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Abstract 
Background 
It is becoming clear that tumor immune T cell infiltration and its functional orientation have 

substantial effect on cancer progression, influencing both response to therapy and 

prognosis. In this pan-cancer study, the previously described Immunologic Constant of 

Rejection (ICR) signature is used to define opposing immune phenotypes (i.e., immune-

active and immune-silent) across 31 different histologies. We systematically analyze the 

interconnections between the genetic programming of neoplasms and their immune 

orientation across different histologies, and the prognostic impact of such interplay. 

Moreover, we investigated the predictive value of ICR classification across various public 

datasets of immune checkpoint inhibition therapy. 

 
Methods 
RNA-seq data of samples from a total of 9,282 patient tumor samples representing 31 cancer 

types were obtained from The Cancer Genome Atlas (TCGA). We classified each cancer type 

based on the expression of the ICR gene signature. Oncogenic pathway gene set enrichment 

and mutational status were analyzed in relation to ICR phenotypes. To explore whether tumor-

intrinsic attributes associate with the prognostic value of ICR across cancers, we compared 

mutational load, oncogenic alterations and expression of oncogenic pathways between cancer 

types using an integrative bioinformatic pipeline. 

 
Results 
Our analyses identified a distinct prognostic connotation of ICR depending on cancer 

histology. We identified several oncogenic pathways whose enrichment inversely correlated 

with ICR in multiple tumor types. We found several cancer specific pathways that were 

differentially enriched between tumors in which ICR had a prognostic impact versus the ones 

in which ICR did not bear any prognostic connotation such as proliferation and TGF-beta 

signaling. Importantly, this conditional impact of ICR was also validated in the context of 

immune checkpoint inhibition treatment. 

 
Conclusions 
We identified tumor-intrinsic attributes that correlate with immune phenotypes and potentially 

influence their development. In addition, a relationship was observed between the enrichment 

of oncogenic pathways and the prognostic significance of the ICR and its predictive value for 

patients treated with anti-CTLA4 immune checkpoint inhibition. Such information can be used 

to prioritize potential candidates for therapies aimed at converting immune-silent into immune-

active tumors and to refine stratification algorithms. 
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Background 
 

Evidence of the effects of anti-tumoral immunity on cancer progression has accumulated 

over the last decades. The identification of tumor immune escape mechanisms, most 

importantly the upregulation of immune checkpoints, has led to major advances in 

immunotherapy. Immune checkpoint inhibitors have dramatically improved clinical outcome 

for a subset of patients across multiple cancer types. Despite this progress, the majority of 

patients (60-80%) still fail to respond. In addition, for some cancer types, immunotherapy 

remains ineffective. A pre-existing anti-tumor immune orientation has been associated with 

improved survival, both in treated and un-treated settings (Galon et al., 2013). However, in 

some cancer types, or specific subsets of cancer types, this association seems to be less 

clear, or even absent. For this reason, it is crucial to identify determinants of cancer immune 

orientation with its prognostic and predictive value. 

Multiple studies have reported differences in the association between measures of 

intratumoral immune activity and overall survival across different cancer types (Charoentong 

et al., 2017; Danaher et al., 2018; Tamborero et al., 2018; Thorsson et al.; Varn et al., 2017). 

Cancer type-specific differences in tumor mutational load are only partially responsible for this 

observation. It has been shown that cancer types with a high mutational burden have an 

increased responsiveness to anti-PD-1 or anti-PD-L1 therapy (Yarchoan et al., 2017). The 

biologic rationale behind this observation is that a high number of mutations increases the 

likelihood of generating neoantigens recognized as non-self by the adaptive immune system. 

Indeed, increased mutational load has been associated with increased number of predicted 

neoantigens and cytolytic activity across various cancer types (Rooney et al., 2015). In breast 

cancer a positive association between survival and density of tumor infiltrating lymphocytes, 

as estimated by transcriptomic data,  is restricted to tumors displaying a high mutational load 

or an aggressive/high proliferative  phenotype (Miller et al., 2016; Nagalla et al., 2013; Thomas 

et al., 2018). 

Over the years, multiple tumor immune classification systems have been introduced that 

aim to reflect antitumor immune activity based on intratumoral gene expression. Proposed 

classifications range from a measure of cytolytic activity by mean expression of GZMA and 

PRF1 genes (Rooney et al., 2015), to reflections of immune cell infiltration by cell-specific 

transcriptional profiles (Bindea et al., 2013; Nagalla et al., 2013), or gene signatures reflecting 

molecular components of an antitumor immune response, including Major Histocompatibility 

Complex (MHC), co-stimulatory or immunomodulatory molecules (Ayers et al., 2017; 

Charoentong et al., 2017; Wang et al., 2008). Reported signatures typically show overlapping 

genes or genes involved in identical immune processes. In this study, we characterize 

expression of the Immunologic Constant of Rejection (ICR) signature to define immune 
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phenotypes, which incorporates IFN-stimulated genes driven by transcription factors IRF1 and 

STAT1, CCR5 and CXCR3 ligands, immune effector molecules, and counter-activated 

immune regulatory genes (Hendrickx et al., 2017; Turan et al., 2018; Wang et al., 2008, 2013). 

Previously, we observed significantly prolonged survival of patients with a high expression of 

ICR genes in breast cancer. Moreover, we identified genetic determinants of ICR immune 

phenotypes, in particular, we noticed transcriptional deregulation of the MAPK pathway in 

tumors with low ICR gene expression (Hendrickx et al., 2017). We also observed that the ICR 

signature refines and improves the prognostic value of conventional prognostic signatures 

adopted in breast cancer (Bertucci et al., 2018). 

In this study, we have extended this analysis to encompass cancers from 31 different 

cancer types from the TCGA database. Using a pan-cancer approach, we identified 

relationships between tumor genetic programs and immune orientation. In addition, we 

confirmed different associations between ICR classification and overall survival across cancer 

types. Thereafter, we systemically analyzed in which (molecular) contexts ICR has prognostic 

value and in which ones it does not. Combination of immune orientation with tumor intrinsic 

attributes that interact with the prognostic significance of this immune orientation could refine 

tumor-immune classifications. 

