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 3 
Abstract: 4 
 5 
Copy number variations (CNV) represent a significant proportion of the genetic differences 6 
between individuals and many CNVs associate causally with syndromic disease and clinical 7 
outcomes. Here, we characterize the landscape of copy number variation and their phenome-8 
wide effects in a sample of 472,228 array-genotyped individuals from the UK Biobank. In 9 
addition to population-level selection effects against genic loci conferring high-mortality, we 10 
describe genetic burden from syndromic and previously uncharacterized CNV loci across nearly 11 
2,000 quantitative and dichotomous traits, with separate analyses for common and rare classes 12 
of variation. Specifically, we highlight the effects of CNVs at two well-known syndromic loci 13 
16p11.2 and 22q11.2, as well as novel associations at 9p23, in the context of acute coronary 14 
artery disease and high body mass index. Our data constitute a deeply contextualized portrait of 15 
population-wide burden of copy number variation, as well as a series of known and novel 16 
dosage-mediated genic associations across the medical phenome. 17 
 18 
Introduction: 19 
 20 
Copy number variants (CNV) are a class of structural variation often defined as large deletions 21 
or duplications of at least 1 kilobase (kb) of genomic sequence. CNVs exhibit substantial 22 
variability in both size and frequency in the population and have been implicated across a 23 
variety of common and rare health outcomes1. Regional deletion and duplication syndromes 24 
have also been described at many loci, clustering near microsatellite repeats or areas of 25 
segmental duplication which may potentiate non-allelic homologous recombination2. For 26 
example, CNV-based architectures for neuropsychiatric (e.g. autism spectrum disorder), 27 
developmental (e.g. 16p11.2)3,4, and syndromic cardiac disease (e.g. 22q11.2)5 phenotypes 28 
have been well established.  29 
 30 
Despite a growing body research on CNV-related syndromes and disease etiologies, large-31 
scale studies of CNV effects have been limited by their rarity in the general population. 32 
However, burden testing methods which address this rarity by pooling observed variation across 33 
gene regions have yielded reproducible associations in the context of congenital heart disease 34 
and various neurocognitive outcomes6,7. Moreover, as studies which include either microarray or 35 
NGS-based genotype data have grown in size and scope, it has become possible to describe 36 
the distribution of CNVs at kilobase-level resolution in the general population8,9. Furthermore, 37 
the aggregation of richly annotated phenotype data in biobanks has diversified the set of 38 
phenotypes available for well-powered association studies, and allows for more precise 39 
characterization of syndromic CNV-associated disease10,11,12.  40 
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 41 
We here describe the landscape of copy number variation and their associations with 1,937 42 
phenotypes in a cohort of 472,228 participants from the UK Biobank13. We replicate well-43 
established syndromic effects of common CNVs — namely 22q11.2 deletion (DiGeorge) 44 
syndrome and two variants of 16p11.2 deletion syndrome — and highlight known and novel 45 
associations for body mass index (BMI), acute coronary artery disease (CAD), and related 46 
adipose and cardiovascular phenotypes. Summary statistics from traditional genome-wide 47 
associations for common CNVs, as well as from gene-level aggregate burden tests of rare 48 
variants across all phenotypes are available for download on the Global Biobank Engine14. 49 
 50 
Results: 51 
 52 
Landscape of common and rare CNVs in a large volunteer cohort 53 
 54 
To call copy number variants in UK Biobank, we apply PennCNV15 separately within each 55 
genotyping batch, resulting in 278,455 unique CNVs among 472,228 individuals after sample 56 
