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Abstract 

In recent years, the use of a large number of object concepts and naturalistic object images has been 

growing enormously in cognitive neuroscience research. Classical databases of object concepts are based 

mostly on a manually-curated set of concepts. Further, databases of naturalistic object images typically 

consist of single images of objects cropped from their background, or a large number of uncontrolled 

naturalistic images of varying quality, requiring elaborate manual image curation. Here we provide a set 

of 1,854 diverse object concepts sampled systematically from concrete picturable and nameable nouns in 

the American English language. Using these object concepts, we conducted a large-scale web image 

search to compile a database of 26,107 high-quality naturalistic images of those objects, with 12 or more 

object images per concept and all images cropped to square size. Using crowdsourcing, we provide 

higher-level category membership for the 27 most common categories and validate them by relating them 

to representations in a semantic embedding derived from large text corpora. Finally, by feeding images 

through a deep convolutional neural network, we demonstrate that they exhibit high selectivity for 

different object concepts, while at the same time preserving variability of different object images within 

each concept. Together, the THINGS database provides a rich resource of object concepts and object 

images and offers a tool for both systematic and large-scale naturalistic research in the fields of 

psychology, neuroscience, and computer science. 
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Introduction 

Two central goals in cognitive neuroscience are to elucidate how we recognize the objects in the world 

around us and how we are able to form categories based on our percepts and our semantic knowledge. 

Reaching these goals requires us to overcome two challenges. First, we need to understand how the visual 

system identifies the relevant object features from the almost infinite number of possible object 

appearances. Second, we need to understand how observers use this information about the object and 

integrate it with their object knowledge to uniquely identify its semantic content while distinguishing it 

from the thousands of other concepts to which it could belong. Computer science, in particular computer 

vision, is grappling with similar challenges for artificial visual systems. Crucially, for any study involving 

object concepts or the visual presentation of object images, both the selection of concepts and the images 

depicting those concepts can strongly influence the results of a study and the conclusions that are drawn. 

The need for large-scale systematic sampling of object concepts and naturalistic object images 

In recent years, in the fields of psychology, neuroscience and computer science there has been a growing 

interest in utilizing a wide range of object concepts and naturalistic images (Deng et al., 2009; Einhäuser 

& König, 2010; Felsen & Dan, 2005; Oliva & Torralba, 2007; Pereira et al., 2018). This interest arises 

primarily from the goals of (1) achieving an ecologically-valid understanding of visual and semantic 

cognition, and (2) building generalizable computational models of object recognition (e.g. Krizhevsky, 

Sutskever, & Hinton, 2012) and semantic knowledge (e.g. Mikolov, Yih, & Zweig, 2013; Pennington, 

Socher, & Manning, 2014). Thus, the availability of a wide range of systematically-sampled object 

concepts and naturalistic object images promises not only to benefit large-scale experimental and 

computational approaches to the study of visual and semantic cognition; it also offers classical small-scale 

experimental approaches the possibility of selecting a more representative set of concepts and object 

images for testing specific hypotheses regarding cognition, behavior, and neural representations (Pereira 

et al., 2018). 

Influential databases of object categories and concepts (Battig & Montague, 1969; Van Overschelde, 

Rawson, & Dunlosky, 2004) cover only a selective subset of the objects found in the everyday 

environment. In contrast, the lexical database WordNet (Fellbaum, 1998) offers a highly-systematic 

taxonomy of a vast range of words and their meaning, but its great detail makes it challenging to select a 

representative set of object concepts. Understandably, for many experiments the manual selection of 

individual objects or object categories is still common practice. 

For object images, there are numerous databases from research in psychology and neuroscience, which 

most commonly contain line drawings of objects (Snodgrass & Vanderwart, 1980) or photographs of 
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objects cropped from their natural background (for a review, see Brodeur, Dionne-Dostie, Montreuil, & 

Lepage, 2010; Brodeur, Guérard, & Bouras, 2014)). However, naturalistic object context has been shown 

to play an important role in object recognition (Oliva & Torralba, 2007), and cropped object images may 

overemphasize the role of shape in neural representations of objects (Bracci, Daniels, & de Beeck, 2017; 

Bracci & de Beeck, 2016; Coggan, Liu, Baker, & Andrews, 2016; Proklova, Kaiser, & Peelen, 2017; 

Proklova, Kaiser, & Peelen, 2016). In addition, such databases usually offer only one example per object 

concept, while the use of multiple object examples is desirable for measuring generalizable 

representations. In the machine learning community, several large-scale object image databases have been 

developed and are commonly used, with up to thousands of image examples per concept (Deng et al., 

2009; Everingham, Van Gool, Williams, Winn, & Zisserman, 2010; Griffin, Holub, & Perona, 2007; 

Krizhevsky & Hinton, 2009). However, most of the images contained in these databases are too small to 

be of practical use in psychology and neuroscience experiments, and images vary dramatically in aspect 

ratio and quality and often still lack naturalistic backgrounds, making it challenging to use them (Chang, 

Pyles, Gupta, Tarr, & Aminoff, 2018). More recent databases (Kuznetsova et al., 2018; Lin et al., 2014; 

Zhou, Lapedriza, Khosla, Oliva, & Torralba, 2018) may offer higher quality, but are composed mostly of 

images containing multiple different objects at the same time or naturalistic scenes such as cities, beaches, 

or forests. In contrast to real-world scenes, many researchers are interested in using image databases 

focused on images of individual objects.  

Aim of the object concept and object image database 

With this present work, we aim at providing researchers in the fields of psychology, neuroscience, and 

computer science with (1) a large-scale systematic sampling of object concepts, (2) a list of object 

categories derived from those concepts, and (3) a large set of high-quality color images of objects with 

naturalistic background. This database, together with similarity matrices based on semantic embeddings 

and activations in a deep convolutional neural network, will be made freely available for academic 

purposes in the final journal version of the paper. Until that time, a download link is available upon direct 

contact with the authors. 

Methods 

Participants 

We recruited a total of 1,395 workers from the online crowdsourcing platform Amazon Mechanical Turk 

for different tasks involved in the creation of this database, including object image naming and object 

categorization (see below). This research was approved by the NIH Office of Human Subjects Research 

Protections (OHSRP), and workers were compensated financially for their time. 
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Identification of picturable and nameable object concepts 

The selection and identification of the 1,854 object concepts used for this image dataset encompassed a 

three-step procedure that is described in more detail below. First, from an existing word database, we 

gathered a list of nouns that represent concrete, picturable object concepts. Second, we carried out word-

sense disambiguation by assigning each noun one or several unique WordNet identifiers (“synsets”) that 

represent the meaning of this noun, thus allowing us to eliminate synonyms or identify nouns with 

multiple meanings. Third, we identified the subset of synsets that matches their use in everyday language, 

by selecting representative images for all synsets and testing how consistently they were named by human 

subjects. Note that the final list is not intended to be a complete and definite set of all picturable and 

nameable object concepts in the English language (see Discussion). However, the steps below constitute a 

systematic approach towards their selection and a detailed description of the different decisions involved. 

In addition, note that the actual number of selected nouns at each of these steps may deviate slightly from 

the numbers reported below, as in some cases during each selection step we identified items that were 

mistakenly kept but should have been excluded at earlier steps. 
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Figure 1. Concept and image selection procedure and graphical user interfaces (GUIs) used for concept and image 

selection. A. Procedure for selection of 1,854 concepts in THINGS database. B. GUI used for word-sense 

disambiguation based on WordNet senses (synsets) and example images from ImageNet. C. Procedure for selection 

of 26,107 object images in THINGS database. D. GUI used for initial manual selection of candidate images with 

sufficient quality. 

Step 1: List of concrete picturable nouns in American English 

To compile a list of concrete picturable nouns, we used a list of American English lemma (Brysbaert, 

Warriner, & Kuperman, 2014) that contains concreteness ratings for ~40,000 words and two-word 

expressions (e.g. “ice cream”). For simplicity, we will collectively refer to these words or two-word 

expressions as words. In this list of American English lemma, concreteness ratings ranged from 1 to 5 and 

reflected the level through which the word could be experienced through one of the five basic senses (5: 

concrete, 1: abstract). The concreteness rating of each word is based on the average of 25 to 30 unique 

behavioral responses. 

To select candidate lemma from this list, we applied two selection criteria. First, we restricted our 

selection to words that were tagged as nouns. We used part-of-speech tags provided with the concreteness 

ratings (Brysbaert, New, & Keuleers, 2012) and extended them using the British Lexicon Project 

(Keuleers, Lacey, Rastle, & Brysbaert, 2012), which offers multiple tags per word (e.g. “cook” both as 

noun and as verb). Second, we restricted our selection of words to those with a concreteness rating ≥ 4. 