 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 12, 2019. ; https://doi.org/10.1101/546069doi: bioRxiv preprint 

https://doi.org/10.1101/546069


Results 
 
Prognostic impact of ICR classification is different between cancer types 

RNA-seq data of samples from a total of 9,282 patients across 31 distinct solid cancer 

types were obtained from TCGA. To classify cancer samples based on their immune 

orientation, we performed unsupervised consensus clustering for each cancer type separately 

based on the expression of the ICR immune gene signature. This signature consists of 20 

genes that reflect activation of Th1-signaling (IFNG, TXB21, CD8B, CD8A, IL12B, STAT1, and 

IRF1), CXCR3/CCR5 chemokine ligands (CXCL9, CXCL10, and CCL5), cytotoxic effector 

molecules (GNLY, PRF1, GZMA, GZMB, and GZMH) and compensatory immune regulators 

(CD274/PD-L1, PDCD1, CTLA4, FOXP,3 and IDO1) (Figure 1A). Expression of these genes 

showed a positive correlation with each other across all cancer types (Supplementary Figure 
1). The ICR signature highly correlates with other immune signatures that aim to reflect a 

highly active immune tumor microenvironment, including the Tumor Inflammation Signatures 

(TIS) (r = 0.97) (Danaher et al., 2018) (Supplementary Figure 2). As a representative 

example, consensus clustering and cluster assignment of skin cutaneous melanoma (SKCM) 

is shown in Figure 1A. Analogous figures for each of the 31 cancer types are available as 

cancer datasheets at figshare.com.  

As shown in Figure 1B, the mean expression of ICR genes, or ICR score, varies 

between cancer types, reflecting general differences in tumor immunogenicity between 

cancers. While brain tumors (brain lower grade glioma’s (LGG) and glioblastoma multiforme 

(GBM)) typically display low immune activity (McGranahan et al., 2017), skin cutaneous 

melanoma (SKCM) and head and neck squamous cell carcinoma (HNSC) display high levels 

of immune activation (Economopoulou et al., 2016; Passarelli et al., 2017). In addition, the 

distribution of ICR scores among patients and the difference between the highest and lowest 

ICR scores varies between cancers. Accordingly, the proportions of patients assigned to 

specific ICR clusters are dependent on the cancer type. Even more clinically relevant, the 

relation of the different immune phenotypes to survival is dissimilar among cancer types 

(Figure 1C-D). While the ICR High phenotype shows a significant survival benefit compared 

with the ICR Low phenotype for various cancer types (BRCA, SKCM, UCEC, SARC), the ICR 

High cluster is associated with significantly reduced overall survival in other cancer types 

(UVM, LGG, PAAD, KIRC) (Figure 1C). Similar results were obtained when Cox regression 

analysis was performed on ICR score as a continuous variable (Supplementary Table 1). To 

explore biological differences between cancer types in which a highly active immune 

phenotype is mostly associated with favorable survival and cancer types in which this 

phenotype is mostly associated with decreased survival, we categorized cancer types in ICR-

enabled (BRCA, SKCM, UCEC, SARC, LIHC, HNSC, STAD, BLCA) and ICR-disabled (UVM, 
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LGG, PAAD, KIRC) groups, respectively (Figure 1C). All other cancer types in which ICR did 

not show an association or trend were categorized as ICR-neutral. Of important note, this 

classification was used for explorative purposes, a role of the immune mediated tumor 

rejection cannot be precluded in ICR-neutral cancer types.   

First, we explored whether the ICR scores and their distributions were different among 

these defined groups of cancer types. Mean ICR score is low for most ICR-disabled (ranging 

from 3.97 to 8.34) compared to ICR-enabled cancer types (ranging from 7.26 to 8.36) 

(Supplementary Figure 3A). This observation is most noticeable for ICR-disabled cancer 

types LGG and UVM. Moreover, the difference (delta) between ICR scores in ICR High 

compared to ICR Low groups is higher in ICR-enabled cancer types (range: 2.98-4.97) 

compared to ICR-neutral (range: 1.48-4.49) and ICR-disabled cancer types (range: 2.29-3.35) 

(Supplementary Figure 3B). These factors could underlie, at least partially, the observed 

divergent associations with survival. However, it is likely that additional factors influence the 

prognostic significance of the ICR, as ICR parameters per se cannot perfectly segregate ICR-

enabled from ICR-disabled cancer types.  

 To define whether tumor pathologic stage might interact with the association between 

ICR- and overall survival (OS), we fitted a Cox proportional hazards model for each group of 

ICR-enabled, ICR-neutral and ICR-disabled cancer types (Table 1). Overall, including ICR 

High and ICR Low samples from all cancer types, ICR has significant prognostic value 

independent of AJCC pathologic stage. For ICR-enabled cancer types, the ICR High group 

also remains significantly associated with improved survival after adjusting for tumor 

pathologic stage. For ICR-disabled cancer types, ICR High was associated with worse survival 

in univariate analysis (HR <1). However, in multivariate models this negative prognostic value 

of ICR was lost (HR=1.054; 95% CI= 0.7702- 1.443). Kaplan-Meier plots stratified by 

pathologic stage showed that within individual pathologic stages, ICR was not associated with 

OS for ICR-disabled cancers (Supplementary Figure 4). For ICR-neutral cancer types, while 

ICR was not associated with survival in univariate analysis, multivariate analysis indeed 

identified a positive prognostic value of the ICR classification, though less robust than 

observed for ICR-enabled cancer types. 

 

ICR reflects anti-tumor immune activity and is inversely correlated with tumor-related 

pathways associated with immune escape 

 To further explore differences between cancer types, we aimed to compare immune 

cell infiltration between ICR High and Low samples across cancers. Gene expression 

signatures specific to 24 cell types (Bindea et al., 2013) were used to deconvolute the 

abundance of immune cells in tumor samples by performing single sample gene set 

enrichment analysis (ssGSEA) (Barbie et al., 2009). Cell-specific enrichment scores (ES) for 
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each patient demonstrated a clear enrichment of transcripts specific to T- and B cells in ICR 

High patients (Figure 2A). More specifically, ICR High samples showed increased expression 

of transcripts associated with cytotoxic T cells, T-regulatory (T-reg) cells, Th1 cells, NK 

CD56dim cells, activated dendritic cells (aDC) and macrophages, compared with ICR Medium 

and ICR Low samples. This observation is consistent across cancer types, in both ICR-

enabled and ICR-disabled cancers. So, in addition to the immune functional molecular 

orientation, the ICR gene signature is a good reflection of anti-tumor immune cell infiltration 

(Lu et al., 2017). To quantitatively compare immune cell enrichment between individual cancer 

types, the mean ES was calculated for each cancer type (Supplementary Figure 5). Overall, 

no single consistent difference in terms of immune cell enrichment can be observed that can 

discriminate ICR-enabled from ICR-disabled cancer types. LGG and UVM show an overall 

low immune infiltration, consistent with our reported low ICR scores. 