quality control. We also observe heavy-tailed distributions in size and allele count of CNVs, with 57 
average CNV length ~226kb and the majority of called variants singleton in the cohort (Figure 58 
1a,b). This translates to notable burden of variation for nearly all individuals, with 439,464 59 
(93.1%) of the individuals possessing at least one CNV detectable at kilobase- resolution 60 
(Figure 1c,1d). Among individuals with at least one CNV, we estimate an average burden of 5.5 61 
variants covering >200kb of genomic sequence (median 3 variants affecting ~100kb, Figure 62 
1c,d). While in-line with previous reports8, these estimates of individual-level burden are likely 63 
conservative, as regions where array markers are sparse or missing limit the accuracy of variant 64 
calling. Furthermore, we are unable to call smaller (<1kb) variants due to inconsistent marker 65 
density across all chromosomal regions on the Axiom and BiLEVE UK Biobank genotyping 66 
arrays. This limitation is visible in the histogram of called CNV lengths (Figure 1a); we call 67 
substantially fewer variants on the order of hundreds of base-pairs than on the order of 68 
thousands. 69 
 70 
We also observe a highly non-uniform burden of variation across genomic position, with 71 
breakpoints most common near the ends of chromosomes, and at known regions of segmental 72 
duplication (Figure 1e). Among them are 1p36, 8q24.3, 9q34.3, and 19q13, all of which have 73 
associated microdeletion syndromes causing developmental delay with uniquely characteristic 74 
growth patterns16–19. Other CNV-hotspots like 6p21.33, which contains the major 75 
histocompatibility complex protein gene family, may be influenced by high marker density (in 76 
this case for HLA allelotyping) in addition to these biological features which underlie structural 77 
mutagenesis. However, these loci do not categorically correspond to areas where structural 78 
variation is commonly observed in the population (Figure S1). For example, 1p36 and 19q13 are 79 
also the respective sites of common CNVs overlapping RHD and FUT2 (Rhesus and Lewis 80 
blood groups), but there are no such common variants within the telomeric 16p13 cytoband. 81 
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 82 
Figure 1: Burden and distribution of copy number variation in UK Biobank. (A) Log-
scale histogram of CNV lengths. Mean length (dashed line) is 226.5kb. (B) Cumulative density 
of CNV allele count (AC), displayed in log-log axes. Average AC is 5.5, but average frequency 
as experienced by the population (weighted by count, hence AC2) is ~1.6%. (C) Histogram of 
CNV counts and (D) log-scale base-pairs affected by CNV per individual. Sample-level burden 
is heavy-tailed, with the average individual carrying 4.2 variants (dashed line), affecting mean 
~207.6kb of genomic sequence. (E) Genome-wide density of CNV, defined as the number of 
unique CNVs overlapping 10 megabase (Mb) windows tiling each chromosome. Hotspots of 
structural variation are labeled by cytogenic band.  
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Survivorship bias due to genetic selection against early-onset diseases    85 
 86 
We estimate gene-level intolerance to structural variation by adapting a method for estimating 87 
regional selective constraint8. Relative to the general population, the volunteers within the UK 88 
Biobank are described to have a “healthy-cohort” enrollment bias20 and were enrolled between 89 
the ages of 40 to 69, which informs our findings. Within the tail of positive constraint z-scores, 90 
which indicate the strongest intolerance to structural variation, we observe enrichment for genes 91 
which cause early onset diseases, particularly cancer. Among the top fifteen constrained genes 92 
(Table 1) are BRCA1 and BRCA2, which are associated with early-onset breast cancer21,22; 93 
MLH1, MSH2, MSH6, which cause early onset colorectal cancer (Lynch syndrome)23–25; and 94 
ATM and APC, which are involved with mismatch repair cancers26,27.  95 

