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Dimensionality reduction is an important task in bioinformat-

ics studies. Common unsupervised methods like principal com-
ponents analysis (PCA) extract axes of variation that are high-
variance but do not necessarily differentiate experimental condi-
tions. Methods of supervised discriminant analysis such as par-
tial least squares (PLS-DA) effectively separate conditions, but are
hamstrung by inflexibility and overfit to sample labels. We would
like a simple method which repurposes the rich literature of com-
ponent estimation for supervised dimensionality reduction.
We propose to address this problem by estimating principal com-
ponents from a set of difference vectors rather than from the sam-
ples. Our method directly utilizes the PCA algorithm as a mod-
ule, so we can incorporate any PCA variant for improved com-
ponents estimation. Specifically, Robust PCA, which ameliorates
the deleterious effects of noisy samples, improves recovery of com-
ponents in this framework. We name the resulting method Dif-
ferential Robust PCA (drPCA). We apply drPCA to several can-
cer gene expression datasets and find that it more accurately
summarizes oncogenic processes than do standard methods such
as PCA and PLS-DA. A Python implementation of drPCA and
Jupyter notebooks to reproduce experimental results are available
at www.github.com/blengerich/drPCA.

Correspondence: blengeri@cs.cmu.edu

Introduction

Many bioinformatics datasets contain more features than sam-
ples, often because -omic assays profile many biomarkers but
collecting data from a large number of individuals is costly. This
reduces the statistical power of machine learning algorithms to
distinguish signal from noise, a problem known as the curse of
dimensionality (1). One way to alleviate this problem is to re-
duce the number of features in the dataset.

Principal components analysis (PCA) is the most popular
way to summarize high-dimensional datasets. PCA projects
datapoints onto the axes of major variation (2). While PCA min-
imizes reconstruction error of the training data as measured in
Euclidean distance, the selected axes (and the resulting data rep-
resentations) are not guaranteed to be biologically meaningful.
For example, in gene expression studies, the axes of major vari-
ation often correspond to technical artifacts or biological pro-
cesses which are not tightly regulated (3). These high-variance
process are selected by PCA in order to reduce recovery error
but they may not efficiently characterize the phenomenon of in-
terest. Projecting data onto the top principal components can

thus discard valuable information about tightly-regulated bio-
logical processes.

We propose to learn the principal components which sum-
marize the differences between groups rather than optimize re-
construction error. If the low-dimensional representations suc-
cinctly capture the variation between groups, they may be more
useful for understanding the processes of differentiation.

To estimate components of differentiation, we apply PCA-
based methods to a set of vectors that define the difference be-
tween case and control groups. We call this framework Differ-
ential PCA (dPCA) and find that Differential Robust PCA (dr-
PCA) compares favorably to supervised dimensionality reduc-
tion techniques while maintaining simplicity, modularity, and
extensibility. Beyond the improved performance on the datasets
presented in this article, we are excited about the possibility
of the framework to be expanded by incorporating other tech-
niques of dimensionality reduction techniques that have been
developed for biological datsets.

A Python implementation of drPCA, as well as Jupyter note-
books to reproduce experimental results, can be downloaded

from !.

Motivating Example

Shown in Figure 1 is an illustration of various dimensionality
reduction methods on a toy dataset. Fig. la depicts the two-
dimensional datapoints we are interested in compressing. This
dataset has two different clusters: a background dataset (or-
ange) generated by X,E;) ~ N((O,O)7 Bg 82] ) and a fore-
ground dataset (orange) generated by the sample-specific pro-
cess Xj(czg) ~ N(Xé;) +(0,2), Bg 8?} ) Each foreground
datapoint is thus vertically offset from a background setting and
perturbed by Gaussian noise.

When analyzing this dataset by components analysis, there
are many experimental questions that may be asked. To under-
stand the differences between foreground and background data,
we may want to identify the vertical axis as the component of
differentiation.