We then proceeded to examine which tumor intrinsic attributes correlate with immune 

phenotype as reflected by ICR gene expression. We performed ssGSEA to identify enrichment 

of transcripts of common tumor-related pathways (Hendrickx et al., 2017; Lu et al., 2017; 

Salerno et al., 2016). Not surprisingly, immune-related pathways including TNFR1 Signaling 

and immunogenic cell death showed a strong positive correlation with expression of ICR 

genes (Figure 2B). This implies that our immune signature captures the anti-tumoral 

immunological processes well across a wide range of cancer types. Interestingly, various 

pathways were identified that inversely correlated with ICR gene expression, potentially 

representing mechanisms by which immune silent tumors develop their phenotype. Of these, 

WNT-b catenin (Corrales et al., 2017; Spranger et al., 2015), barrier genes (Salerno et al., 

2016), AMPK signaling (Dandapani and Hardie, 2013), and dysregulated KRAS signaling 

(Bedognetti et al., 2017) have previously been reported in the context of cancer immune 

resistance (Lu et al., 2017). Of special note, genes that we previously found to be upregulated 

in MAP3K1/MAP2K4-mutated vs wild-type (wt) breast cancer which perfectly segregated ICR 

High versus Low samples in the BRCA TCGA cohort (Hendrickx et al., 2017), were also 

inversely correlated with ICR in ACC, THYM, GBM, LGG and TGCT. 

 

Characterization of tumor mutational load and aneuploidy in relation to ICR immune 

phenotypes 

 Next, we aimed to identify genomic attributes related to the ICR immune phenotypes. 

We used the non-silent mutation rate and predicted neoantigen data from the recent TCGA 

study by Thorsson et al (Thorsson et al., 2018) to explore their association with cancer immune 

phenotypes. As anticipated, mean neoantigen count of each cancer type strongly correlated 

with mean mutation rate (Supplementary Figure 6A-B). While mean non-silent mutation rate 

is significantly higher in ICR High tumors for some cancer types, no clear association was 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 12, 2019. ; https://doi.org/10.1101/546069doi: bioRxiv preprint 

https://doi.org/10.1101/546069


observed in most cancer types. Results for predicted neoantigen load are similar (Figure 3A-
B and Supplementary Figure 6C-D). Overall, mean non-silent mutation rate and mean 

neoantigen load are higher in ICR-enabled cancers compared with ICR-disabled cancers. 

However, these differences cannot fully explain the divergent association of ICR with survival, 

as values for ICR-enabled cancers SARC and BRCA are in the same range as ICR-disabled 

cancers LGG, PAAD and KIRC. 

 Similarly, we studied the association between genomic instabilities, or aneuploidy, and 

ICR. Specifically, we compared the individual tumor aneuploidy scores and the ICR score 

across cohorts. Aneuploidy score was calculated as in Taylor et al (Taylor et al., 2018). As 

has been reported previously, we found a broad negative association between aneuploidy and 

raw or tumor purity adjusted ICR score (Davoli et al., 2017) (Figure 3C). Interestingly, this 

negative association was most strongly supported in ICR-enabled cancers, with 6 cancers out 

of 8 showing a significant negative association between aneuploidy score and purity adjusted 

ICR (P < 0.01). In ICR-neutral cancers, a small fraction of cancer types showed a negative 

association (4 of 18, with an additional 4 showing a non-significant but suggestive negative 

association). Three cohorts (GBM, KICH and PRAD) showed a suggestive positive 

association. Similarly, in the ICR-disabled cohorts only KIRC showed a significant negative 

association, while LGG showed a strongly significant positive association (p-value < 10-8). 

These results suggest that the previously reported relationship between aneuploidy and 

tumor-immune context is in fact tissue and cancer type dependent, with specific cancers 

showing a robust association, other cancers showing no relationship, and a minority of 

cancers (LGG in particular) showing a positive relationship. 

 

Specific mutations associate with ICR immune phenotypes 

To define the association of specific oncogenic mutations with ICR immune 

phenotypes, we first selected a set of  470 frequently mutated  genes in cancer (Iorio et al., 

2016), then trained an elastic net (Zou and Hastie, 2005) model to predict the ICR score as 

function of mutations in each sample and using the tumor-type as covariate. The positive non-

zero coefficients of the trained model were used to identify genes whose mutation are 

associated with an increase of the ICR and negative non-zero coefficients identify the genes 

whose mutations are associated to a decrease of the ICR score (Figure 4A). The use of 

tumor-type as covariate tends to limit the effect of the enrichment of mutations in specific 

cancer-types and their correlation with ICR score. The coefficients of the tumor-type were all 

different from zero, with the exception of BLCA, BRCA, CHOL, COAD, READ and SARC and 

retained in the final model. We evaluated the accuracy of the model in a ten-fold cross-

validation computing the correlation between the model prediction and the true ICR scores 

and obtaining a Spearman correlation of 0.669 ± 0.012 (p-value < 10-400). Genes associated 
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with a decrease of ICR score include, as expected, IDH1/IDH2 which are typical of cold tumors 

such as LGG and GBM. Interestingly MAP3K1 mutations, whose effect on ICR Low has been 

described in breast cancer (Hendrickx et al., 2017), are associated to ICR Low tumors pan-

cancer. The figure also shows that, with the exception of CNS tumors, there are mutations 

which predispose the tumor to be ICR High (associated to positive coefficient) and mutations 

which predispose the tumor to be ICR low in the same cancer types.    

To better compare the association between specific mutations and ICR groups within 

individual cancer types, we calculated, for each of the identified genes, the mean ICR score 

in the mutated group divided by the mean ICR score in the wild type (WT) within each 

individual cancer type. For most cancer types, the genes with a positive coefficient consistently 

showed a higher ICR score in mutated samples, supporting their association with an ICR High 

phenotype (Figure 4B). On the other hand, genes with a negative coefficient (genes 

associated with an ICR Low phenotype) as identified at the pan-cancer level, do show some 

clear deviations between cancer types. While for most cancer types, ICR score is indeed lower 

in the mutated group, results for cancer types COAD, UCEC and STAD show the reverse 

(Figure 4B). Interestingly, a common characteristic of these three cancer types is frequent 

hypermutation as a consequence of microsatellite instability (MSI) (Cortes-Ciriano et al., 

2017). This hypermutator phenotype could be responsible for the observed increased ICR 

score in the mutated group, as the genes with negative coefficient could be mutated in the 

context of hypermutation. We indeed observed an increased ICR score in the MSI-high group 

compared to MSI-low and microsatellite stable (MSS) groups in COAD and STAD datasets 

for which sufficient data on MSI status were available (Cortes-Ciriano et al., 2017) 

(Supplementary Figure 7A-B).  