 96 
 97 
Selections from the most highly constrained pathways from Gene Ontology Consortium28 98 
resources (Table 2) also suggest strong intolerance to CNV for genes involved with core 99 
biological processes like protein binding, cellular structural integrity (keratinization), 100 
development (growth hormone receptor binding), and immune regulation (natural killer cell 101 
activation). Similar results at the gene- and pathway-level are observed for deletion-specific 102 

Table 1: (Left) 15 genes most intolerant to 
copy number variation. Columns are gene 
label, constraint z-score, and probability of 
CNV intolerance (pLI, see Methods for 
definitions).  

Table 2: (Below): 15 pathways most 
enriched for constrained genes (t-test, gene 
set members versus all others). Columns 
are GO pathway ID/name, change in z-
score between set and non- set members, 
indicating mean strength of selective effect 
in the pathway, and p-value. 
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constraint (Table S1,S2), whereas duplication-specific analysis suggests autoimmune-related 103 
genes and pathways are most strongly intolerant to dosage effects (Table S1,S2). These results 104 
indicate strong selective effects occurring prior to enrollment in the UK Biobank during childhood 105 
and early adulthood against loss of function variation in core developmental, metabolic, and 106 
tumor-suppressing genes, and against dosage-altering variation in immune-related genes.  107 
 108 
Association testing identifies CNVs at novel and syndromic loci  109 
 110 
We compute genome-wide associations across 1,893 phenotypes for 8,274 common CNVs 111 
observed at 0.005% allele frequency (1 in 20,000) in our cohort, using regression as 112 
implemented in the analysis software PLINK29. We also perform L1-regularized regression for 113 
rare-variant burden tests, pooled by gene. For these tests, we measure the net effect of rare 114 
CNVs (AF < 0.1%) overlapping within 10kb of the gene region as defined by HGNC30 for 7,614 115 
protein coding genes with at least 5 individuals affected by such a variant. A complete list of 116 
phenotypes analyzed is available in Table S3. Here, we describe representative results for one 117 
common disease and one quantitative measure with established genetic risk factors and large 118 
sample sizes in UK Biobank: acute coronary artery disease (CAD) and body mass index (BMI).  119 
 120 
For Acute CAD, we identify one statistically significant (p < 6⨉10-6) association after Bonferroni 121 
correction for the common CNV GWAS: an intergenic deletion at chromosome 9p23. Intergenic 122 
variants at the 9p21 locus have been implicated in previous association studies of blood-based 123 
biomarkers relevant to cardiac outcomes, specifically, decreases in hematocrit and hemoglobin 124 
concentration31, as well as carotid plaque burden32. A recent meta-analysis33 using data from 125 
UK Biobank and CARDIoGRAMplusC4D identified a lead variant in the vicinity of this locus 126 
(rs2891168) associated with 6% unit increase in risk for similarly defined coronary artery 127 
disease. However, the CNV we here identify confers an estimated 12.4-fold increased risk 128 
(95%CI: 4.3-35.9, p=3.6⨉10-6) and is at least 2Mb distant from the nearest SNPs (rs10961206) 129 
at genome-wide significance near the 9p21/9p23 locus in the meta-analysis. This and the 130 
absence of linkage between the 9p23 CNVs and rs10961206 (r = 0.013) are suggestive of 131 
independent effects.  132 
 133 
Gene-level burden testing of rare CNVs in individuals with CAD implicates LDLRAD3, a member 134 
of the low density lipoprotein (LDL) receptor family. CNVs called in this gene are predominantly 135 
deletions affecting the coding sequence — in aggregate (n=27), these variants confer an 136 
estimated 10-fold increase in risk of Acute CAD (95% CI: 3.9-25.6, p=1.4⨉10-6). Though the role 137 
of lipoprotein receptors in cholesterol metabolism is a well established mechanism of risk for 138 
cardiovascular disease, LDLRAD3 is not known to participate in cholesterol metabolism. It is, 139 
however, a receptor widely expressed throughout adult tissues which may participate in 140 
proteolysis in the central nervous system34,35. We therefore sought to replicate these findings 141 
using two-sample mendelian randomization36 on expression quantitative trait loci (eQTLs) from 142 
CAD summary statistics from a CARDIoGRAMplusC4D meta-analysis37. We identify a nominally 143 
significant protective effect between an eQTL increasing expression of LDLRAD3 and CAD 144 
(OR=0.85 [95%CI: 0.62-0.97], p=0.012), the direction of which is consistent with a dosage 145 
model of LDLRAD3-mediated risk for CAD.  146 
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 148 

 

Figure 2: Genome-wide CNV 
associations for acute 
coronary artery disease (CAD).   
Manhattan plots for (A) genome-
wide association of common copy 
number variants, and (B) 
genome-wide burden test of rare 
variants. (C)  LocusZoom38 of 
9p23 CNV and summary 
statistics from meta-analysis of 
CAD33 colored by marker LD with 
lead regional GWAS SNP 
(rs10809656) in HapMap39 
European samples. 