PCA projects the datapoints onto the axis of major vari-
ance (Fig. 1b), but this axis does not distinguish foreground and
background samples. As a result, the clusters are completely
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(a) Raw Data

(b) PCA

(c) drPCA (ours)

Fig. 1. A toy example of dimensionality reduction. (a) Foreground datapoints (blue) are vertically offset from the background datapoints (orange) and perturbed by zero-mean noise.
(b) Projection of datasets onto the first component recovered by PCA. (c) Projection of datasets onto the first component recovered by drPCA. In this setting, drPCA successfully
recovers the axis which differentiates the foreground and background data, while PCA projects both groups onto an axis which does not distinguish foreground samples from

background samples.

overlapping. In contrast, drPCA identifies the axis which differ-
entiates foregrond and background samples (Fig. 1c).

Differential PCA

A differential PCA method (dPCA) was first propsoed by (4)
as a targeted solution for ChIP-Seq data in which the goal is to
identify protein binding capacities which differentiate experi-
mental settings. Because Ji et al. specifically formulated dPCA
for ChIP-Seq experiments, they make the natural assumption
that there are many different experimental settings and many
replicates of each setting. As a result, their proposed method
first computes the mean of the data samples in each group,
and then performs PCA on the dataset of differences between
means. This process leads to selection of axes which character-
ize the protein-binding process studied in CHiP-Seq data, and
has been successfully applied in several studies (5, 6).

When applying this idea to settings beyond ChIP-seq data,
we encounter a major problem: the number of principal com-
ponents is strictly less than the number of datapoints. If each
datapoint is defined as the mean of the replicates for an ex-
perimental setting, then we must always have more experimen-
tal settings than desired components. For the common task of
case/control data, no principal components are defined, and only
a single prinicpal component can be extracted if the dataset is
“grounded" by adding a zero vector.

To alleviate this problem, we do not take the means of each
cluster. Instead, our dataset of difference vectors is calculated
directly from pairs of samples. Given a list of matched sam-
ples, we calculate the high-dimensional difference vectors be-
tween the samples in the foreground set and the samples in the
background set. To make this simple methodological change
explicit, we will refer to the method of Ji ef al. as dPCA-Mean,
and the non-averaged method as dPCA.

Running components analysis directly on this differential
dataset would identify axes of variance in the differences, but
we are seeking to summarize the differential vectors. To an-
alyze the differences as vectors, we “ground" the differential
dataset by adding pseudo-samples of zero. With the number of
zeros equivalent to the number of difference vectors, the prin-
cipal components of the difference dataset summarize axes of
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differentiation between the sample clusters. This procedure is
summarized in Alg. 1.

This construction allows us to utilize the well-studied suite of
denoising and structured variants of PCA by replacing the call
to PC' A in line 6 of Alg. 1 with a call to a variant of PCA.

Algorithm 1 Differential PCA

Input: foreground dataset X, background dataset Y, matched
pairs M, number of components N. Qutput: reduced datasets
XY, components C, singular values S

1: procedure DPCA(X,Y,M,N)
2 D:={}

3 for each (i,5) € M do

4: D:=DU{X[i]-Y[j]}
5: D:=Du{o0}
6:
7

8

9

end for
C,S:=PCA(D)
X :=XCT[: N]
: Y :=YCT[: N]
10: return X,Y,C, S
11: end procedure

Differential Robust PCA. As described below, Robust PCA
(rPCA) decomposes the data into the sum of a low-rank compo-
nent and a sparse component to increase stability in the presence
of noise (7). We can incorporate rPCA in the dPCA framework
by replacing the function call to PC'A in line 6 of Alg. 1 with
a call to rPC A. We call this method Differential Robust PCA
(drPCA). In our experiments, we see that drPCA performs ex-
tremely well in differential datasets, even when case and con-
trol samples are not from matched sources. This highlights the
benefit of the dPCA framework to reuse the rich literature of
methods for components analysis.

Unmatched Samples. If samples are not taken from matched
individuals, it becomes necessary to construct a new dataset of
matched pairs. In this case, we can generate a matched dataset
by uniformly selecting datapoints from each condition to be
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matched. This process produces a noisy differential dataset
which is handled by the denoising aspects of drPCA.