This choice was based on a preliminary manual screening of the list, since we only rarely identified 

candidate words with a lower concreteness rating. Based on these criteria, we identified 8,671 nouns. 

Following this initial selection, we manually screened the list based on a number of exclusion criteria (a 

list of the excluded lemma is provided with this database). The exclusion criteria are: (1) not a noun 

despite part-of-speech tag, (2) plural form when singular form with the identical meaning is found in the 

list (e.g. exclude “cats” when “cat” is present, but keep “glasses” when “glass” is present), (3) clear 

synonym (e.g. “motorcar” vs. “car”), (4) nouns that were clearly not nameable or too general (e.g. 

“equipment”), (5) navigable places (e.g. “garden”) including integral parts of buildings (e.g. “steeple”), 

(6) nouns referring to persons in certain roles (e.g. “doctor,” “pilot,” “audience”), with certain origin (e.g. 

“Indian”), or with certain color of skin (e.g. “albino”), (7) fictitious or extinct beings for which no real-

world photograph can exist (e.g. “dragon,” “werewolf,” “dinosaur”), (8) relationship statuses (e.g. 

“father,” “granddaughter”) (9) body parts that are either internal organs or muscles (e.g. “liver”) or where 

the noun describes these as being parts of other body parts (e.g. “fingernail,” “forearm”), (10) bodily 

fluids (e.g. “urine”), (11) body parts of animals that do not serve as tools for humans (e.g. exclude “beak” 

but include “feather”), (12) non-visual but sensory nouns (e.g. “click,” “music”), (13) action nouns (e.g. 
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“smack”), (14) times of day (“night”), (15) units and geometric figures (e.g. “quart,” “hexagon”), (16) 

fluids or light that cannot be ascribed to an object (e.g. “floodwater,” “moonlight”) or specific drinks that 

cannot be identified without a label (e.g. “whisky,” “gin”), (17) celestial bodies (e.g. “moon”), (18) 

specific drugs, pharmaceuticals and chemical compounds, (19) parts of objects that are difficult to 

describe in isolation (e.g. “seam,” “rim”), (20) fabrics and unspecific surface materials (e.g. “tweed,” 

“teakwood”), (20) brand names unless objects of other brands share this name (e.g. exclude “iPad” but 

include “jeep”) and (21) nouns denoting or implying sexual content or nudity. In addition to these 

exclusion criteria, post-hoc we chose to exclude all nouns that require text for identification of the object 

(e.g. “lexicon”), or that refer to objects that necessarily contain text (e.g. “newspaper”), since for an image 

database the identification should not rely on text or be biased by the written text. Finally, we excluded a 

small set of nouns that were not in WordNet (see below) and that we judged as very unusual (e.g. 

“wishbone”). This selection left us with a list of 3,397 words. 

Step 2: Word sense disambiguation through assignment to WordNet synsets 

Each of the nouns identified in the previous step may carry more than one meaning, making it ambiguous 

as to which concept the noun represents (e.g. “bat” as an animal or “bat” as a sports item). In addition, the 

list may contain synonyms, i.e. different words with the same meaning that could be merged (e.g. “couch” 

and “sofa”). To identify all unique picturable meanings from this list of words, we used WordNet to carry 

out word-sense disambiguation, i.e. the assignment of words to unique senses. In WordNet (Fellbaum, 

1998), a meaning or sense is referred to as a synset, which comes with a unique identifier (synset ID), a 

list of synonyms, and a definition. Note that while the coverage of word meanings in WordNet is 

extensive, some meanings are not covered, and others are represented by multiple synsets that could in 

principle be merged. 

To identify unique synsets, we first compiled all candidate synsets for each word in our list. For words 

with only one synset, the assignment between word and synset did not require any disambiguation. For 

those words, we removed synsets whose definition did not represent a picturable object and that had 

mistakenly not been eliminated in the previous step. For all remaining words, we created a graphical user 

interface (GUI) to present each word alongside all of its synsets (Figure 1). In the GUI, the reference 

word appeared on top, alongside all candidate synsets with different synonyms, definitions and, when 

available, three matching images extracted from ImageNet (Deng et al., 2009). For every word, two 

independent raters selected the meaning(s) that best matched the word. Two raters carried out this 

assignment for one half of the words (even numbers), and another two raters for the other half (odd 

numbers). The mean inter-rater agreement was 82.53%, and disagreements were resolved by a third rater. 

Based on these ratings, we merged synonymous words by picking the synonym used most frequently, 
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using the word frequency provided in the Corpus of Contemporary American English (Davies, 2008). In 

addition, we assigned words with multiple meanings separate identifiers (e.g. “bat1” and “bat2”). This 

process left us with a total of 3,228 object concepts based on the meaning of different words. 

Step 3: Object naming task to identify picturable object concepts 

Using the list of concepts from the previous step, we identified representative images depicting those 

concepts and conducted an object naming task. The aim of this task was to identify the set of objects for 

which participants use the intended object concept and separate them from those for which they use a 

different one. The reasoning behind this approach is twofold. First, including object concepts according to 

how they are named improves their comparability and prevents ambiguity with respect to object 

knowledge. Second, for a database of object images, an observer should be able to both recognize an 

object and identify the object concept. There are several reasons why there might be disagreement 

between the concept and the name an observer uses for the object in the image. First, some of these words 

are quite specific and reflect a subordinate category level (e.g. “blue jay”) which may not correspond to 

the description commonly used by human observers (e.g. “bird”). Indeed, this procedure has been used 

previously, and it was demonstrated that naming results commonly reflect the basic level in a naming task 

(Rosch et al., 1976). Second, some of the concepts represent object parts (e.g. “hat ring,” “lip”) which can 

only be shown in the context of an object when zooming in, but which may lead observers to nevertheless 

focus on the object (e.g. “hat,” “mouth”). Finally, naming might be highly inconsistent or incorrect, 

indicating that observers have difficulties identifying the object concept or disagree which concept to use. 

We tested object naming by selecting a representative object image with natural background for each of 

the 3,228 object concepts and presenting them to workers on Amazon Mechanical Turk (n = 445, mean 

number of responses per worker: 86.29). Each image was shown to 10 workers who were asked to label 

the object or “thing” that was most prominent in the image by typing it into a box below the image. An 

additional set of 10 responses was collected for ambiguous cases. The answers were corrected for spelling 

errors and plural forms, and different synonyms of a synset were labeled as reflecting the same concept. 

Our inclusion criteria were rather liberal, i.e. we opted to rather include a concept than to falsely exclude 

it. All responses are made publicly available with the database, including links to the representative 

images. Exclusion criteria for object concepts were: (1) if the expected label was provided only once, (2) 

if the expected label was provided only twice while a different label was consistently provided at least 

five times, (3) if the expected label was provided only three times while a different label was consistently 

provided at least six times. Criteria for collecting an additional 10 responses were: (1) If the expected 

label was provided twice while a different label was consistently provided less than five times, or (2) if 

there were an equal number of responses with the expected label and a different label. In addition, we 
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manually inspected all concepts marked for exclusion, and when there was any doubt that the image was 

not representative enough, we selected a new image and retested the concept. After collecting the 

additional responses, all concepts that were still not clearly included or excluded were left in. Based on 

this approach, an additional 1,374 concepts were excluded. Of those, 706 were named at a higher 

taxonomic level, 630 were named inconsistently, and 38 referred to a whole object when the object 

concept reflected a part. This left us with a final number of 1,854 object concepts. 

Identification of higher-level object categories 

Having identified the final set of 1,854 object concepts, we sought to identify a set of higher-level object 

categories. To this end, we followed two strategies. In line with the approach of identifying the concepts 

based on their use in everyday language when naming concrete objects, we chose a similar “bottom-up” 

strategy of having workers on Amazon Mechanical Turk identify the categories each object belongs to. 

However, this approach likely results in errors based on incorrect beliefs (e.g. that a peanut is a nut rather 

than a legume) and may lead to incomplete categories. Hence, we complemented this strategy with a “top-

down” approach, identifying members of the dominant categories based on the taxonomy of word senses 

inherent in WordNet. 