 149 
We also find two significant associations for BMI, both deletions at chromosome 16p11.2, a 150 
locus implicated in syndromic early onset obesity and developmental delay. Each of these 151 
CNVs appears to correspond to a distinct form of 16p11.2 deletion syndrome. The smaller 152 
~220kb deletion (𝛽 = 4.5 kg/m2 [95%CI: 2.7-6.3 kg/m2], p = 1.8⨉10-6, AC=35) has been 153 
associated with early onset obesity, and spans ATXN2L, TUFM, SH2B1, ATP2A1, RABEP2, 154 
CD19, NFATC2IP, SPNS1, and LAT, with SH2B1 the suspected causal obesity gene3. Obesity 155 
is also a phenotypic consequence of a larger ~593kb deletion (𝛽 = 7.8 kg/m2 [95%CI: 6.2-9.4 156 
kg/m2], p = 5.0⨉10-23, AC=58), which is further associated with neurodevelopmental delay and 157 
related conditions4. However, this deletion spans a wholly distinct set of genes which are 158 
suspected to play complex dosage-dependent roles in the phenotypic consequences of the 159 
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syndrome40. As both subtypes of 16p11.2 deletion syndrome may present in early childhood, it 160 
is noteworthy that the effect we measure on BMI is in a cohort comprised entirely of older 161 
individuals, indicating burden of adult disease associated with the CNV locus.  162 
 163 

 164 

 

Figure 3: Genome-wide CNV 
associations for body mass 
index (BMI).   Manhattan plots for 
(A) genome-wide association of 
common copy number variants, 
and (B) genome-wide burden test 
of rare variants. (C) LocusZoom of 
16p11.2 CNVs and BMI summary 
statistics from the GIANT study41, 
colored by marker LD with the lead 
SNP at the locus (rs11150581), 
computed from HapMap European 
samples. 
 

 165 
After controlling for multiple comparisons, burden testing for BMI identifies a group of genes at 166 
chromosome 22q11.2 and recapitulates the list of genes affected by each of the 16p11.2 167 
deletions. Variation at the 22q11.2 locus also constitutes one of the first named microdeletion 168 
syndromes, DiGeorge syndrome, which has variable phenotypic consequences including 169 
craniofacial dysmorphisms and conotruncal congenital heart disease, along with increased risk 170 
for an adverse cardiovascular outcomes and neuropsychiatric disease later in life5. Among 171 
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individuals affected with 22q11.2 deletion syndrome obesity is a recognized manifestation of 172 
disease42, and we estimate a 0.3-0.4 point increase in BMI for genic CNVs near 22q11.2. as 173 
well as 0.55-0.7 for genic CNV at 16p11.2. The presence of these associations in a large 174 
volunteer cohort offers further evidence that syndromic alleles may contribute to the risk of 175 
common diseases in the general population.  176 
 177 

 178 
Figure 4: PheWAS of 16p11.2 CNVs. Selected genome-wide significant (p < 6⨉10-6) 
associations for 220kb (top panels) and 593kb (bottom panels) 16p11.2 CNVs. Traits are 
grouped by type (binary/quantitative) then sorted by p-value (left panels). Log-odds ratio and 
standardized betas (right panels) align with trait names on the y-axis, with the horizontal 
dashed line separating positive and negative direction of association. 

 179 
Phenome-wide associations for each of the CNVs at 16p11.2 further highlight changes in 180 
biomarkers, biomeasures, and increased risk of common disease, consistent with high BMI over 181 
the course of a lifetime (Figure 4). Genome-wide significant phenotypes for the 220kb CNV 182 
recapitulate the established syndromic effects from early onset obesity. We observe significant 183 
increases, on the order of one standard deviation, in weight, BMI, hip and waist circumference, 184 
reticulocyte count, and comparative body size at age 10 for these individuals. The larger 593kb 185 
CNV associates with similar measures of body size and fat, as well as hypertension, diabetes, 186 
and abdominal hernia. These results are also indicative of effects due to developmental delay; 187 