Related Work

The most popular methods for dimensionality reduction are un-
supervised linear methods, which find a linear transformation
that projects the high-dimensional data points onto a nearby
low-dimensional subspace. Of these, the most widely-known
method is principal component analysis (PCA), which learns a
set of linearly orthogonal features that represent the directions
of maximal variance in the original data (8). Since PCA was
first introduced, many variants have been developed. For ex-
ample, Sparse PCA (9) uses an elastic net penalty to encourage
element-wise sparsity in the projection matrix, while Indepen-
dent Component Analysis (10) (ICA) recovers statistically in-
dependent components to separate signal sources. Robust PCA
(rPCA) learns to decompose the data into the sum of a low-rank
component and a sparse component, leading to increased stabil-
ity in the presence of noise (7, 11).

There are also approaches that use richer models for the un-
derlying latent representation of the data. These include meth-
ods that perform simultaneous dimensionality reduction and
feature selection (12) or non-linear dimensionality reduction
methods. Among these deep models, unsupervised methods
such as variational (13) and denoising (14) autoencoders seek to
learn latent features by optimizing data reconstruction in a bot-
tlenecked architecture. These methods may also be extended to
the supervised case (15); however, the deep architecture often
requires more samples than are available for high-dimensional
genomic assays. Additionally, it can be difficult to analyze the
non-linear compression functions in a sample-agnostic way. For
these reasons, we consider only linear dimensionality reduction
techniques in the remainder of this paper.

Supervised Dimensionality Reduction. Supervised meth-
ods use sample labels in order to produce more meaningful data
representations. Here, we describe several supervised methods
frequently used in bioinformatics analyses.

Linear Discriminant Analysis.Linear Discriminant Analysis
(LDA) (16) seeks to separate datapoints according to sample la-
bels. To do so, LDA analytically maximizes cluster separation
under a linear model. As a result, LDA produces clusters which
are extremely well-separated. However, because LDA uses a
closed-form solution, it can be difficult to extend the framework
to recover desired structure in the components and can make it
challenging to recover biologically interpretable components.

Supervised PCA. Supervised PCA (17) modifies traditional
PCA by considering only the subset of explanatory variables
which have sufficient correlation with the sample labels. In this
way, Supervised PCA estimates sparse components which con-
tain only features that may be predictive of the phenomenon
of interest. However, as combinations of these features, the
components may not describe the differences between sample
groups.
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Partial Least Squares and Canonical Correlation Analysis. Par-
tial least squares (PLS) (18) and Canonical Correlation Analysis
(CCA) (19) are bilinear factor models which fit linear projec-
tions for both outcomes and regressors. If categorical outcomes
are used, as in sample labels, PLS is called PLS-Discriminant
Analysis (PLS-DA) (20). While PLS-DA has many pleasing
qualities, including handling high dimensions and multicolin-
earity well (for which CCA struggles), the method can be diffi-
cult to extend. Specifically, we would like to incorporate biolog-
ical knowledge into our component estimation procedure, but it
is not immediately clear how to modify PLS-DA to achieve this
without implementing a new optimization procedure. This mo-
tivates us to consider the simple framework of differential PCA,
in which well-tuned PCA variants may be used interchangably.

Contrastive PCA. A recently developed method for case/control
data is Contrastive PCA (cPCA) (21). cPCA identifies axes
that have large variance in the foreground samples but small
variance in the background samples. In this way, cPCA can
identify patterns of differentiation in the diseased state, poten-
tially implicating dysregulated pathways. As shown in Section,
cPCA and drPCA tend to select different components from can-
cer gene expression data; this suggests that the patterns which
most differentiate cancers from one another are not the onco-
genic processes which caused the cancers.

Differential Expression. For gene expression data, a closely re-
lated framework is differential expression (DE). In DE analyses,
statistical tests are used to assess the probability that the means
of the expression amounts for each gene are the same in both
experimental settings. While both DE and dPCA seek to ana-
lyze the differences between two experimental conditions, there
are stark differences. Firstly, dPCA performs subspace map-
ping rather than feature selection. In addition, we can induce
structure in the recovered components via Bayesian methods,
but this would be difficult in DE studies due to the univariate
testing nature.