Bottom-up determination of object categories 

For the bottom-up strategy, we conducted a two-step procedure on Amazon Mechanical Turk, first asking 

workers to propose candidate categories for those objects and second asking a separate group of workers 

to select the most appropriate category from those candidates. In more detail, in the first step, for each 

concept and representative image we asked 20 workers to provide the category this object belongs to (n = 

427, mean number of responses per worker: 43.41). The instructions included clear examples using 

abstract concepts and categories, in order not to set a strong baseline for what results are expected for 

concrete objects (e.g. “blue” is a “color,” “Susan” is a “name” or “female name”). We excluded responses 

that simply repeated the original concept, but kept all other responses, including arbitrary categories (e.g. 

“sports” rather than “sports item” or “sports equipment”). In addition, we corrected all responses for 

spelling errors, and converted plural form to singular form (unless the original concept was a plural noun, 

such as “glasses”). 

In the second step, to identify representative categories from those resulting in the first round, we asked 

another 20 workers per concept (total n = 523) to provide a category for the object. This time, however, in 

addition to the word representing the concept and the representative image, we showed workers the 

answers that had been provided by workers in the previous step, in random order. Workers were 

instructed that some of the responses were incorrect, that they could combine previous responses, and that 
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they could use their own category if they deemed all responses inappropriate. Responses of one worker 

were removed who carried out an unusually large number of responses with unusually fast response times 

(mean number of responses per worker: 67.22, number of responses of excluded worker: 1,990). All 

remaining responses in this second step were again corrected for spelling errors, and plural form was 

converted to singular form. In addition, we unified responses that were synonymous (e.g. “beverage” and 

“drink”) and removed qualitative statements (e.g. “large,” “small,” “hot,” “cold,” etc.), colors, and place 

of origin (e.g. “Asian,” “French”). Responses were automatically assigned to a higher-level category if (a) 

there were 11 or more consistent responses or (b) there were at least 5 consistent responses while less than 

half that number were a consistent alternative. All assignments were later checked manually for accuracy, 

and higher-level categories were assigned to all concepts based on a summary of the provided categories 

or the use of synonymous categories. Finally, from the list of all categories, we identified categories that 

were used synonymously or overlapped strongly (e.g. “kitchen tool” vs. “kitchen utensil”) and merged 

them. 

Top-down determination of object categories 

For the top-down strategy, we used the taxonomy in WordNet to identify all concepts that were 

subordinate to the 27 high-level categories identified in the previous step. To this end, we first identified 

the synsets of the high-level categories. Of those categories, 23 were found in WordNet, and we used the 

category “decoration” in place of “home décor,” due to the strong overlap between the members of both 

categories, making it a total of 24 categories. For each of the 1,854 object concepts, we recursively 

ascended each branch of the WordNet tree until we reached the top synset. We then assigned the object 

concept to any of the 24 categories that was crossed while ascending through WordNet. Note that the 

category “car part” does not contain any subordinate entries in WordNet, i.e. in the Results section, the 

number of categories is described as 23. 

Selection of images for object image database 

For the final object image database, the goal was to identify at least 12 images for each of the 1,854 object 

concepts, i.e. a minimum of 22,248 images. Image selection and postprocessing (e.g. cropping) were 

conducted by the authors. Note that below, the identification of candidate images and postprocessing are 

described as sequential steps. However, the process of selecting object images went through multiple 

cycles until a sufficient number of suitable images had been identified for all concepts. 

Image selection criteria 

The goal for this object image database was to select high-quality, naturalistic images of objects 

belonging to the 1,854 object concepts. Each image was a photograph of one or several examples of a 
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given object concept that was cropped to square size. Since the selection criteria (detailed below) required 

us to exclude the majority of candidate images, for some concepts it was very difficult to find examples of 

suitable quality. For those concepts, we decided to slightly loosen some of these selection criteria. In the 

following, when we write of “exclusion,” this refers to strict exclusion criteria for images, while the term 

“avoiding” refers to exclusion criteria that were less strict, depending on how difficult it was to find 

object examples. 

The objects were generally chosen to be the central component of the image, and while additional objects 

of other concepts were allowed to be present in an image, they were not allowed to dominate the image. 

For example, the presence of human body parts was permitted in images of clothing; however, we 

avoided images showing human faces due to their strong salience (with the exception of concepts defined 

by human faces, e.g. “face,” “man,” “woman”). Since each image was cropped to a square in order to 

standardize the image size, we focused on identifying images that would still show the majority of an 

object after cropping. 

The images were photographs with a minimum size of 480 ´ 480 pixels, but most were 600 ´ 600 pixels 

or larger (see Figure 3B). We selected images of objects with naturalistic background, i.e. we avoided 

images with uniform background and excluded images for which the natural background had been 

removed or which had been modified in a non-naturalistic and recognizable fashion. We avoided images 

in which the object was blurry or for which lighting was over- or underexposed, and we excluded images 

with non-naturalistic colors (including grayscale), strong color filters, watermarks, borders, or other text 

added to the images. Finally, we specifically avoided text that naturally appeared within the images (e.g. 

on a book), especially when the text allowed the identification of the object concept. However, for some 

object concepts, this was very difficult or impossible to avoid (e.g. “police car”). 

Identification of candidate images 

Due to the large number of object concepts and images as well as the strict selection criteria, we pursued 

several strategies for identifying suitable images. First, we automatically selected 30 candidate images per 

concept from each of the image search engines Google Images, Bing Images and the photography website 

Flickr. Then, we manually selected candidate images, using a custom-made graphical user interface (GUI) 

written in MATLAB (Mathworks, Natick). Since this strategy did not yield a sufficient number of high-

quality object images for most object concepts, we decided to directly identify and download candidate 

images through manual web searches, with a focus on images from Google Images, Bing Images, and the 

online-auctioning platform eBay. We accelerated the process by opening a set of candidate images in the 

browser and using a bulk image downloader that allowed us to select images with sufficient size 

(https://chrome.google.com/webstore/detail/fatkun-batch-download-
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ima/nnjjahlikiabnchcpehcpkdeckfgnohf). Search terms generally focused on the word reflecting the object 

concept, in some cases using a translation into Spanish, German, Russian, Chinese, or French. In addition, 

we identified a set of candidate images of sufficient size from ImageNet (Deng et al., 2009), which had 

been prescreened and selected for the object image database “ecoset” (Mehrer, Kietzmann, & 

Kriegeskorte, 2017), followed by manual selection with the image selection GUI. Finally, several images 

taken by the authors were added to the database. 

Image cropping, removal of images with border, and manual quality check 

Following the manual selection of suitable candidate images, we cropped objects to square size, using a 

separate custom-made GUI (written in MATLAB) to accelerate the process (Figure 1). This GUI allowed 

us to select relevant image parts for sufficiently large images, crop images to square size, and exclude bad 

candidate images. Further, the GUI was written to prevent the selection of image parts that were smaller 

than 480 ´ 480 pixels. Following this image cropping, we identified and corrected images that still 

contained a small uniform border by searching for uniform pixel intensities at the edge of the image. 

Finally, we manually screened all cropped images a second time to identify and remove images with low 

quality or those matching other exclusion criteria. 

Semi-automatic identification of highly similar or duplicate images 

A small number of candidate images within a concept were duplicates, photographs of the same object 

from a slightly different perspective, or images with different object examples but identical background. 

To identify highly-similar images or duplicates, we passed all images through the deep convolutional 

neural network VGG-16 (Simonyan & Zisserman, 2014), which had been pretrained on 1,000 ImageNet 

concepts as implemented in the toolbox MatConvNet (http://www.vlfeat.org/matconvnet/pretrained/). We 

reasoned that highly similar images would produce similar activation vectors at different levels of 

generalization. For the identification of those images using VGG-16, we focused on the five pooling 

layers and two fully-connected layers, i.e. a total of seven layers. 

In the following, we describe the process for the first layer, which we repeated separately for all seven 

layers. For all object images, we computed the activations for the current layer and vectorized them. 

Subsequently, within each of the 1,854 object concepts, we calculated the Pearson correlation coefficients 

between all pairs of vectors. For example, for an object concept containing 12 object images, this step 

yielded 66 correlation coefficients. Finally, we used MATLAB to display the object pairs subsequently, 

starting with the pair with the largest correlation coefficient and subsequently moving down correlation 

coefficient size. We manually checked the first 1,500 pairs and removed images that were duplicates, 

were the same object taken from different angles, or had an identical background. Screening the first 
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1,500 pairs proved to be effective, and not a single image was removed within the last 100 of those image 

pairs. We repeated this process for all seven layers. 

