM_007393.5 Forward ATGGTGGGAATGGGTCAGAAG 21 94 bp 98% 

      Reverse TGCCATGTTCAATGGGGTAC 20     

Gapdh 
Glyceraldehyde-3-phosphate 
dehydrogenase NM_001289726.1 Forward GTGGACCTCATGGCCTACAT 20 125 bp 97% 

      Reverse TGTGAGGGAGATGCTCAGTG 20     

Hsp60 
Heat Shock Protein Family D 
Member 1 NM_001356512.1 Forward AGCACGCTGGTTTTGAACAG 20 132 bp 97% 

      Reverse TTCTCCAAACACTGCACCAC 20     

Tbp TATA Box Binding Protein NM_013684.3 Forward CAGCAGTTCAGTAGCTATGAGC 22 129 bp 101% 

      Reverse CTCTGCTCTAACTTTAGCACCTG 23     

Mrpl10 
Mitochondrial Ribosomal 
Protein L10 NM_026154.3 Forward AGCTGCGGAAACACAAGATC 20 97 bp 100% 

      Reverse AAAAGGGGTAGCAGGTTTCG 20     

Sdha 
Succinate Dehydrogenase 
Complex Subunit A NM_023281.1 Forward AGAAAGGCCAAATGCAGCTC 20 131 bp 96% 

      Reverse GTGAGAACAAGAAGGCATCAGC 22     

Pgk1 Phosphoglycerate Kinase 1 NM_008828.3 Forward ACGGTGTTGCCAAAATGTCG 20 150 bp 105% 

      Reverse TTGGAACAGCAGCCTTGATC 20     

Rpl13a Ribosomal Protein L13a NM_009438.5 Forward TACGCTGTGAAGGCATCAAC 20 88 bp 102% 

      Reverse TTGGTATTCATCCGCTTCCG 20     

Ppia Peptidylprolyl Isomerase A NM_008907.1 Forward GGCAAATGCTGGACCAAAC 19 149 bp 105% 

      Reverse CATTCCTGGACCCAAAACG 19     

Rps26 Ribosomal Protein S26 NM_013765.2 Forward TGCCATCCATAGCAAGGTTG 20 129bp 93% 

      Reverse AAACGGCCTCTTTACATGGG 20     

Mbp Myelin Basic Protein NM_001025259.2 Forward ACTCACACACGAGAACTACCC 21 118 bp 98% 

      Reverse GGTGTTCGAGGTGTCACAATG 21     

Table 1: Details of the primer sequences used in the study.  
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  Cerebellum   

    

       

CV Analysis   Norm Finder 

Gene CV% Rank   Gene Stability S Rank 

Mrpl10 30.4 1  Ppia 0.31 1 

Actb 31.9 2  Mrpl10 0.33 2 

Rps26 35.3 3  Sdha 0.47 3 

Ppia 36.8 4  Rps26 0.48 4 

Hsp60 42.6 5  Pgk1 0.49 5 

Rpl13a 44.7 6  Hsp60 0.5 6 

Sdha 45.2 7  Actb 0.55 7 

Pgk1 47.3 8  Rpl13a 0.58 8 

Tbp 57.2 9  Gapdh 0.62 9 

Gapdh 59.1 10  Tbp 0.68 10 

       

GeNorm  Pairwise Delta C method 

Gene 
Stability 

M 
Rank  

Gene 
Average 

SD Rank 

Gapdh 0.37 1  Mrpl10 0.608 1 

Tbp 0.37 1  Ppia 0.652 2 

Hsp60 0.44 2  Sdha 0.698 3 

Sdha 0.55 3  Rps26 0.699 4 

Pgk1 0.59 4  Hsp60 0.745 5 

Mrpl10 0.63 5  Pgk1 0.751 6 

Ppia 0.65 6  Actb 0.758 7 

Rps26 0.69 7  Gapdh 0.813 8 

Actb 0.71 8  Tbp 0.82 9 

Rpl13a 0.74 9  Rpl13a 0.83 10 
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  Spinal Cord   

    

       

CV analysis  Norm Finder 

Gene CV% Rank  Gene Stability S Rank 

Actb 28.10 1  Mrpl10 0.29 1 

Ppia 32.80 2  Ppia 0.30 2 

Rps26 36.00 3  Hsp60 0.30 3 

Mrpl10 40.50 4  Rpl13a 0.35 4 

Rpl13a 42.80 5  Tbp 0.39 5 

Hsp60 49.40 6  Actb 0.44 6 

Pgk1 57.70 7  Pgk1 0.45 7 

Tbp 58.60 8  Gapdh 0.50 8 

Gapdh 59.20 9  Sdha 0.62 9 

Sdha 72.10 10  Rps26 0.83 10 

       