A 

C 

B 

D 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 10, 2019. ; https://doi.org/10.1101/545996doi: bioRxiv preprint 

https://doi.org/10.1101/545996
http://creativecommons.org/licenses/by/4.0/


 9 

namely, decreased measures of memory, higher Townsend deprivation, and lower lung capacity 188 
(FEV, FVC) with higher associated risk of respiratory failure. Taken together these results 189 
highlight the variable expressivity of CNV-related disease, as well as its long-term effects across 190 
the medical phenome.  191 
 192 
Discussion: 193 
 194 
In calling copy number variants and performing genetic association studies at scale from a large 195 
cohort of array-genotyped individuals with richly annotated phenotype data, we provide a 196 
portrait of the phenome-wide burden of genomic copy number variation. Our estimates of the 197 
individual-level burden of CNV and population-wide allele frequencies are consistent with 198 
previous reports, the deep phenotypic information available in the UK Biobank permits more 199 
finely tuned measures of the genic intolerance to CNV which include estimates of variation 200 
absent from our cohort of predominantly healthy, middle-aged individuals. We consider both 201 
rare and common CNVs in our association studies and identify effects of previously known 202 
(22q11.2, 16p11.2) syndromes and potentially novel (9p23) loci which have not yet been 203 
characterized or associated with disease.  204 
 205 
Our study has significant limitations which inform our analysis. While arrays are an inexpensive 206 
way to genotype large cohorts, permitting straightforward algorithms to infer the presence of 207 
structural variation, the resulting CNV calls are limited by the density and placement of markers 208 
across chromosomes. For UK Biobank genotyping arrays in particular, there are large portions 209 
of genomic sequence with low marker density (in particular near centromeric regions) which 210 
bias our resulting genotype calls away from such regions. Array-derived CNV calls also suffer 211 
from limitations, in their inability to differentiate other structural events like inversions or 212 
translocations, or to determine breakpoint position at base-pair resolution. Complicating these 213 
barriers is the fact that our sample was genotyped on two distinct arrays, which may cause 214 
identical CNVs to present with different breakpoints across individuals in the call set. Our choice 215 
to present gene-level burden tests which include the vast majority of variants included in our 216 
CNV GWAS was informed by this realization.  217 
 218 
Our associations are also heavily impacted by a known “healthy-cohort” bias, which results in 219 
null results for several phenotypes with known genetic contributions; notably, there are no hits in 220 
our burden tests for cancers other than leukemia and lymphomas. With this in mind, our 221 
constraint scores constitute a sobering observation of genetic survivorship bias. Estimates of 222 
gene-level intolerance to structural variation are derived from people who did not enroll in UK 223 
Biobank; the absence of individuals who were not healthy enough to participate or did not 224 
survive until age 40 constitutes a enrollment bias against severe early-onset disease. We take 225 
this opportunity to honor these non-participating individuals and their implicit contribution to our 226 
understanding of genetic disease. The observation of selection bias colors the interpretation of 227 
genetic findings from UK Biobank in general, as the cohort is relatively depleted of disease of 228 
early-onset morbidity and mortality and any genetic variation associated with these diseases will 229 
likewise be difficult to detect. While UK Biobank is unprecedented in size, scope, and scientific 230 
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yield, our data illustrate that the anticipated findings from the proliferation of large biobank 231 
studies around the world will be influenced by implicit and explicit barriers to participation.   232 
 233 
Despite selection against high-penetrance alleles causing early-onset disease, we detect a 234 
novel and strong association for coronary artery disease at LDLRAD3. While this locus has prior 235 
putative association with bone mineral density43, existing large-scale GWAS do not detect a 236 
strong association with coronary artery disease or established cardiometabolic risk-factors. 237 
However, the absence of gene level intolerance to truncating and missense variation in 238 
LDLRAD3 does not suggest a compelling rationale for important biological function or role in 239 
disease. In our study, CNVs at this locus are associated with some established cardiometabolic 240 
risk factors, such as diabetes onset, smoking status, and arterial stiffness, but not obesity or 241 
other fat-related phenotypes (Figure S6). Consistent with our findings that a decrease in 242 
LDLRAD3 dosage increases the risk of disease, a strong eQTL increasing LDLRAD3 243 
expression decreases the risk of disease when used as an instrument in a two-sample 244 
mendelian randomization in a large-scale study of coronary artery disease. Thus, our findings of 245 
an mRNA dosage effect are replicated at the gene level. These results highlight the utility of 246 
analyzing genic CNV which, when directly impacting mRNA dosage, offer a more easily 247 
interpretable mechanism distinct from alterations of protein structure or small changes in 248 
transcriptional regulation.     249 
 250 
The observation of variation at the 16p11.2 and 22q11.2 loci sheds further light on the 251 
penetrance of syndromic loci in the general population. The 16p11.2 recurrent microdeletion 252 
syndrome was first described in individuals with autism and neuropsychiatric disease and may 253 
include seizures, brain and other anatomic abnormalities. Even accounting for the enrollment 254 
bias inherent to the UK Biobank our PheWAS detects a modest relationship to neurocognitive 255 