Assignment of image order and image name in final database 

As the final step, we converted all images to jpeg-format, determined the final order of object images, and 

standardized their filenames. As described above, the goal for the final database was to have at least 12 

images per concept. For the reason of simplicity, we deemed the first 12 images of each concept to be the 

most relevant ones. The first image of each concept was the reference image used in the object naming 

task, unless it was not of sufficient quality and had been excluded (number of excluded reference images: 

191). All other images were initially sorted by image size. Then, we shuffled the order of the 11 largest 

images. For all concepts with more than 12 images, we separately shuffled the order of the remaining 

images. Since for comparison to computational vision algorithms it is often important to know which 

images were used for training an algorithm and since ImageNet is commonly used, all images chosen 

from ImageNet were labeled with the letter n. All reference images were labeled with the letter b, and all 

other images with the letter s. 

Similarity matrices from computational models of semantics and vision 

Semantic embedding based on synset vectors 

Semantic embeddings provide a low dimensional vector representation of words based on their co-

occurrence statistics in large text corpora that approximate the relationship between word meanings. 

Recent developments in word embeddings based on shallow neural networks, in particular word2vec 

(Mikolov et al., 2013), have led to strong improvements in performance. A recent modeling approach 

(Pilehvar & Collier, 2016) combined word2vec with knowledge about different senses based on WordNet 

synsets, providing separate vectors for different meanings of words. Here, we extracted those synset 

vectors (1) to create a similarity matrix in order to visualize the semantic distribution of different 

concepts, and (2) to provide a quantitative basis for the selection of a representative subset of concepts 

based on their semantic similarity and (3) to offer a resource for researchers who intend to use them 

alongside the concepts. In short, for all synsets, we extracted 300-dimensional synset vectors from those 

provided by Pilehvar and Collier (2016) (https://pilehvar.github.io/deconf/) that had been trained with 

word2vec on the Google News Corpus (https://code.google.com/archive/p/word2vec/). For words not 

represented in WordNet or missing in the synset vector representations, we chose the original word2vec 

model, but rescaled word vectors to have the same standard deviation as synset vectors since synset 

vectors were reduced in variance. Finally, we calculated a similarity matrix between words using the 
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Pearson correlation (the common cosine distance and Euclidean distance led to very similar results, all r > 

0.96). 

Deep convolutional neural network activations for all object images 

Deep convolutional neural networks (CNNs) offer a computational model of object recognition and – due 

to their excellent performance – have become very popular models not only in the field of computer 

science, but also in psychology and neuroscience (Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016; 

Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al., 2014). We extracted the activations of CNN layers 

for two purposes. First, we use them to identify the degree of selectivity of each object concept and how it 

increases from early to late layers. Second, we provide similarity matrices of the images as an additional 

resource for researchers. To this end, we used CorNet-S (Kubilius et al., 2018), a comparably shallow 

recurrent neural network architecture inspired by the ventral visual stream in the macaque brain. For each 

of the images contained in our database, we extracted the activations for all five layers in CorNet-S and 

converted them to vectors. For each layer, we then created a similarity matrix by computing the Pearson 

correlation coefficient between all pairs of vectors. 

Category Synset 
Frequency   
(Mturk, bottom-up) 

Frequency 
(WordNet, top-down) 

Overlap 

food food.n.01   137   151     85 

animal animal.n.01     95   174     94 

clothing clothing.n.01     60     93     55 

tool tool.n.01     51     50     25 

sports equipment sports_equipment.n.01     46     22     15 

vegetable vegetable.n.01     38     27     23 

vehicle vehicle.n.01     37     66     28 

musical instrument musical_instrument.n.01     33     32     30 

fruit fruit.n.01     32     49     31 

body part body_part.n.01     31     31     29 

dessert dessert.n.01     29     11      9 

toy toy.n.01     29     24     17 

container container.n.01     28   139     23 

part of car car_part.n.01     28       0      0 
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weapon weapon.n.01     28     20     17 

bird bird.n.01     27     27     26 

furniture furniture.n.01     27     32     18 

kitchen tool kitchen_utensil.n.01     27     17      7 

office supply      26    n/a      0 

clothing accessory      21    n/a      0 

kitchen appliance kitchen_appliance.n.01     21     10      8 

plant plant.n.02     21     37     17 

insect insect.n.01     20     16     16 

home décor decoration.n.01     19     30      3 

medical equipment      18    n/a      0 

electronic device electronic_device.n.01     16       5      1 

drink beverage.n.01     15     16     12 

 

Table 1. The 27 most common high-level categories as determined by Amazon Mechanical Turk workers providing 

categories for 1,854 objects and listing any category names more than 15 times. For the same categories, we 

determined the frequency for WordNet synsets and their subordinate members (hyponyms). 

Results 

1,854 object concepts and 27 core high-level categories 

The final list of concepts comprised 1,854 concrete objects, mass items (e.g. “sand,” “coal,” “gravel”) or 

other “things” (e.g. “footprint,” “fingerprint”), and objects spanned a wide range of different concepts. All 

object concepts are provided with their WordNet synset IDs, a link to an example image, concreteness 

ratings (Brysbaert et al., 2014) word frequency from several corpora (Brysbaert et al., 2012; Davies, 

2008), category membership determined bottom-up through ratings and top-down through the WordNet 

hierarchy, definitions from WordNet, and others (for a full list, see Supplement 1). 

Based on the bottom-up categorization provided by human raters, 926 of these objects were rated as 

belonging to the 27 most common categories with at least 15 members (Table 1), with very little overlap 

between those categories (34 objects belonging to two categories). For simplicity, in the following we 

will refer to these 27 categories as the “core categories”. The distribution of category membership 

followed a rapidly decaying function, i.e. many of the remaining objects were categorized as belonging to 

small and very specific categories. While several of the 27 core categories provided by human raters 
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overlap with those in classical category descriptions categories (Battig & Montague, 1969; Van 

Overschelde et al., 2004) and in WordNet (Fellbaum, 1998), other categories were unique to the ratings 

(“part of car,” “office supply,” “clothing accessory,” and “medical equipment”). A similar trend was 

observed for the top-down categorization provided by WordNet: 960 object concepts belonged to 23 of 

the 27 categories that were available in WordNet (the 24th category “car part” did not contain any 

subordinate entries). Of those, 118 objects belonged to multiple categories, which was mostly explained 

by the overlap introduced by the presence of subcategories (e.g. both insects and birds are animals). 

Since the dichotomies “animate – inanimate” and “man-made – natural” are frequently used high-level 

categorical distinctions, we counted the number of nameable objects that belonged to either of those 

categories. To our surprise, only around 11 % of the objects were animate – even when including humans 

and human body parts – while 89 % were inanimate. Similarly, for the dimension of naturalness – even 

when including processed food – only around 33 % of objects were natural, whereas 67 % were artificial. 

This demonstrates that, at least based on everyday object naming, a majority of objects is indeed artificial 

and inanimate. This result makes sense, given that humans are constantly surrounded by a large number 

of inanimate and artificial objects whose distinction for everyday use is relevant. However, animals 

belong to one of the largest categories, are a rather homogenous class (e.g. most animals have faces) and 

may be more significant from an evolutionary point of view, which may contribute to their increased 

salience. 

A notable feature of the database is that a substantial proportion of objects (bottom-up categorization: 

12.73 %, top-down categorization: 12.08 %) was categorized as belonging to one or several of the 

categories of edible items (“food,” “vegetable,” “fruit,” “dessert,” “drink”). Two more categories refer to 

kitchen items (“kitchen tool,” “kitchen appliance”), demonstrating the general importance of 

discriminating among food-related items. 
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Figure 2. A. Visualization of the semantic relationship of the 1,854 object concepts applying t-SNE to the semantic 

embedding, with the 27 core object categories depicted in different colors and example concepts highlighted. B. 
Selectivity of the 27 core object categories, separately for bottom-up categorization based on responses of workers 

on Amazon Mechanical Turk (left bars, darker shades) and top-down categorization based on category membership 

in WordNet (right bars, lighter shades). Category selectivity was quantified by the difference in correlation of 

semantic embedding vectors of concepts within each category as compared to the correlation with concepts outside 

of the category (all p < 0.05, Bonferroni-corrected). Across all concepts, the selectivity for bottom-up categorization 

was higher than the selectivity for top-down categorization (p < 0.001). 

Relationship of core high-level object categories with semantic embedding 

To determine the degree to which the high-level categories reflect their actual use in language, we 

visualized the similarity of concepts by running t-distributed stochastic neighborhood embedding (t-SNE, 

perplexity = 30, initialized with perplexity = 5, Maaten & Hinton, 2008) on the semantic embedding (i.e. 
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synset vectors) and displaying the 27 core object categories in different colors (Figure 2A). The resulting 

visualization indicates that much of the categorization provided by humans is also mirrored in the synset 

vector similarity, although some structure is missed. To provide a quantitative basis for this result, we 

measured the selectivity of each concept by comparing the correlation of concepts within each of the 27 

core categories to the correlation of those concepts with all other concepts (Figure 2B, all left bars). We 

repeated the same analysis for the high-level categories derived from WordNet (Figure 2B, all right bars). 