GeNorm  Pairwise Delta C method 

Gene 
Stability 

M Rank  Gene  
Average 

SD Rank 

Mrpl10 0.19 1  Hsp60 0.535 1 

Rpl13a 0.19 1  Mrpl10 0.536 2 

Pgk1 0.39 2  Pgk1 0.544 3 

Hsp60 0.44 3  Ppia 0.554 4 

Tbp 0.46 4  Tbp 0.565 5 

Ppia 0.48 5  Rpl13a 0.593 6 

Gapdh 0.51 6  Actb 0.623 7 

Sdha 0.53 7  Gapdh 0.665 8 

Actb 0.55 8  Sdha 0.706 9 

Rps26 0.63 9  Rps26 0.934 10 

 

Table 2: Expression stability of candidate reference genes in cerebellum and spinal cord evaluated using 

Coefficient of Variation (CV) Analysis, NormFinder, GeNorm and the Pairwise ΔCt method. Coefficient 

of Variation (CV) analysis is a simple descriptive statistical method where the Cq values of all candidate 

reference genes across samples are first linearized (2-Cq). Next the CV for each gene across all samples is 

calculated and expressed as a percentage. NormFinder uses a model-based approach where it calculates 

the stability of reference genes based on two parameters – the intergroup variation and the intragroup 

variation. The stability score denoted by the S value is a weighted measure of these two parameters. The 

most stable reference gene has the least S value. GeNorm attributes a stability score (M value), which is 

assessed by pairwise variation. The algorithm functions by first identifying two genes with the highest 

expression agreement and therefore high stability. It then calculates the expression variation of every 

other gene sequentially with respect to the previous genes chosen. Therefore, the ranking of the GeNorm 
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algorithm always has 2 genes at the top with the same M value followed by other genes with higher M 

values indicating lower stability. The pairwise ΔCt method has the same rationale as the GeNorm method 

but evaluates the stability score differently. This approach calculates the differences in Cq values between 

one gene and the others across all samples. This is followed by the calculation of the standard deviation 

of these differences. A low Mean SD value indicates high stability. Refer to Supplementary Information  

for more details.  

  

    Cerebellum     

        

           

Norm Finder  GeNorm  Pairwise Delta C 

Gene 
Stability 

S Rank  Gene 
Stability 

M Rank  Gene 
Average 

SD Rank 

Mrpl10 0.19 1  Actb 0.30 1  Mrpl10 0.529 1 

Ppia 0.21 2  Rpl13a 0.30 1  Ppia 0.598 2 

Rps26 0.45 3  Rps26 0.33 2  Rps26 0.614 3 

Actb 0.45 4  Mrpl10 0.40 3  Actb 0.65 4 

Rpl13a 0.47 5  Ppia 0.46 4  Rpl13a 0.703 5 

Sdha 0.51 6  Sdha 0.57 5  Sdha 0.714 6 

Pgk1 0.52 7  Pgk1 0.62 6  Pgk1 0.756 7 

Hsp60 0.64 8  Hsp60 0.67 7  Hsp60 0.823 8 

           

           

    Spinal Cord     

        

           

Norm Finder  GeNorm  Pairwise Delta C 

Gene 
Stability 

S Rank  Gene 
Stability 

M Rank  Gene 
Average 

SD Rank 

Ppia 0.22 1  Mrpl10 0.19 1  Mrpl10 0.472 1 

Mrpl10 0.25 2  Rpl13a 0.19 1  Ppia 0.49 2 

Actb 0.28 3  Actb 0.32 2  Actb 0.494 3 

Rpl13a 0.35 4  Ppia 0.39 3  Rpl13a 0.537 4 

Hsp60 0.48 5  Hsp60 0.47 4  Hsp60 0.68 5 

Rps26 0.64 6  Rps26 0.58 5  Rps26 0.78 6 
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Table 3: Revised rankings of candidate reference genes in cerebellum and spinal cord using NormFinder, 

GeNorm and the Pairwise ΔCt method. In the cerebellum, Gapdh and Tbp were excluded from analysis. 

In the spinal cord, 4 genes – Sdha, Gapdh, Tbp and Pgk1 were excluded from analysis   
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