We did not observe an enrichment of mutations in genes of pathways that inversely 

correlate with ICR (Figure 2B) suggesting that more complex biological processes are 

involved in upregulation of these tumor intrinsic pathways. Additionally, mutated genes were 

frequently part of multiple pathways, suggesting impact on various tumor biological systems 

(Supplementary Figure 8). 

 
Prognostic impact of ICR classification is dependent on the expression of cancer-related 

pathways 

 Although we have observed interesting differences between ICR High and ICR Low 

immune phenotypes across different cancer types, these do not explain the divergent 

association between immune phenotype and ICR as we observed in ICR-enabled versus ICR-

disabled cancer types (Figure 1C-D). As previously stated, an active immune phenotype has 

different impacts on survival depending on molecular subtype (for e.g. breast cancer (Miller et 

al., 2016)). To examine tumor intrinsic differences between ICR-enabled and ICR-disabled 
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cancer types, we compared the enrichment of tumor intrinsic pathways between these two 

groups. Differentially enriched pathways (t-test; FDR <0.05; Supplementary Table 2) 

between ICR-enabled and disabled cancer types were selected and used for pan-cancer 

hierarchical clustering. Interestingly, a wide variety of pathways were differentially enriched 

between both groups. Whereas enrichment for pathways involved in proliferation were mostly 

upregulated in ICR-enabled cancer types (proliferation metagene (Miller et al., 2016), E2F 

targets, G2M checkpoints), a large number of tumor intrinsic pathways (n=43) were enriched 

in ICR-disabled cancer types. Visualization of ES for these pathways across different cancer 

types in a heatmap confirms these findings. Hierarchical clustering based on ES of tumor 

intrinsic pathways differentially dysregulated by ICR-enabled and ICR-disabled cancer types 

segregates specimens into two main clusters (Figure 5A). As anticipated, pan-cancer survival 

analysis of all samples that formed a cluster along with samples of the ICR-disabled cancer 

types, named the ICR non-beneficial cluster, revealed no survival benefit of a high ICR 

expression. On the other hand, survival analysis of all samples in the other cluster, named the 

ICR beneficial cluster, showed a clear survival benefit for ICR High samples (Figure 5B). Of 

note, the prognostic significance of ICR was higher in this ICR beneficial cluster (HR = 1.82; 

p-value = 4.13-9; 95% CI = 1.49-2.23) compared to the prognostic significance of all samples 

of ICR-enabled cancer types combined (HR = 1.63, p = 2.26-8; 95% CI = 0.88-1.14), 

suggesting that tumor intrinsic attributes beyond the tumor site of origin are important to 

determine the relevance of cancer immune phenotypes. Interestingly, samples from ICR-

neutral cancers, in which no clear trend was observed between ICR and survival (Figure 1C), 

and which were not used in calculation of differentially enriched pathways, were divided across 

the ICR beneficial and ICR non-beneficial clusters. To evaluate whether the prognostic impact 

of the ICR was relevant to a subset of samples from ICR-neutral cancer types, subgroup 

analysis was performed for samples of ICR-neutral cancer types. Indeed, for all samples from 

ICR-neutral cancer types that clustered to the ICR non-beneficial cluster, ICR was not 

associated with survival. On the other hand, for samples of ICR-neutral cancer types which 

clustered to the ICR beneficial cluster, ICR showed a significant positive association with 

survival (Figure 5C), indicating that the ICR has prognostic relevance in this subgroup of 

cancer patients as well. 

To better clarify this concept, we selected two of the differentially expressed pathways 

that were of special interest. Firstly, the “Proliferation” signature was used to classify all 

samples independent of tumor origin in “Proliferation High” and “Proliferation Low” categories, 

defined as an ES value >median or <median of all samples, respectively. This 52-gene cluster 

described by Nagalla et al (Nagalla et al., 2013) has previously been associated with the 

prognostic value of immune gene signatures in breast cancer (Miller et al., 2016). As 

represented by a histogram, the proportion of samples with high proliferation signature 
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enrichment was larger in ICR-enabled cancer types compared with ICR-disabled cancers 

(Figure 6A). This very basic binary classification was already capable of segregating samples 

in a group in which ICR has a positive prognostic value from a group in which ICR is not 

associated with survival (Figure 6B). As a second illustration, “TGF beta signaling” was used 

to classify samples based on this pathway using the same approach. For this oncogenic 

pathway, ICR-enabled cancer types typically had a lower enrichment of this pathway 

compared to ICR-disabled cancer types (Figure 6C). This classification could also divide 

samples in a group in which ICR has a positive association with survival and a group in which 

this association is absent (Figure 6D). 

As proliferation positively correlates with tumor mutational load (Pearson’s correlation 

coefficient = 0.49) (Supplementary Figure 9), we investigated whether tumor proliferation 

independently contributes to the prognostic value of ICR. Therefore, we segregated pan-

cancer samples in four categories based on both mutation rate and proliferation 

(Supplementary Figure 10). Interestingly, in the proliferation high group, ICR High was 

associated with significantly improved survival independent of mutation rate. A similar 

observation is made for the mutation rate high group, ICR High is associated with better 

survival independent of proliferation. These finding suggest that mutation rate and enrichment 

of proliferation-related transcripts provide additive information to define the prognostic value 

of ICR. Furthermore, in a multivariate Cox proportional hazards model including ICR 

classification, proliferation enrichment, TGF beta signaling enrichment, tumor mutation rate, 

all parameters remain significant (Supplementary Figure 11). This implies that ICR, 

proliferation rate, TGF beta signaling and tumor mutation rate all have independent prognostic 

value. 

We then continued by verifying whether these tumor intrinsic attributes that interact 

with the prognostic impact of ICR when evaluated pan-cancer, could also translate to 

individual cancer types. For each individual cancer type, samples were divided by median ES 

for each of the selected pathways. ICR HRs (ICR Low vs. ICR High) were compared between 

each pathway-High and pathway-Low group for each cancer type (Supplementary Figure 
S12A-B). Overall, we indeed observed an increased HR for samples with a high enrichment 

of ICR enabling pathways for most cancer types. For samples with a high enrichment of ICR 

disabling pathways, the HR was indeed lower (Supplementary Figure S12C).  