measurements via secondary markers of intellectual differences such as prospective memory 256 
for one variant at this locus. People carrying variation at the 22q11.2 locus within the general 257 
population are known to be at increased risk of neuropsychiatric diseases44 for which variable 258 
phenotypic penetrance is well recognized345. To wit, individuals with genetic variation at both 259 
syndromic loci were by and large sufficiently healthy and capable of volunteering to participate 260 
in the Biobank. Our findings support a growing recognition that the penetrance and effect sizes 261 
of syndromic alleles will likely require revision in the context of broad population-based surveys 262 
of rare genetic variation46,47.  263 
 264 
Our findings add to the growing body of literature measuring global burden of structural variation 265 
across healthy and diseased individuals. Our estimates of the effects of common CNV suggest 266 
a notable role of structural variation in population-wide burden of common disease, and suggest 267 
genomic loci where novel CNV-derived syndromic disease may exist. For rare variants, our data 268 
offer broad phenotypic characterization of the effects of gene-specific knockouts, which may 269 
inform development of pharmacological and genetic therapies. While the functional 270 
consequence and pathogenicity of missense, synonymous, and noncoding single nucleotide 271 
variation within a gene may be difficult to classify, the mechanism of most genic CNV are clear: 272 
a dosage effect upon mRNA transcription. This population-scale catalog of variation and the 273 
described associations with a multiplicity of diseases should be of immediate use by genetic 274 
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clinicians in classification of novel and rare CNV detected in clinical testing. Full support for 275 
gene- and variant-level browsing is forthcoming in a future version of the Global Biobank Engine 276 
(biobankengine.stanford.edu). In the interim, summary statistics from association studies 277 
described here, as well as for all phenotypes present on the engine, are freely available for 278 
download on the site. We hope that these data will be leveraged to empower future analyses of 279 
the phenome-wide effects of structural variation and gene-level dosage effects. 280 
 281 
 282 
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Methods 300 
 301 
CNVs were called using PennCNV v1.0.4 on raw signal intensity data from each genotyping 302 
array. Phenotype data was derived from data-fields collected for UK Biobank corresponding to 303 
various body measurements, biomarkers, disease diagnoses and medical procedures from 304 
medical records, as well as a questionnaire about lifestyle and medical history. Summary-level 305 
data from all statistical tests described here, as well as more thorough documentation on 306 
phenotyping, will be available on the Global Biobank Engine14 (biobankengine.stanford.edu) and 307 
can be found in related publications48. 308 
 309 
CNV calling in UK Biobank: 310 
 311 
Methods for genetic data acquisition and quality control as performed by the UK Biobank have 312 
been previously described13. In brief, two similar arrays were used for targeted genotyping 313 
within the study population: the UK BiLEVE Axiom Array (n=49,950) by Affymetrix and the UK 314 
Biobank Axiom Array (n=438,427), which was custom-designed by Applied Biosystems. 315 
Samples and array markers were subject to threshold-based filtration and quality control prior to 316 
public release. Specifically, markers were tested for discordance across control replicates, 317 
departures from Hardy-Weinberg equilibrium, as well as effects due to batch, plate, array, and 318 
sex; affected markers were set as missing in affected batches or removed. Similarly, samples 319 
were tested for missingness (>5%) and heterozygosity across a set of high-quality markers, but 320 
samples identified as low quality (n=968) were not excluded. We also chose to include these 321 
samples in this analysis, considering that large structural variants may have been responsible 322 
for their poor quality with respect to metrics used for filtration. 323 
 324 
We used PennCNV v1.0.415 to call CNVs within each of the 106 genotyping batches from UK 325 
Biobank. We first estimate genomic runs of heterozygosity (RoH) for each sample using a 326 
previously developed pipeline in PLINK49,50 using the --homozyg option. We then select n=100 327 
samples with total RoH covering less than 20MB to train a hidden markov model (HMM) of copy 328 
state on each chromosome. HMM training was initialized with conditions optimized for 329 
Affymetrix arrays (affygw6.hmm), provided in PennCNV resources. We used the general calling 330 
mode, which performs likelihood-based testing for copy-number state (CN=0,1,2,3,4) at each 331 
input marker using its log-normalized signal intensity and allele balance in a given sample. We 332 
also apply adjustment for GC content across sites using waviness factor correction51. After CNV 333 
calling, we exclude 1,360 samples with over 30 called CNVs from downstream analysis, 334 
resulting in a cohort of 472,228 individuals with 278,455 unique variants. 335 
 336 
Gene-level constraint estimation: 337 
 338 
Regional selective constraint to CNV was estimated for all protein-coding genes, with genic 339 
CNV defined as any variant overlapping within 10kb of the HGNC gene region. We estimate a 340 
null model of structural mutation empirically, and model burden of genic CNV as a linear 341 
function of gene size, fraction of genic sequence covered by regions of segmental duplication as 342 
extracted from the UCSC Genome Browser52,53. We also account for biased observations due to 343 
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array genotyping by including the number of genic markers as a covariate. The formula for this 344 
null model can be written as: 345 
 346 