The results demonstrate a positive selectivity (i.e. correlation difference) for all 27 core categories, both 

for bottom-up and top-down categories (all p < 0.0054, Bonferroni-corrected over 27 categories, based on 

5,000 Monte Carlo samples of categories). Overall, the selectivity of categories was higher for the 

“bottom-up categories” as compared to the categories defined based on WordNet (Drbottom-up = 0.23, Drtop-

down = 0.19, p < 0.0002).  

Object image database 

For the object image database, we identified a total of 26,107 images (mean number of images per 

concept: 14.08). Of those images, 1,165 were selected from ImageNet. Example images for a small set of 

concepts are shown in Figure 3A. The mean image size was 996 ´ 996 pixels (< 1.8 % of images smaller 

than 500 pixels). The distribution of number of images per concept and pixel dimensions is shown in 

Figure 3B. 

To determine the degree to which individual object images are good members of a concept while still 

exhibiting visual variability, we fed all images through different layers of a deep convolutional neural 

network CorNet-S, as described in the Methods section (Kubilius et al., 2018). We predicted that at high 

layers, images within a concept would exhibit a larger similarity – as given by their Pearson correlation – 

than images between different concepts. In addition, we predicted this difference in similarity to be larger 

in the top layer (classification layer), but smaller in the bottom layer (V1 layer). Finally, for each of the 

26,107 object images we investigated to what degree the activation of one object image could be used to 

predict other members of the same concept. The percentage of correct guesses is given by how many of 

the most similar images are populated by the n-1 images of the same concept, i.e. excluding the reference 

image. We define the top-1 accuracy as the first n-1 image ranks, the top-5 accuracy as 5 times that 

number, and the median rank as how many guesses are required for each other member of the concept. 

The results of these analyses are shown in Figure 4. For all layers, the correlation was higher within 

concept than between concept (classification layer: r = 0.51 within, r = 0.04 between; V1 layer: r = 0.39 

within, r = 0.34 between, all p < 0.001, based on 1,000 randomizations) with the correlation difference 

increasing between the first layer and the classification layer (p < 0.001), demonstrating selectivity within 

each concept that increases across layers. The pairwise similarity was a good predictor of other members 
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of the same concept for the classification layer (top-1 accuracy: 37.29 %, top-5 accuracy: 61.56 %, 

median rank: 29), but much less so for the V1 layer (top-1 accuracy: 1.25 %, top-5 accuracy: 3.51 %, 

median rank: 5,530), despite the network being trained only on a subset of concepts (334/1000 concepts 

overlap with THINGS, 212/1000 are subordinate examples of the concepts used in THINGS). Together, 

these results demonstrate that the object image database constitutes both a good representation of 

individual object concepts, while still exhibiting notable variation in low-level image properties. 

 

Figure 3. A. Example images in THINGS database for different object concepts. B. Histograms illustrating the 

number of images per concept (ranging from 12 to 35) and the image dimensions (peaking at 800 pixels). 

Discussion 

Here we present a large-scale database of 1,854 diverse object concepts and 26,107 high-quality 

naturalistic images of those objects. For the object concepts, we identified 27 high-level categories that 

capture around half of those concepts with little overlap. We validated the categories and the object 

images by relating them to representations in a semantic embedding and a deep convolutional neural 
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network, suggesting that the categories are meaningfully related to their use in language and that the 

object images represent largely distinct categories while varying in basic visual properties. 

Possible applications of the object concept and object image database 

The purpose of this database is to provide researchers in the fields of psychology, neuroscience, and 

computer science with a resource they can use to systematically select object concepts or object images 

for their research. The availability of a large-scale resource has the advantage of providing a more 

standardized approach for the selection of object concepts and object images. In addition, if adopted more 

widely, it offers an increased level of comparability between different studies. 

There are a wide range of potential applications of such a database, and we will briefly discuss only a 

few. In the field of psychology, studies in object recognition, categorization and semantic memory can 

use this database to identify a more representative set of concepts and provide naturalistic example object 

images with them. This would allow researchers to study the large-scale structure and format of mental 

representations of objects (Jozwik, Kriegeskorte, Storrs, & Mur, 2017; Konkle & Oliva, 2011; Long, 

Konkle, Cohen, & Alvarez, 2016; Zheng, Pereira, Baker, & Hebart, 2019), to reveal the degree to which 

categorization behavior (e.g. as measured in Kiran & Thompson, 2003; Kirchner & Thorpe, 2006; 

Rajalingham, Schmidt, & DiCarlo, 2015) generalizes to less commonly-used categories and more natural 

images, and to determine factors affecting the recall and recognition of concepts and images (Brady, 

Konkle, Alvarez, & Oliva, 2008; Klein, Addis, & Kahana, 2005; Konkle, Brady, Alvarez, & Oliva, 2010; 

Rotello, Macmillan, & Van Tassel, 2000). In the field of neuroscience, the object image database can 

form the basis for a more systematic large-scale assessment of object representations based on intensive 

measurements within a small number of subjects (Chang et al., 2018; Huth, Nishimoto, Vu, & Gallant, 

2012; Kay, Naselaris, Prenger, & Gallant, 2008; Naselaris, Prenger, Kay, Oliver, & Gallant, 2009) and 

thus offer the basis for a dataset that is more representative than those commonly used as benchmarks in 

methods development and object recognition research (e.g. Kriegeskorte et al., 2008). In the field of 

computer vision, while the number of object images provided in this dataset is too small for training 

current deep convolutional neural networks, they can be used to test how wide a range of concepts are 

spanned by a given computational model. More generally, the concepts identified in this research could 

form a comprehensive set of labels for object classification at a level that is more comparable to humans 

(see also Mehrer et al., 2017). 
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Figure 4. Selectivity of object images for different concepts, as measured by the similarity of activation patterns 

(left) and their predictive accuracy (right) in the deep convolutional neural network CORnet (Kubilius et al., 2018). 

The first four layers of CORnet are named after brain regions in the macaque monkey. A. Similarity of image 

activation vectors across different layers of CORnet as measured by the mean Pearson correlation. “Within concept” 

refers to the similarity of all pairs of activation vectors of images of the same concept, while similarity “between 

concept” refers to the similarity of those images and all other images in the database. Higher selectivity is indicated 

by a larger difference in “within concept” and “between concept” similarities. B. Predictive accuracy of activation 

vectors based on their pairwise Pearson similarity. “Top-1 accuracy” refers to the percentage of the most similar 

images that belong to the same concept as a reference image and is averaged across all accuracies for all images. 

“Top-5 accuracy” allows five times as many guesses. Note that this procedure is not directly comparable to that used 

in typical machine learning applications (see main text for details). 

Comparison to previous work and existing databases 

Selection of object concepts and object categories in previous work 

For identifying and selecting object concepts for their studies, researchers have been using a variety of 

strategies, often focusing on a small set of basic-level objects (Edelman, Grill-Spector, Kushnir, & 

Malach, 1998; Eger, Ashburner, Haynes, Dolan, & Rees, 2008; Haxby et al., 2001; Rajalingham et al., 

2015; Rice, Watson, Hartley, & Andrews, 2014), specific superordinate categories and examples within 

those categories (e.g. animals, tools, or vehicles, Bracci & de Beeck, 2016; Connolly et al., 2012; 

Gerlach, 2007; Hung, Kreiman, Poggio, & DiCarlo, 2005; Liu, Agam, Madsen, & Kreiman, 2009; Tranel, 

Logan, Frank, & Damasio, 1997), using objects that vary along assumed representational dimensions (e.g. 

animacy, man-made and biological objects, manipulability, real-world size, Caramazza & Shelton, 1998; 

Konkle & Oliva, 2011; Warrington & Shallice, 1984), and other criteria (for reviews, see Grill-Spector & 

Weiner, 2014; Mahon & Caramazza, 2009; Martin, 2007; Murphy, 2004). While these selection criteria 
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are useful for the specific hypotheses at hand, the selected concepts are often not general enough to be of 

use for other research questions, requiring researchers to repeat the identification and selection process for 

their own purposes. In addition, the definition of what constitutes a category varies between studies, 

which affects the comparability of results and the conclusions that are drawn. The database presented in 

this work constitutes a wide range of concepts that allows their systematic and reproducible selection. For 

example, if the selection of a wide range of 50 object concepts is desired, researchers could apply cluster 

analysis to the synset vectors provided with this dataset and select one concept from each cluster. 