These data confirm an association between the prognostic impact of ICR classification 

and enrichment of oncogenic pathways in individual cancer types as well as pan-cancer. Of 

note, these interactions between the prognostic significance of ICR and tumor intrinsic 

pathways were mostly present in enabled and neutral cancer types. Within disabled cancer 

types, with the exception of KIRC, similar associations were not found. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 12, 2019. ; https://doi.org/10.1101/546069doi: bioRxiv preprint 

https://doi.org/10.1101/546069


Predictive value of ICR score in immune checkpoint therapy is dependent on proliferation and 

TGF-beta signaling 

To define the clinical relevance of classification of ICR immune phenotypes, in the 

setting of immune checkpoint treatment, we first evaluated the predictive value of ICR score 

across multiple public datasets of anti-CTLA4 and anti-PD1 treatment. A significantly 

increased expression of ICR in responders compared to non-responders was observed across 

most of the datasets (Figure 7A) (Chen et al., 2016; Hugo et al., 2016; Prat et al., 2017; Riaz 

et al., 2017; Van Allen et al., 2015). The conditional activation of the prognostic impact of the 

ICR was tested in the Van Allen dataset, which was the only one for which survival information 

were available.  Strikingly, in the proliferation high subgroup, ICR score was significantly 

higher in pre-treatment samples of patients with long-survival or response (p=0.021), whereas 

this difference was not significant in proliferation low samples (Figure 7B). Cohort 

dichotomization based on TGF-beta signaling, again demonstrated the reverse trend: a 

significant difference in ICR score was only observed in the TGF-beta signaling low group 

(p=0.0044), not in the TGF-beta high group. Stratified survival analysis in these categories 

confirmed that the prognostic impact of ICR depends on proliferation and TGF-beta signaling 

(Figure 7C). These findings confirm a conditional prognostic and predictive impact of ICR 

based immune infiltration estimates in the setting of immune checkpoint treatment and 

demonstrate that these findings might have important clinical implications. 
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Methods 
 
Data acquisition and normalization 

RNA-seq data from The Cancer Genome Atlas (TCGA) were downloaded and processed 

using TCGA Assembler (v2.0.3). Gene symbols were converted to official HGNC gene 

symbols and genes without symbol or gene information were excluded. RNA-seq data from 

as wide as possible sample set of the total of 33 available cancer types of tissue types Primary 

Solid Tumor (TP), Recurrent Solid Tumor (TR), Additional-New Primary (TAP), Metastatic 

(TM), Additional Metastatic (TAM) and Solid Tissue Normal (NT) were used to generate a pan-

cancer normalized dataset. Normalization was performed within lanes, to correct for gene-

specific effects (including GC-content and gene length) and between lanes, to correct for 

sample-related differences (including sequencing depth) using R package EDASeq (v2.12.0) 

and quantile normalized using preprocessCore (v1.36.0). After normalization, samples were 

extracted to obtain a single primary tumor tissue (TP) sample per patient. For SKCM patients 

without available TP sample, a metastatic sample (TM) was included. Finally, the pan-cancer 

normalized dataset was filtered to remove duplicate patients and samples that did not pass 

assay-specific QCs (Thorsson) data was log2 transformed. Clinical data were sourced from 

the TCGA Pan-Cancer Clinical Data Resource (Liu et al., 2018). Mutation rate and predicted 

neoantigen load were obtained from the recent immunogenomic analysis by Thorsson et al 

(Thorsson et al.). The dataset published by Ellrott et al was used for mutation data analysis 

(Ellrott et al., 2018). Hematological cancer types LAML and DLBC were excluded from 

analysis. 

Raw fastq files of datasets GSE78220 (Hugo et al., 2016) and GSE78220 (Riaz et al., 

2017) were downloaded from NCBI SRA servers, quality control and adapter trimming was 

performed  using Trim_Galore (https://github.com/FelixKrueger/TrimGalore). Reads were 

aligned to hg19 using STAR (Dobin et al., 2013). GenomicFeatures and GenomicAlignments 

Bioconductor packages were used to generate row counts. The raw counts were normalized 

with EDASeq (Risso et al., 2011) and log2 transformed. The dataset phs000452.v2.p1 (Van 

Allen et al., 2015) was downloaded, already normalized, from http://tide.dfci.harvard.edu/. 

 

ICR classification 

Consensus clustering based on the 20 ICR genes (Figure 1A) was performed for each cancer 

type separately using the ConsensusClusterPlus (v1.42.0) R package with the following 

parameters: 5,000 repeats, a maximum of six clusters, and agglomerative hierarchical 

clustering with ward criterion (Ward.D2) inner and complete outer linkage. The optimal number 

of clusters (≥ 3) for best segregation of samples based on the ICR signature was determined 

heuristically using the Calinski-Harabasz criterion (Caliński and Harabasz, 1974) (source 
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function available on GitHub repository, see cancer datasheets for plots with local maximum). 

As we were interested to compare cancer samples with a highly active immune phenotype 

with those that have not, the cluster with the highest expression of ICR genes was designated 

as “ICR High”, while the cluster with the lowest ICR gene expression was designated “ICR 

Low”. All samples in intermediate cluster(s) were defined as “ICR Medium”. Samples were 

annotated with an ICR score, defined as the mean of the normalized, log2 transformed 

expression values of the ICR genes. For generation of the ICR Heatmaps (Figure 1C and the 

cancer datasheets), a modified version of heatmap.3 function was used (source function).  

 

Survival analysis 

Overall survival (OS) from the TCGA Pan-Cancer Clinical Data Resource (Liu et al., 2018) 

was used to generate Kaplan-Meier curves using a modified version of the ggkm function 

(Abhijit). Patients with less than one day of follow-up were excluded and survival data were 

censored after a follow-up duration of 10 years. Hazard ratios (HR) between ICR Low and ICR 

High groups, including corresponding p-values based on chi-squared test, and confidence 

interval were calculated using the R package survival (v2.41-3). The forest plot (Figure 1C) 

was generated using the R package forestplot (v1.7.2). Cancer types PCPG, THYM, TGCT, 

and KICH were excluded before generation of the plot, as the number of deaths in the 

comparison groups was too small for calculations. Cancer types with a HR > 1 with a p-value 

< 0.1 were termed ICR-enabled and cancer types with a HR < 1 with a p-value < 0.1 were 

termed ICR-disabled. The forest plot was annotated manually with indicators for ICR-enabled 

and ICR-disabled cancer types. Cox proportional hazards regression analysis was performed 

with the R package survival with the AJCC pathologic tumor stage as described in the TCGA 

Pan-Cancer Clinical Data Resource (Liu et al., 2018). For simplification, stage categories were 

reduced to “Stage I”, “Stage II”, “Stage III” and “Stage IV” for subcategories (e.g. Stage IIA, 

Stage IIB, Stage IIC etc). In multivariate analysis, pathologic stage was entered as a semi-

continuous (ordinal) variable. 