Discriminant Analysis of Principal Components. For SNP data,
Discriminant Analysis of Principal Components (DAPC) is
popular for identifying and describing clusters of genetically re-
lated individuals (22). However, DAPC uses population struc-
ture data that is specific to SNP assays. In contrast, our proposed
method is relevant to any case/control study.

Experiments

To understand the behavior of these dimensionality reduction
methods, we perform several experiments. First, we use simu-
lated data to quantify how well drPCA recovers axes of differ-
entiation from data. Next, we turn to cancer gene expression
analysis to inspect the biological processes which differentiate
tumor samples from healthy controls.

Simulated Data. We simulate data according to a mixture of

two clusters. The background dataset is generated by X 15;) ~

N ((0,0)7 E ﬂ ), and a foreground dataset is generated by
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Fig. 2. Recovery of axes of differentiation from simulated data for varying levels of noise governed by o. On the y-axis, we show the cosine similarity between the true axis of
differentiation and each method’s first component. Results are averaged over 5 experimental settings, with standard deviations depicted by error bars. Results from other baseline
methods are omitted because they all have cosine similarity below 0.8. In settings with low noise and moderate sample sizes, drPCA outperforms PLS-DA. In settings with large

noise or very few samples, PLS-DA outperforms drPCA.

. (i) (i) Lo
the sample-specific process ng ~ N(ng +p,0 {O J ),

creating an offset of 1 between the foreground and background
clusters. In this experiment, each datapoint consists of 1000 di-
mensions. To simulate biological data in which many features
are unrelated to the process under study, we make the offset
sparse, with only 5 non-zero entries. We generate n foreground
and background datapoints according to this structure, and mea-
sure the cosine similarity between the estimated axes of differ-
entiation and . Results for various n are shown in Figure 2.
As shown in Figure 2, drPCA outperforms the baselines at
recovering p, the axis of differentiation, in settings with low
noise and moderate sample sizes. In settings with large noise or
very few samples, PLS-DA outperforms drPCA. Other baseline
methods have extremely poor performance on this task.

Cancer Gene Expression Studies. We investigate several
RNA-seq gene expression datasets from The Cancer Genome
Atlas®. These datasets profile cancer patients and contain tumor
samples with some matched healthy tissues. We inspect three
different cancer types: Breast Invasive Carcinoma (BRCA),

2cancergenome.nih.gov
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Lung Adenocarcinoma (LUAD), and Glioblastoma Multiforme
(GBM). These datasets contain 1102, 533, and 312 samples
from cancer tissues, respectively. In addition, they contain 113,
59, and 10 samples from control tissues, respectively. The
datasets are extremely high-dimensional; the datasets contain
15584, 14533, and 30584 distinct transcripts after threshold-
ing features for a minimum standard deviation. In addition to
these disease-specific datasets, we also evaluate dimensionality
reduction on the combination of the three datasets (Combined).
For the GBM dataset, we supplement the matched differences
with 750 unmatched differences produced by randomly match-
ing case and control samples. To evaluate the performance of
the estimated components, we hold out 40% of the patients from
each dataset for downstream tasks.

Differential Components Separate Case and Control
Samples. We first visually inspect the clusters induced in the
top two components of each method. The projected data for the
Combined dataset are shown in Fig. 3; similar results for the
BRCA, LUAD, and GBM datasets are available at github.
com/blengerich/drpca.

Standard PCA (Fig. 3a) and unsupervised variants (Fig. 3b,

Lengerich etal. | Differential Principal Components


github.com/blengerich/drpca
github.com/blengerich/drpca
https://doi.org/10.1101/545798
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/545798; this version posted February 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

g ~satpn

(a) PCA

(d) cPCA

() CCA

(h) PLS-DA

- sebefziiniy,

(b) rPCA (c) ICA

(e) Sup. PCA (f) LDA

(i) drPCA

Fig. 3. Low-dimensional representations of samples from the combined cancer dataset. The supervised methods LDA (f), CCA (g), PLS-DA (h), and drPCA (i) all separate case and

control samples.