A wider range and more standardized set of concepts to choose from is provided by category norms 

(Battig & Montague, 1969; Van Overschelde et al., 2004) or object property norms (Devereux, Tyler, 

Geertzen, & Randall, 2014; McRae, Cree, Seidenberg, & McNorgan, 2005), which can be useful for 

improving comparability between studies. Despite their common use, it is important to note that the 

concepts and categories in those norms were selected mostly based on their use in previous studies. Thus, 

they may span a rather selective set of objects and higher-level categories. In addition, they contain 

concepts at a level of description that may not align with how the object is commonly named (e.g. 

“python” vs. “snake”), and for some categories may not conform to the way humans would naturally 

group their members (e.g. “four-footed animal”). For those reasons, depending on the goal of the study, a 

more systematic approach for concept selection and category definition may be desired. In the future, we 

hope to provide more systematic category norms and object property norms for the large set of object 

concepts in the THINGS database, which would combine the benefits of previous efforts with those of the 

present work.  

As discussed above (see Methods), a highly systematic compilation of object concepts is provided 

through WordNet (Fellbaum, 1998), a lexical database that stores words and their hierarchical 

relationship according to their meaning as so-called synsets. This format is very valuable for identifying 

unique meaning of ambiguous words (e.g. “bat” as a nocturnal animal or as a club used in sports), for 

merging synonymous words (e.g. “sofa” and “couch”), and for identifying more high-level categories in 

general. Some researchers have used WordNet to circumvent selection biases by randomly sampling from 

a broader set of concepts. For example, the 1,000 synsets in the ImageNet Challenge (Russakovsky et al., 

2015) have become a standard set of object concepts in computer vision research, and a large part of them 

were sampled at random from WordNet. However, WordNet also contains a large number of concepts 

that can only be identified by experts (e.g. “tobacco hornworm,” “trogon”) or that cannot be distinguished 

easily by just looking at pictures of them (e.g. “black pine” vs. “red pine”). In addition, it is not always 

clear what level of categorization is the most useful for a given object (e.g. “canine” vs. “dog” vs. 

“poodle”) and to what degree the WordNet hierarchy translates to the everyday use of concepts and 
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categories (e.g. in WordNet a “hydrant” belongs to the category of “discharge pipes”). The list of object 

concepts presented in this work addresses this challenge by identifying the level of description that 

matches their use in object naming, while still providing synsets to tie them to unique word meanings and 

relate them to the WordNet hierarchy. 

Finally, another approach for the selection of object concepts in category selection is to label objects 

based on their natural appearance in photographs or movies and use these labels in later research (Huth et 

al., 2012; Russell, Torralba, Murphy, & Freeman, 2008). While this approach avoids a “top-down” 

selection bias, sampling of categories may lead to a “bottom-up” bias, by mirroring the statistics of the 

concepts found in the source stimulus set, thereby potentially overestimating the significance of frequent 

concepts and underestimating the significance of rarer ones. 

Selection of object images in previous work 

The format of visual presentation of objects is important for the study of visual cognition, including visual 

object recognition, memory, categorization, and naming. To this end, the use of standardized line 

drawings of objects has been a dominant approach (Snodgrass & Vanderwart, 1980). However, 

researchers have started to increasingly rely on the use of naturalistic object stimuli from photographs, in 

order to more closely match the conditions of real-world perception (Einhäuser & König, 2010; Felsen & 

Dan, 2005). Those naturalistic stimuli have been ranging from images of isolated objects cropped from 

their natural background (e.g. Baldassi et al., 2013; Haxby et al., 2001; Kiani, Esteky, Mirpour, & 

Tanaka, 2007; Kriegeskorte et al., 2008) to object renderings placed on naturalistic scenes (e.g. Yamins et 

al., 2014), object images with a naturalistic background (e.g. Rust & DiCarlo, 2010; Thorpe, Fize, & 

Marlot, 1996), multiple objects in naturalistic scenes (e.g. Peelen, Fei-Fei, & Kastner, 2009; Torralba, 

Oliva, Castelhano, & Henderson, 2006), and objects appearing in dynamic movies (e.g. Huth et al., 2012). 

In recent years, numerous standardized object image databases have been published for psychological and 

neuroscience research (for review, see Brodeur et al., 2010; Brodeur et al., 2014), which most commonly 

consist of naturalistic images of objects cropped from their natural background, such as the Bank of 

Standardized Stimuli (BOSS, Brodeur et al., 2010). This approach has been and still is very valuable for 

the study of visual cognition and memory. At the same time, most of these image databases contain only 

one or very few examples of a given object (e.g. “lamp”) or only a small number of object concepts, but 

not both many concepts and numerous examples. In addition, the naturalistic context in which objects 

appear is known to be important to object processing (Oliva & Torralba, 2007), and there is evidence that 

the use of cropped images may overemphasize the role of shape features in measured neural 

representations (Bracci et al., 2017; Bracci & de Beeck, 2016; Coggan et al., 2016; Proklova et al., 2017; 

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 10, 2019. ; https://doi.org/10.1101/545954doi: bioRxiv preprint 

https://doi.org/10.1101/545954


 23 

Proklova et al., 2016). For those reasons, depending on the research question, it is important to also 

consider the use of a wider range of object images embedded in their naturalistic context.  

In computer vision, several large-scale object image databases exist that provide up to thousands of 

examples of individual objects in a naturalistic context (Deng et al., 2009; Griffin et al., 2007; Krizhevsky 

& Hinton, 2009). However, the size or quality of a large portion of images in those databases is not 

sufficient for their widespread use in psychology and neuroscience experiments and requires researchers 

to carefully and manually select candidate images to be of sufficient quality (Chang et al., 2018), which 

even after selection still involves trade-offs with respect to the size, aspect ratio and naturalness of those 

images. The THINGS database offers a comprehensive set of high-quality object images that should be of 

sufficient size for most applications in psychology and neuroscience research. While the number of 

exemplars in the THINGS database is notably lower than that in computer vision databases, the images 

can serve as a test set for assessing the generality of existing computer vision algorithms. For example, it 

is promising that a convolutional neural network trained on only a subset of the concepts in the THINGS 

database can still yield reasonable classification performance even without retraining and when using a 

comparably simple method for classification. 

Limitations of the THINGS database 

Limitations in the selection of concepts 

Many steps were involved in the definition of the list of 1,854 concepts, requiring choices during each 

step of the selection process. We laid out the exact choices at each step in great detail and provide the list 

of excluded words alongside the final list of concepts, allowing researchers to choose different inclusion 

and exclusion criteria if they wish. By the nature of the task, some of our choices were subjective and can 

be debated, and others involved a trade-off between efficiency and completeness. For example, for the 

initial selection based on concreteness we defined a cutoff below which we did not select any concept, 

likely excluding a small number of picturable and nameable objects. Further, we excluded objects that 

necessarily depict text. This makes sense given the goals of the present database, but it could arguably 

have been interesting to include them, given the known special role of text characters in the human brain 

(Cohen et al., 2000). However, the list of excluded text words is marked and available as part of the 

database. As another example limitation, one might argue that the list should have focused exclusively on 

objects and excluded items defined from mass nouns (e.g. “sand,” “coal”) or other items (e.g. 

“fingerprint”). We chose to include these items, because they are nameable, concrete and refer to entities 

beyond texture or surface material. Their exclusion would also have led to the exclusion of drinks, which 

in this database turned out to be one of the most common categories. However, researchers may choose to 

remove those items for their own purposes. 
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While we selected object concepts based on whether they were named consistently, this choice was based 

mostly on one reference image only and a relatively small number of participants per concept. 

Additionally, it required choosing another arbitrary cutoff for which concept to include or to exclude. As 

mentioned above, the goal of this database was not to create a definite set of all nameable object concepts. 

We chose to be rather inclusive in this step, so that excluded concepts would be those that were named 

inconsistently by participants. Links to all reference images are available as part of this database. In the 

future, researchers may choose a similar approach with a wider range of reference images and more 

behavioral responses to identify a more general set of object concepts. 

Another limitation of our approach is that ultimately object concepts were selected based on a list of 

nouns. While this approach is common, it may bias the selection of concepts (and categories) towards 

representations that have a wider linguistic variability (e.g. different food items), which need not be 

representative of their mental representation. In theory, there are alternative approaches that circumvent 

the use of language, for example the ability to discriminate between different randomly-selected objects. 