𝑛$%& 	= 	𝛽) ⋅ 𝑙𝑒𝑛(𝑔𝑒𝑛𝑒) 	+	𝛽1 ⋅ 𝑓𝑟𝑎𝑐(𝑠𝑒𝑔𝑑𝑢𝑝) 	+ 	𝛽: ⋅ 𝑛;<=>?=@+ 𝝐  347 
 348 
From this model, we compute constraint z-scores for each gene using its negated standardized 349 
residual for each gene, winsorizing the negative tail at the lowest 5% of values. We also 350 
compute the probability of loss of function intolerance (pLI) as the non-normalized residual over 351 
the number of expected CNV, with negative values rounded to zero. 352 
 353 
Genetic associations: 354 
 355 
Variant-level associations in UK Biobank were estimated with PLINK v2.00a (5 Jan 2018). We 356 
used the --glm firth-fallback option for computation. This option is a hybrid algorithm for logistic 357 
regression which defaults to a standard regression solver for computation, falling back to Firth’s 358 
regression (https://cran.r-project.org/web/packages/logistf/index.html) in cases where one of the 359 
cells of the 2x2 contingency table is zero, or where the traditional method fails to converge in a 360 
pre-specified number of iterations. These analyses were performed in a subset of 337,538 361 
unrelated individuals of self-reported white British ancestry, and were controlled for age, sex, 362 
and 4 marker-based genomic principal components from the UK Biobank PCA calculation. To 363 
ensure adequate power for estimating genetic effects, we perform these tests on 8,274 CNVs 364 
observed at a frequency of 0.005% (1 in 20,000, or 18 individuals) in the whole sample of 365 
individuals with called CNVs. 366 
 367 
Gene-level burden tests were conducted across all gene:phenotype pairs for genes with at least 368 
5 individuals with overlapping CNV. Genic burden was encoded as a binary variable which 369 
indicates whether an individual has a CNV which contains any overlap within 10,000 base pairs 370 
of the HGNC gene region. CNVs which overlapped several gene regions were used for analysis 371 
in each gene. We treat deletions and duplications identically, with the assumption that any CNV 372 
which overlaps a gene in this fashion will disrupt its normal function. Effects of genic CNV 373 
burden were estimated by linear and regularized logistic regression with the python package 374 
Statsmodels, respectively computed using the .fit() and .fit_regularized() methods. We included 375 
the following as covariates in both models: age, sex, four marker-based genomic principal 376 
components from UK Biobank’s PCA calculation, and the number and combined length of CNVs 377 
in each individual. 378 
 379 
Two-sample mendelian randomization was performed via the MR Base web app using GWAS 380 
summary statistics for LDLRAD3 expression QTLs from a CARDIoGRAMplusC4D meta-381 
analysis37. We report Wald summary statistics from inverse-variance weighted Egger 382 
regression; these are the default analysis options for the web interface.  383 
 384 
  385 
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Supplementary Figures and Tables: 386 
 387 