 

Gene Set Enrichment Analysis 

To define the enrichment of specific gene sets, either reflecting immune cell types (Figure 2A) 

or specific oncogenic pathways (Figure 2B), single sample GSEA (Barbie et al., 2009) was 

performed on the log2 transformed, normalized expression data. Immune cell-specific 

signatures as described in Bindea et al (Bindea et al., 2013) were used as gene sets using 

this method to deconvolute immune cell abundance. Gene sets to define enrichment of 

specific tumor-related pathways were obtained from the multiple sources. We started with a 

selection of 24 Hallmark pathways (Liberzon et al., 2015) which are regularly expressed in 

cancer. Subsequently, we added 21 non-redundant Ingenuity Pathway Analysis (IPA) 
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pathways (http://www.ingenuity.com, Ingenuity System Inc., Redwood City, CA, USA). Finally, 

several pathways were added that have previously been hypothesized to associate with 

cancer immune phenotypes, including Hypoxia/Adenosine Immune Cell Suppression, 

Immunogenic Cell Death (ICD), NOS1 Signature, PI3Kgamma signature, and SHC1/pSTAT3 

signatures as described by Lu et al (Lu et al., 2017), barrier genes as described by Salerno et 

al (Salerno et al., 2016), the proliferation metagene as described by Miller et al (Miller et al., 

2016) and genes upregulated in MAPK mutated breast cancer (Hendrickx et al., 2017). 

 
Correlation matrix 

The correlation matrices of ICR genes (Supplementary Figure 1) and correlation between 

ICR score and ES of selected pathways (Figure 2B) were calculated using Pearson test and 

plotted using “corrplot” version 0.84. 

 
Mutational Analysis 

Mutation rate and predicted neoantigen count data (Thorsson et al.) were log10-transformed 

and distribution across ICR clusters was plotted using R package “ggplot2”. Differences 

between ICR High, Medium and Low clusters were calculated through t-test, using a cut-off 

p-value of < 0.05. For specific mutation analysis, a set of 470 frequently mutated genes in 

cancer (Iorio et al., 2016), was selected. An elastic net regularized (Zou and Hastie, 2005) 

model was built to predict the ICR score as function of mutations in each sample and using 

the tumor-type as a covariate. The accuracy of the model was evaluated in a ten-fold cross-

validation setting computing the correlation between the model prediction and the true ICR 

scores, finally obtaining a Spearman correlation of 0.669 ± 0.012 (p-value < 10-400).  

 The R package “ComplexHeatmap” was used to plot ICR score ratios between 

mutated versus wild-type groups. For cancer type/ gene combinations with a number of 

samples of <3 in the mutated group, ratios were not calculated (NA; grey color in plot). A ratio 

>1 implies that the ICR score is higher in the mutated group compared with WT, while a ratio 

<1 implies that the ICR score is higher in subset of tumors without mutation. 

 

Aneuploidy 

Aneuploidy scores for each individual cancer were taken from Taylor et al (Taylor et al., 2018). 

Briefly, each tumor was scored for the presence of aneuploid chromosome arms after 

accounting for tumor ploidy. Tumor aneuploidy scores for each cohort were then compared to 

ICR scores via linear model with and without purity adjustment. Purity adjustment entailed 

correlating ICR score and tumor purity (as estimated via ABSOLUTE) and using the residuals 

to evaluate the post-adjustment relationship between ICR score and tumor aneuploidy. In 

particular we made use of the precomputed aneuploidy scores and ABSOLUTE tumor purity 
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values. Raw ICR and aneuploidy score associations were evaluated by linear model in R via 

the lm() function for each cohort independently. Adjusted ICR and aneuploidy score 

associations were evaluated by first modeling ICR score by tumor purity, then taking the ICR 

score residuals and assessing the association with aneuploidy score via linear model. Cohorts 

with model p-values below 0.01 for adjusted or unadjusted ICR score and aneuploidy, 

regardless of the directionality of the association, were included in Figure 3C. 

 
Differential GSEA and stratified survival analysis 

Differential ES analysis between samples of ICR-enabled and those of ICR-disabled cancer 

types was performed using t-tests, with a cut-off of FDR-adjusted p-value (i.e., q-value) < 0.05 

(Supplementary Table 2). Tumor intrinsic pathways that were differentially enriched between 

ICR-enabled and disabled cancer types were selected. The heatmap used for visualization of 

these differences was generated using the adapted heatmap.3 function (source function). For 

each of these selected pathways, samples were categorized pan-cancer as pathway-High (ES 

> median ES) or pathway-Low (ES < median ES). Associations between ICR and survival 

were defined for each pathway “High” and pathway “Low” group separately using the survival 

analysis methodology as described above. Pathways for which a significant association 

between ICR and survival was present in one group, but not in the other one, were selected 

(Supplementary Table 3). Similarly, these pathways were used to categorize samples per 

individual cancer type in pathway-High (ES > cancer specific median ES) and pathway-Low 

(ES < cancer specific median ES). Differences between HRs of groups in individual cancer 

types were calculated and plotted using “ComplexHeatmap” (v1.17.1). 

 

Predictive value ICR score in immune checkpoint datasets 

ICR scores, or the mean expression of ICR genes, were compared between responders and 

non-responders to immune checkpoint therapy. For the Chen et al dataset, performed on 

Nanostring platform, scores were calculated using the 17 ICR genes available in the 

nanostring panel. Difference in mean ICR score between groups was tested using two-side t-

test (cutoff <0.95) (Fig 7A). For datasets, GSE78220 (Riaz et al., 2017), GSE78220 (Hugo et 

al., 2016) and Prat et al (Prat et al., 2017), the response category includes both partial and 

complete clinical responders according to respective publications. For Chen et al, clinical 

responders also included stable disease, as described by Chen et al (Chen et al., 2016). 