However, without the use of language, such approaches would be challenging to carry out in practice. We 

chose a more pragmatic approach based on WordNet synsets and object naming that goes beyond typical 

approaches, by using a much wider range of nouns as a basis for concept selection. In the future, it might 

be possible to determine a larger, more representative set of concepts that humans can still distinguish 

without reverting to linguistic criteria. 

Limitations of the object images 

The object image database comes with limitations, as well. Most of these limitations are related to the 

difficulty of finding good examples of object images. Even though we intended object images to be of 

high quality and contain natural background throughout the database, for some concepts it was difficult to 

impossible to find good examples of images embedded in a natural background, so trade-offs with image 

quality had to be made. Similarly, the choice not to focus exclusively on images with single examples of 

objects but allow several instances of the same object in an image is debatable. On the other hand, this 

choice may in fact reflect a more natural form of object context. 

Object viewpoint and object background might not vary to a degree sufficient to test viewpoint-invariant 

and background-invariant object representations. At the same time, image representations in early layers 

of the deep convolutional neural network turned out to be quite unspecific for individual object concepts, 

while representations at higher layers were quite specific. This indicates that the level of image variation 

effectively controlled for much of low-level processing while still providing relatively high degrees of 

concept specificity. 
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Finally, one limitation of this object image database is that it likely contains copyrighted material, which 

limits their use to academic purposes under fair use regulations and limits publication of example images 

in scientific journals (the images in Figure 3 were chosen to be non-copyrighted examples). 

Future directions 

Apart from potential improvements for the choice of object concepts and object images, there are a 

number of avenues for future developments as part of the THINGS database. First and foremost, 

additional high quality images may be selected, cropped, and added to the database, ideally focusing on 

non-copyrighted examples such as those provided in the Open Images database (Kuznetsova et al., 2018). 

Second, for researchers interested in using representative cropped examples, existing databases may be 

amended for that purpose (e.g. Brodeur et al., 2014). Third, in addition to the object categorization 

provided by participants and through WordNet, the existing database can be amended with expert 

categorization, potentially further improving the correspondence to semantic embeddings. Fourth, those 

categories could be used to generate a comprehensive set of typicality ratings of objects concepts. Finally, 

the concepts can form the basis for the creation of feature norms similar to existing ones (Devereux et al., 

2014; McRae et al., 2005) or explicit ratings of object dimensions (e.g. real-world size, animacy, 

manipulability, etc.). Together, we hope that the THINGS database is widely adopted by the scientific 

communities in psychology, neuroscience, and computer science, thereby broadening the use systematic 

and large-scale naturalistic research and further advancing the communication between these fields of 

research. 

 

References 

Baldassi, C., Alemi-Neissi, A., Pagan, M., DiCarlo, J. J., Zecchina, R., & Zoccolan, D. (2013). Shape 
similarity, better than semantic membership, accounts for the structure of visual object 
representations in a population of monkey inferotemporal neurons. PLoS computational biology, 
9(8), e1003167.  

Battig, W. F., & Montague, W. E. (1969). Category norms of verbal items in 56 categories A replication 
and extension of the Connecticut category norms. Journal of Experimental Psychology, 80(3p2), 
1-46.  

Bracci, S., Daniels, N., & de Beeck, H. O. (2017). Task context overrules object- and category-related 
representational content in the human parietal cortex. Cerebral Cortex, 1-12. 
doi:10.1093/cercor/bhw419 

Bracci, S., & de Beeck, H. O. (2016). Dissociations and associations between shape and category 
representations in the two visual pathways. Journal of Neuroscience, 36(2), 432-444.  

Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive 
storage capacity for object details. Proceedings of the National Academy of Sciences, 105(38), 
14325-14329.  

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 10, 2019. ; https://doi.org/10.1101/545954doi: bioRxiv preprint 

https://doi.org/10.1101/545954


 26 

Brodeur, M. B., Dionne-Dostie, E., Montreuil, T., & Lepage, M. (2010). The Bank of Standardized 
Stimuli (BOSS), a new set of 480 normative photos of objects to be used as visual stimuli in 
cognitive research. PLoS One, 5(5), e10773.  

Brodeur, M. B., Guérard, K., & Bouras, M. (2014). Bank of standardized stimuli (BOSS) phase II: 930 
new normative photos. PLoS One, 9(9), e106953.  

Brysbaert, M., New, B., & Keuleers, E. (2012). Adding part-of-speech information to the SUBTLEX-US 
word frequencies. Behavior research methods, 44(4), 991-997.  

Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness ratings for 40 thousand generally 
known English word lemmas. Behavior research methods, 46(3), 904-911.  

Caramazza, A., & Shelton, J. R. (1998). Domain-specific knowledge systems in the brain: The animate-
inanimate distinction. Journal of Cognitive Neuroscience, 10(1), 1-34.  

Chang, N., Pyles, J. A., Gupta, A., Tarr, M. J., & Aminoff, E. M. (2018). BOLD5000: A public fMRI 
dataset of 5000 images. arXiv preprint arXiv:1809.01281.  

Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A., & Oliva, A. (2016). Comparison of deep neural 
networks to spatio-temporal cortical dynamics of human visual object recognition reveals 
hierarchical correspondence. Scientific reports, 6, 27755.  

Coggan, D. D., Liu, W., Baker, D. H., & Andrews, T. J. (2016). Category-selective patterns of neural 
response in the ventral visual pathway in the absence of categorical information. Neuroimage, 
135, 107-114.  

Cohen, L., Dehaene, S., Naccache, L., Lehéricy, S., Dehaene-Lambertz, G., Hénaff, M.-A., & Michel, F. 
(2000). The visual word form area: spatial and temporal characterization of an initial stage of 
reading in normal subjects and posterior split-brain patients. Brain, 123(2), 291-307.  

Connolly, A. C., Guntupalli, J. S., Gors, J., Hanke, M., Halchenko, Y. O., Wu, Y.-C., . . . Haxby, J. V. 
(2012). The representation of biological classes in the human brain. Journal of Neuroscience, 
32(8), 2608-2618.  

Davies, M. (2008). The corpus of contemporary American English: BYE, Brigham Young University. 
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale 

hierarchical image database. Paper presented at the Computer Vision and Pattern Recognition, 
2009. CVPR 2009. IEEE Conference on. 

Devereux, B. J., Tyler, L. K., Geertzen, J., & Randall, B. (2014). The Centre for Speech, Language and 
the Brain (CSLB) concept property norms. Behavior research methods, 46(4), 1119-1127.  

Edelman, S., Grill-Spector, K., Kushnir, T., & Malach, R. (1998). Toward direct visualization of the 
internal shape representation space by fMRI. Psychobiology, 26(4), 309-321.  

Eger, E., Ashburner, J., Haynes, J.-D., Dolan, R. J., & Rees, G. (2008). fMRI activity patterns in human 
LOC carry information about object exemplars within category. Journal of Cognitive 
Neuroscience, 20(2), 356-370.  

Einhäuser, W., & König, P. (2010). Getting real—sensory processing of natural stimuli. Current opinion 
in neurobiology, 20(3), 389-395.  

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The pascal visual 
object classes (voc) challenge. International Journal of Computer Vision, 88(2), 303-338.  

Fellbaum, C. (1998). WordNet: An electronic lexical database: MIT press. 
Felsen, G., & Dan, Y. (2005). A natural approach to studying vision. Nature Neuroscience, 8(12), 1643.  
Gerlach, C. (2007). A review of functional imaging studies on category specificity. Journal of Cognitive 

Neuroscience, 19(2), 296-314.  
Griffin, G., Holub, A., & Perona, P. (2007). Caltech-256 object category dataset.  
Grill-Spector, K., & Weiner, K. S. (2014). The functional architecture of the ventral temporal cortex and 

its role in categorization. Nature Reviews Neuroscience, 15(8), 536.  
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed 

and overlapping representations of faces and objects in ventral temporal cortex. Science, 
293(5539), 2425-2430.  

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 10, 2019. ; https://doi.org/10.1101/545954doi: bioRxiv preprint 

https://doi.org/10.1101/545954


 27 

Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005). Fast readout of object identity from 
macaque inferior temporal cortex. Science, 310(5749), 863-866.  

Huth, A. G., Nishimoto, S., Vu, A. T., & Gallant, J. L. (2012). A continuous semantic space describes the 
representation of thousands of object and action categories across the human brain. Neuron, 
76(6), 1210-1224.  