 388 
Figure S1: CNV density weighted by allele count in UK Biobank. Per-megabase genomic 
density of CNV, weighted by number of observations across all samples in UK Biobank. 
Variants are counted by whether the CNV has any overlap with 10 megabase (Mb) windows 
tiling each chromosome. Selected hotspots of structural variation are labeled by the region’s 
corresponding cytogenic band.  

 389 
 390 
 391 

 392 
Figure S2: CNV density normalized by array marker density in UK Biobank. Variants are 
counted by whether the CNV has any overlap with 10 megabase (Mb) windows tiling each 
chromosome, then divided by the number of markers in the window. Regions with no array 
markers are defined to have density of zero. Selected hotspots of structural variation are 
labeled by the region’s corresponding cytogenic band.  

  393 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 10, 2019. ; https://doi.org/10.1101/545996doi: bioRxiv preprint 

https://doi.org/10.1101/545996
http://creativecommons.org/licenses/by/4.0/


 15 

  394 
Table S1: 15 genes most intolerant to overlapping deletion (left), and whole-gene duplication 
(right), with respective constraint z-scores. 
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 396 

 397 
 398 

Table S2: GO pathways most intolerant to overlapping deletion (top), and whole-gene 
duplication (bottom), with change in constraint z-scores and significance thereof (t-test) 
relative to other pathways. 
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 400 
Figure S3: Correlation between intolerance measures for partial-gene deletion, whole-gene 
duplication, and CNV burden. The legend for each panel denotes correlation (Spearman’s r) 
between burden-constraint and each other measure. Kernel density estimates for each 
distribution of constraint scores are in the panels opposite their corresponding axis labels. 
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 402 
Figure S4: Distribution of constraint z-scores from UK Biobank and ExAC/gnomAD. Our 
measures of gene-level intolerance to structural variation show nominal correlation with 
gnomAD loss of function constraint z-scores (Spearman’s r = 0.013, left), and modest 
correlation with CNV-intolerance in ExAC (Spearman’s r = 0.11, right panel). Gaussian kernel 
density estimates for each distribution of z-scores are opposite their corresponding axes.  
 
While correlation between constraint measures across datasets is non-random, we suspect 
cohort-specific effects and varying definitions of genic burden of variation drive these 
departures. As a cohort of predominantly healthy adults, intolerance to variation in UK 
Biobank constraint is driven by severe early onset disease, while the same measures in 
ExAC/gnomAD, whose samples have a more diverse age range and relatively higher of 
burden of disease, highlight genes involved with fundamental biological processes whose loss 
of function likely confer phenotypic consequences causing embryonic lethality. 

 403 
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 405 

406 

 407 
Figure S5: UCSC Genome Browser tracks for 220kb (top panel) and 593kb (bottom panel) 
CNVs at Chr16q11.2. 
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 409 
Figure S6: LDLRAD3 burden test PheWas. Significant (p < 10-3) associations between 
regularized burden tests for LDLRAD3 CNV and phenotypes. We highlight quantitative traits 
with n > 15,000 observations and binary traits with n > 100 cases. Traits are grouped by data 
type then sorted by p-value (left). Log-odds ratio and standardized betas (right; for binary and 
quantitative traits, respectively) align with trait names on the y-axis, with the horizontal dashed 
line separating positive and negative direction of association. 

 410 
 411 
 412 
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