Dataset van Allen et al, response was defined as patients with clinical response or long-term 

survival after treatment (Van Allen et al., 2015). Samples of van Allen dataset were 

dichotomized based on median ssGSEA of 1) genes of the proliferation metagene and 2) TGF 

beta signaling signature. Stratified analysis was performed in each of the categories. ICR 

High, Medium and Low groups were defined according to ICR score tertiles, to obtain groups 
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of sufficient size. Stratified survival analysis was performed using the same approach as 

applied to the TCGA data.  
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Discussion  

The immunologic landscape of human cancer can broadly be divided into immune-

silent and immune-active phenotypes. Transcriptional signatures used to define the continuum 

of cancer immune surveillance within the tumor microenvironment typically reflect identical 

immune processes and include largely overlapping genes (Ayers et al., 2017; Hendrickx et 

al., 2017; Wang et al., 2008). In this study, we defined cancer immune phenotypes based on 

the expression of genes related with a Th-1 anti-tumor immune response, called ICR genes, 

across 31 different cancer types in a total of 9282 patients. We confirmed that high expression 

of these transcripts, referred to as an ICR High phenotype, was associated with favorable 

prognosis in multiple cancer types including SKCM, BRCA, UCEC, LIHC, SARC, HNSC, 

STAD, and BLCA. The expression of ICR genes had positive prognostic value in more cancer 

types compared with leukocyte infiltration, suggesting that it is crucial to consider the 

molecular orientation of the immune infiltrate to determine the impact on patient outcome. 

Similar to previous observations (Charoentong et al., 2017; Danaher et al., 2018; Tamborero 

et al., 2018; Thorsson et al.; Varn et al., 2017), the prognostic value of an ICR High immune 

phenotype is restricted to specific cancer types. In fact, the ICR High phenotype was 

associated with unfavorable prognosis for UVM, LGG, PAAD, and KIRC (Figure 1C). These 

observations prompted us to systematically investigate the association between immune 

phenotypes and tumor intrinsic attributes and the effect of this interplay on the prognostic 

value of the ICR immune phenotypes. 

To compare cancer types based on the prognostic value of ICR, we categorized cancer 

types into two groups: one for which ICR High was associated with increased OS and one for 

which ICR was associated with worse OS. For the first group, Cox proportional hazards 

regression analysis confirmed a positive prognostic value of ICR independent of pathologic 

tumor stage. SKCM, BRCA, UCEC, LIHC, SARC, HNSC, STAD, and BLCA are consequently 

referred to as ICR-enabled cancer types. For the second group, including UVM, LGG, PAAD, 

and KIRC, survival analysis adjusted for tumor stage showed that within individual tumor 

stages, ICR was, in fact, not associated with survival. Therefore, we refer to these as ICR-
disabled cancer types. A correlation between an active cancer immune phenotype and tumor 

size has also previously been reported in gliomas (Tamborero et al., 2018), explaining the 

initially observed negative association between ICR and OS. 

The first notable difference we observed between ICR-enabled and -disabled cancer 

types is the overall lower ICR in disabled cancer types. In particular for UVM and LGG, this 

low ICR could be a partial explanation for the lack of positive prognostic value of the ICR. On 

the other hand, mean ICR score of PAAD and KIRC was not different compared with the other 

cancer types. Therefore, other factors must have an effect on the prognostic value of the ICR. 
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Estimation of immune cell subsets across cancer immune phenotypes (e.g., ICR Low, 

- Medium, High) by ssGSEA using immune cell signatures (Bindea et al., 2013) confirmed that 

ICR High tumors were enriched in transcripts related to immune cells that are typically 

associated with a Th-1 immune response (CD8 T cells, DCs, T-regs, macrophages, NK and 

NKT cells). No deviations were observed that could explain the different associations between 

ICR and survival.  

We then proceeded to analyse global genomic aberrations, including overall 

mutational load, predicted neoantigen load, and genomic instability in relation to ICR immune 

phenotypes and their prognostic value. Mutational load was significantly higher in the ICR 

High tumors compared with ICR Low for a subset of cancer types. These included cancer 

types COAD, STAD and UCEC for which hypermutation as a consequence of microsatellite 

instability and associated high immunogenicity is present in a subset of the samples. However, 

for most cancer types, no significant difference in mutational load was found between ICR 

High and ICR Low. The results confirm previous findings of Danaher et al, that demonstrated 

that mutational load only correlated minimally with expression of the Tumor Inflammation 

Signature (TIS) for a small number of cancer types (Danaher et al., 2018). As neoantigen load 

might have a stronger association with tumor immunogenicity, we additionally compared 

predicted neoantigen load between ICR High and ICR Low. We found a significant increase 

in ICR High compared to ICR Low tumors in 12 and 14 cancer types for mutational load and 

neoantigen load, respectively. However, for both mutational load and neoantigen load, relative 

differences between ICR High and ICR Low groups are not large and range widely within ICR 

subgroups. These findings support the fact that additional factors beyond mutational load and 

neoantigen load determine immune phenotypes. Although overall mutational load and 

neoantigen load were higher in ICR-enabled cancer types, these attributes alone cannot 

clearly discriminate ICR-enabled from -disabled cancer types. 

 As for genomic instability, tumors with high aneuploidy are associated with decreased 

ICR score in a major subset of cancer types. This finding confirms previous observations in 

which aneuploidy was inversely correlated with cytotoxic immune infiltrates in a pan-cancer 

analysis (Davoli et al., 2017). This observation is also in agreement with negative association 

of a chromosome-instable type with an immune signature that predicts response to 

immunotherapy with MAGE-A3 antigen as well as response to anti-CTLA-4 treatment in 

melanoma (Ock et al., 2017). The only exceptions we found were brain tumors LGG and GBM 

in which a positive association between aneuploidy and ICR score was found. Although LGG 

and GBM are both ICR-disabled cancer types, this correlation is not consistently observed in 

ICR-disabled cancer types. In fact, for KIRC aneuploidy inversely correlates with ICR.  

We continued our investigation to mutations of specific genes. A recent pan-cancer 

study by Thorsson et al investigated mutations associated with changes in leukocyte fraction 
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(Thorsson et al.). Here, we confirm that IDH1, NSD1 and GATA3 mutations were associated 

with an ICR Low immune phenotype pan-cancer. Using our approach, we found additional 

mutations associated with low ICR, including IDH2, FOXA2, WNT5A, KRAS, NRAS and 

EGFR. WNT5A mutations might impact intrinsic WNT-ß catenin signaling, for which a role in 

tumor immune escape has been defined (Spranger and Gajewski, 2015). Interestingly, 

MAP3K1 mutations, which we previously found to be associated with low ICR in breast cancer 

(Hendrickx et al., 2017), was found in the top 10 mutated genes associated with a low ICR 

pan-cancer. Per cancer analysis showed that MAP3K1 mutation is also associated with low 

ICR in BLCA, ESCA, GBM, KIRC and OV (Figure 4B). The role of MAP3K1 mutation and 

MAPK signaling on cancer immune phenotypes warrants further investigation in these cancer 

types. Similar to previous observations, we found HLA-A, HLA-B, B2M, CASP-8 and FAS to 

be associated with an ICR High immune phenotype (Ock et al., 2017; Rooney et al., 2015; 

Shukla et al., 2015; Siemers et al., 2017; Thorsson et al., 2018). Specific mutations associated 

with ICR High and ICR Low were quite similar in ICR-enabled versus ICR-disabled cancer 

types. Similarly, we found that genomic alterations of oncogenic pathways (Sanchez-Vega et 

al., 2018) did not show clear differences between ICR-enabled and - disabled cancer types 

(data not shown). 