Jozwik, K. M., Kriegeskorte, N., Storrs, K. R., & Mur, M. (2017). Deep convolutional neural networks 
outperform feature-based but not categorical models in explaining object similarity judgments. 
Frontiers in psychology, 8, 1726.  

Kay, K. N., Naselaris, T., Prenger, R. J., & Gallant, J. L. (2008). Identifying natural images from human 
brain activity. Nature, 452(7185), 352-355.  

Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British Lexicon Project: Lexical decision 
data for 28,730 monosyllabic and disyllabic English words. Behavior research methods, 44(1), 
287-304.  

Khaligh-Razavi, S.-M., & Kriegeskorte, N. (2014). Deep supervised, but not unsupervised, models may 
explain IT cortical representation. PLoS computational biology, 10(11), e1003915.  

Kiani, R., Esteky, H., Mirpour, K., & Tanaka, K. (2007). Object category structure in response patterns of 
neuronal population in monkey inferior temporal cortex. Journal of Neurophysiology, 97(6), 
4296-4309.  

Kiran, S., & Thompson, C. K. (2003). Effect of typicality on online category verification of animate 
category exemplars in aphasia. Brain and Language, 85(3), 441-450.  

Kirchner, H., & Thorpe, S. J. (2006). Ultra-rapid object detection with saccadic eye movements: Visual 
processing speed revisited. Vision research, 46(11), 1762-1776.  

Klein, K. A., Addis, K. M., & Kahana, M. J. (2005). A comparative analysis of serial and free recall. 
Memory & Cognition, 33(5), 833-839.  

Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010). Conceptual distinctiveness supports detailed 
visual long-term memory for real-world objects. Journal of Experimental Psychology: General, 
139(3), 558.  

Konkle, T., & Oliva, A. (2011). Canonical visual size for real-world objects. Journal of Experimental 
Psychology: Human Perception & Performance, 37(1), 23-37.  

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., . . . Bandettini, P. A. (2008). 
Matching categorical object representations in inferior temporal cortex of man and monkey. 
Neuron, 60(6), 1126-1141.  

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images. Retrieved 
from  

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional 
neural networks. Paper presented at the Advances in Neural Information Processing Systems. 

Kubilius, J., Schrimpf, M., Nayebi, A., Bear, D., Yamins, D. L., & DiCarlo, J. J. (2018). CORnet: 
Modeling the Neural Mechanisms of Core Object Recognition. BioRxiv, 408385.  

Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., . . . Duerig, T. (2018). The 
open images dataset v4: Unified image classification, object detection, and visual relationship 
detection at scale. arXiv preprint arXiv:1811.00982.  

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., . . . Zitnick, C. L. (2014). 
Microsoft coco: Common objects in context. Paper presented at the European conference on 
computer vision. 

Liu, H., Agam, Y., Madsen, J. R., & Kreiman, G. (2009). Timing, timing, timing: Fast decoding of object 
information from intracranial field potentials in human visual cortex. Neuron, 62(2), 281-290.  

Long, B., Konkle, T., Cohen, M. A., & Alvarez, G. A. (2016). Mid-level perceptual features distinguish 
objects of different real-world sizes. Journal of Experimental Psychology: General, 145(1), 95.  

Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning 
research, 9(Nov), 2579-2605.  

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 10, 2019. ; https://doi.org/10.1101/545954doi: bioRxiv preprint 

https://doi.org/10.1101/545954


 28 

Mahon, B. Z., & Caramazza, A. (2009). Concepts and categories: A cognitive neuropsychological 
perspective. Annual Review of Psychology, 60, 27-51.  

Martin, A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58, 
25-45.  

McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms 
for a large set of living and nonliving things. Behavior research methods, 37(4), 547-559.  

Mehrer, J., Kietzmann, T. C., & Kriegeskorte, N. (2017). Deep neural networks trained on ecologically 
relevant categories better explain human IT. Poster presented at Conference on Cognitive 
Computational Neuroscience, Submission ID 3000198.  

Mikolov, T., Yih, W.-t., & Zweig, G. (2013). Linguistic regularities in continuous space word 
representations. Paper presented at the Proceedings of the 2013 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human Language 
Technologies. 

Murphy, G. (2004). The big book of concepts: MIT press. 
Naselaris, T., Prenger, R. J., Kay, K. N., Oliver, M., & Gallant, J. L. (2009). Bayesian reconstruction of 

natural images from human brain activity. Neuron, 63(6), 902-915.  
Oliva, A., & Torralba, A. (2007). The role of context in object recognition. Trends in cognitive sciences, 

11(12), 520-527.  
Peelen, M. V., Fei-Fei, L., & Kastner, S. (2009). Neural mechanisms of rapid natural scene categorization 

in human visual cortex. Nature, 460(7251), 94-97.  
Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. Paper 

presented at the Proceedings of the 2014 conference on empirical methods in natural language 
processing (EMNLP). 

Pereira, F., Lou, B., Pritchett, B., Ritter, S., Gershman, S. J., Kanwisher, N., . . . Fedorenko, E. (2018). 
Toward a universal decoder of linguistic meaning from brain activation. Nature communications, 
9(1), 963.  

Pilehvar, M. T., & Collier, N. (2016). De-conflated semantic representations. arXiv preprint 
arXiv:1608.01961.  

Proklova, D., Kaiser, D., & Peelen, M. (2017). MEG sensor patterns reflect perceptual but not categorical 
similarity of animate and inanimate objects. BioRxiv, 238584.  

Proklova, D., Kaiser, D., & Peelen, M. V. (2016). Disentangling representations of object shape and 
object category in human visual cortex: The animate–inanimate distinction. Journal of Cognitive 
Neuroscience.  

Rajalingham, R., Schmidt, K., & DiCarlo, J. J. (2015). Comparison of object recognition behavior in 
human and monkey. Journal of Neuroscience, 35, 12127-12136.  

Rice, G. E., Watson, D. M., Hartley, T., & Andrews, T. J. (2014). Low-level image properties of visual 
objects predict patterns of neural response across category-selective regions of the ventral visual 
pathway. Journal of Neuroscience, 34(26), 8837-8844.  

Rotello, C. M., Macmillan, N. A., & Van Tassel, G. (2000). Recall-to-reject in recognition: Evidence 
from ROC curves. Journal of Memory and Language, 43(1), 67-88.  

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., . . . Bernstein, M. (2015). Imagenet 
large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211-
252.  

Russell, B. C., Torralba, A., Murphy, K. P., & Freeman, W. T. (2008). LabelMe: a database and web-
based tool for image annotation. International Journal of Computer Vision, 77(1-3), 157-173.  

Rust, N. C., & DiCarlo, J. J. (2010). Selectivity and tolerance (“invariance”) both increase as visual 
information propagates from cortical area V4 to IT. Journal of Neuroscience, 30(39), 12978-
12995.  

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image 
recognition. arXiv preprint arXiv:1409.1556.  

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 10, 2019. ; https://doi.org/10.1101/545954doi: bioRxiv preprint 

https://doi.org/10.1101/545954


 29 

Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: norms for name 
agreement, image agreement, familiarity, and visual complexity. Journal of experimental 
psychology: Human learning and memory, 6(2), 174.  

Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 
381(6582), 520-522.  

Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye 
movements and attention in real-world scenes: the role of global features in object search. 
Psychological review, 113(4), 766.  

Tranel, D., Logan, C. G., Frank, R. J., & Damasio, A. R. J. N. (1997). Explaining category-related effects 
in the retrieval of conceptual and lexical knowledge for concrete entities: Operationalization and 
analysis of factors. 35(10), 1329-1339.  

Van Overschelde, J. P., Rawson, K. A., & Dunlosky, J. (2004). Category norms: An updated and 
expanded version of the Battig and Montague (1969) norms. Journal of Memory and Language, 
50(3), 289-335.  

Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairments. Brain, 107(3), 829-
853.  

Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J. (2014). 
Performance-optimized hierarchical models predict neural responses in higher visual cortex. 
Proceedings of the National Academy of Sciences, 111(23), 8619-8624.  

Zheng, C. Y., Pereira, F., Baker, C. I., & Hebart, M. N. (2019). Revealing interpretable object 
representations from human behavior. arXiv, 1901.02915, https://arxiv.org/abs/1901.02915.  

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2018). Places: A 10 million image 
database for scene recognition. IEEE transactions on pattern analysis and machine intelligence, 
40(6), 1452-1464.  

 

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 10, 2019. ; https://doi.org/10.1101/545954doi: bioRxiv preprint 

https://doi.org/10.1101/545954