Fig. 3c) project the data onto axes which do not differentiate
case and control samples. While these axes may be useful for
characterization of the samples, they are unlikely to correspond
to processes which are causal for the tumors. In addition, we see
that Contrastive PCA (Fig. 3d) effectively identifies processes
which have high variance in the cancer samples but low variance
in the control samples. These components may correspond to
processes which are dysregulated in tumors but not oncogenic,
a hypothesis supported by inspection of the component loadings
(Tab. 1).

In contrast to the unsupervised dimensionality reduction
methods, the supervised methods (Figs. 3e,3f,3g,3h,31) all ef-
fectively separate case and control samples, with separability
transferring betwen the training and test sets. Of these, drPCA
and PLS-DA produce the most visually distinctive clusters, with
mean silhouette scores greater than 0.6.

Differential Representations are Useful for Predictive
Tasks. To test the presence of biological signal in these low-
dimensional representations, we measure the performance of
random forest (RF) classifiers for two tasks. First, we train the
RFs to label case and control samples. After learning compo-
nents from the training set, we optimize a RF classifier to pre-
dict case/control labels by cross-validation on the same training
set. Plotted in Fig. 4 are the performances of the classifiers on

Lengerich etal. | Differential Principal Components

the held-out test set projected into a given number of compo-
nents. As expected, the supervised methods CCA, PLS-DA,
LDA, dPCA, and drPCA all significantly outperform the unsu-
pervised methods because they use the sample labels. However,
the scientific utility of the representations produced by PLS-DA,
LDA, and CCA are questionable; changing the task severely de-
grades predictive performance.

After reducing dimensionality based on case/control labels,
we train another RF to predict the tissue of origin for each sam-
ple (recall that the combined dataset is composed of samples
from three different tissue types). As shown in Fig. 5, the LDA
representations contain very little information that is predictive
of this task. As a result, the AUROCS using this method does
not surpass 0.6. The representations from CCA and PLS-DA
also struggle on this simple task. In contrast, the representa-
tions from dPCA and drPCA are among the best-performing
representations for this task. This suggests that the differential
components are biologically meaningful while the baseline su-
pervised methods overfit to the labels.

Differential Components Summarize Oncogenic Pat-
terns. Do the components which separate tumor samples from
control samples give high weight to oncogenic processes? To
answer this question, we sort the variables according to the mag-
nitude of the weight in the first component of each method.
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Fig. 4. Prediction of case/control status from the Combined dataset. The y-axis is the areas under the Receiver Operating Characteristic curves (AUROCSs) of the prediction, with
x-axis indicating the number of components used in the representations. Errorbars indicate the standard deviation over 3 train/test splits.
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Fig. 5. Prediction of tissue of origin from the Combined dataset, with representations learned using case/control labels. The y-axis is the areas under the Receiver Operating
Characteristic curves (AUROCs) of the prediction, with x-axis indicating the number of components used in the representations. Errorbars indicate the standard deviation over 3
train/test splits. The representations from LDA, CCA, and PLS-DA underperform most unsupervised methods, demonstrating that the components are not biologically meaningful. In

contrast, the drPCA representations are among the best-performing.

From this ranked list, we count the number of selections an-
notated as oncogenes or tumor suppresor genes (TSG) in COS-
MIC (24) at each rank. As shown in Figure 6, the differen-
tial components give the highest weight to these oncogenic pro-
cesses.

6 | bioRxiv

For a finer-grained anlaysis, we inspect the loadings of the
components and variable selection patterns of each of the meth-
ods. Shown in Table 1 are the 5 highest weighted genes in
the top component for each method; in addition to the meth-
ods for components analysis, we also compare to the results

Lengerich etal. | Differential Principal Components
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Fig. 6. Oncogene/Tumor Suppresor Gene (TSG) selection according to weight in the first component estimated from the Combined cancer dataset. Differential methods give the

highest weights to cancer-associated genes.

to DriverDB (23). The components which differentiate tumor

LIMMA | PCA | ICA | cPCA
KIAA0101* | RP1-102G20.2 |  TBCID9* MYHI*
PAFAHIB3* | RNYIPIS FOXA1* ACTCI1*

C4 OFD1P17 RAB30* AC005616.2
F2R* RP1-102G20.5 | RP11-102N12.3 DBET
ARHGAP6* | RP1-102G20.4 DACH1* MYOG*
Sup. PCA | CCA | PLS-DA
RP1-102G20.2 VEGFD AOC3*
RNY1P15 RP11-25718.2 | RP11-736K20.4
OFD1P17 CLEC3B* VEGFD
RP1-102G20.5 | RP11-193H18.3 | CLEC3B*
RP1-102G20.4 CA4* NPR1*
LDA | dPCA | drPCA
GLYAT* ZSCAN25* ZSCAN25*
CIDEC* C2orf42* C2orf42*
ADIPOQ* FBX042* FBXO42*
TRHDE-AS]1 FAM133B* FAM133B*
Cl4orf180%* C2orf49* RBM33*

Table 1. The most highly weighted genes in the first component that each method
recovers from the Combined cancer dataset. Genes associated with tumor driver mu-
tations (as annotated in DriverDB(23)) are indicated by a * symbol. The drPCA method
gives highest weight to putative driver genes, while many baseline methods pay most
attention to high-variance processes, often ribosomal proteins.

of the LIMMA differential enrichment test (25), as compiled
by GEPIA (26). Traditional components analyses tend to give
higher weight to genes which are associated with high-variance
processes, such as cell cycle or ribosomal proteins. In contrast,
the differential components select variables more directly re-
lated to tumor generation. Each of the top 5 genes selected
by drPCA has been implicated as a driver mutation according

Lengerich etal. | Differential Principal Components

samples from control samples are indeed mostly composed of
genes known to be associated with cancer.

Discussion

Summarizing the ways in which samples differ between experi-
mental conditions is a central task in scientific inquiry, but made
difficult by the large dimensionality of modern bioinformatics
datasets. Common methods of unsupervised dimensionality re-
duction produce components which do not distinguish between
experimental groups. This problem is worsened by the selective
pressure of the observations in gene expression studies; axes of
major variation in the data often correspond to unregulated, and
largely noncritical, processes. In this paper, we have presented
a way to extract the processes which differentiate experimental
conditions by adapting unsupervised techniques to the super-
vised setting. Our framework can outperform methods designed
specifically for supervised data when denoising methods, such
as in drPCA, are used.

We are interested to see the variety of unsupervised dimen-
sionality reduction techniques that can be repurposed in this
supervised setting. For instance, we may want to estimate
components which correspond to genetic pathways, similarly to
(27, 28). This can be accomplished under the differential PCA
framework by using a Bayesian PCA method with a prior that
links genes according to pathway annotations. Even without
these additional biological information, we have shown that dr-
PCA outperforms common supervised dimensionality reduction
methods at producing biologically-meaningful components.
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Conclusions

In this paper, we have considered whether components analy-
sis can compress samples from case/control studies onto bio-
logically meaningful axes. We found that PCA and unsuper-
vised variants do not separate case and control samples due
to overemphasis on high-variance processes such as cell cycle
and ribosomal processes. Supervised methods of dimensional-
ity reduction separate case and control samples, but the resulting
components have questionable biological utility and are overfit
to sample labels. To address this problem, we have presented
differential PCA: a method which applies PCA on the set of
difference vectors between the samples. Our new method Dif-
ferential Robust PCA (drPCA) effectively identifies axes of dif-
ferentiation, outperforming standard supervised methods such
as PLS-DA even under noisy conditions. When applied to gene
expression data of cancer patients, drPCA produces components
which summarize oncogenic processes. In future work, we are
interested to incorporate prior biological knowledge to extract
pathway-level components.
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