Finally, we investigated tumor transcriptomics in relation to ICR and its prognostic 

value. We found that enrichment of transcripts of several pathways was associated with a low 

ICR score, including WNT-ß catenin, barrier genes, AMPK signaling, and dysregulated KRAS 

signaling. For several of the identified pathways negatively correlating with ICR, a role in tumor 

immune escape has been described previously (Bedognetti et al., 2016; Corrales et al., 2017; 

Dandapani and Hardie, 2013; Salerno et al., 2016; Spranger et al., 2015). Identification of 

specific mutations or regulation of tumor intrinsic pathways associated with cancer immune 

phenotypes is vital to be able to design therapeutic strategies to overcome tumor immune 

resistance. For example, inhibition of the TGF beta signaling pathway has shown to be able 

to revert cancer immune phenotype to an immune active one, and could therefore increase 

efficacy of cancer immunotherapy (Ganesh and Massagué, 2018; Mariathasan et al., 2018; 

Tauriello and Batlle, 2016). In a similar way, immunomodulatory effects of inhibition of MAPK 

signaling pathways could be effectively used in combination with immunotherapy (Bedognetti 

et al., 2017). 

 Next, we compared enrichment of oncogenic pathways in ICR-enabled and -disabled 

cancer types. Strikingly, we identified major differences in enrichment of transcripts of tumor 

intrinsic pathways between these groups of cancer types. While ICR-enabled cancer types 

are typically more enriched in proliferation-related signatures, ICR-disabled cancer types have 

high enrichment of pathways generally attributed to tumor signaling. Hierarchical clustering 

based on enrichment of transcripts of these differentially enriched pathways segregated most 
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samples of ICR-enabled cancer types from samples of ICR-disabled cancer types. 

Interestingly, this clustering was even relevant to samples of ICR neutral cancer types. Pan-

cancer survival analysis of samples of ICR neutral cancer types showed that for samples that 

co-clustered with samples of ICR-enabled cancer types (the ICR beneficial cluster), ICR High 

was associated with significant prolonged survival. Moreover, for samples of ICR neutral 

cancer types clustered to the ICR non-beneficial cluster, ICR lost its prognostic value. 

The clinical relevance of the observed conditional impact of ICR was confirmed in the 

setting of anti-CTLA4 treatment. The predictive value of ICR was demonstrated to be 

dependent on tumor intrinsic pathways, such as TGF-beta and proliferation. 

 To the best of our knowledge, we are the first to report an interaction between tumor 

intrinsic pathways and the prognostic value of immune phenotypes in a pan-cancer analysis. 

Most importantly, we found that the impact of tumor intrinsic pathways on the prognostic 

significance of the ICR is independent of tumor mutation rate and neoantigen load. Analysis 

within individual cancer types confirmed an association between the prognostic significance 

of the ICR and expression of tumor intrinsic pathways.  

An association between proliferation and the prognostic value of immune phenotypes 

has previously been identified in breast cancer (Miller et al., 2016). Additionally, in non-small 

cell lung cancer (NSCLC), cell proliferation was shown to improve prediction of immune 

checkpoint inhibitors response in PD-L1 positive samples as recently presented at SITC 

annual meeting 2018 (SITC annual meeting 2018, abstract, Jason Zhu et al). Our study clearly 

demonstrates that such interactions between tumor intrinsic attributes and prognostic and 

potentially predictive value of immune phenotypes are also relevant in a pan-cancer context. 

Moreover, we defined additional tumor intrinsic attributes beyond tumor proliferation to 

correlate with the prognostic significance of the ICR. These findings suggest that 

prognostication algorithms should be refined by inclusion of tumor intrinsic attributes in order 

to define the prognostic impact of the ICR. 

Limitations of this study include the fact that the directionality of tumor intrinsic 

pathways cannot be directly derived from enrichment of pathways transcripts. However, we 

must note that the majority of genes included in our signatures are positive mediators of the 

pathways. In addition, though our analyzed signatures are typical cancer-related pathways, 

the origin of transcripts could not be determined in this bulk-sample analysis. Furthermore, 

infiltration of stromal cells to the tumor site affects the relative expression of tumor derived 

transcripts. Single cell gene expression profiling approaches should be applied to future 

cohorts in order to specifically dissect origin of transcripts. Despite these limitations, we 

observed a strong correlation between expression of the proliferation genes and expression 

of MKI67 or Ki-67, an established marker of tumor proliferation, suggesting that our signature 

enrichment indeed reflects tumor cell-specific attributes. 
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To summarize, we have explored whether tumor intrinsic attributes, including tumor 

genomics and transcriptomics, have an impact on the prognostic value of ICR classification. 

We systematically compared these tumor intrinsic attributes between ICR-enabled and -

disabled cancer types. Although overall mutational load and neoantigen load were higher is 

ICR-enabled cancer types, these attributes did not clearly discriminate ICR-enabled from -

disabled cancer types. Similarly, mutations of specific genes or oncogenic alteration of 

pathways could not distinguish these different groups of cancer types. Remarkably, 

enrichment tumor intrinsic pathways did show clear differences between ICR-enabled and -

disabled cancer types. As much as 43 of 54 analyzed pathways showed differential 

enrichment between ICR-enabled and ICR-disabled cancer types. We confirmed an impact of 

enrichment of these pathways on the prognostic value of the ICR in ICR neutral cancer types, 

as well as within individual cancer types. Overall, our findings indicate that for prognostic 

purposes, one should not only take the ICR immune phenotype into account, but rather use 

this in combination with the expression of tumor intrinsic pathways. The concept of the 

conditional activation of the prognostic role of the ICR  was validated in the context of 

checkpoint inhibition. 

In conclusion, we observed a clear relation between enrichment of tumor intrinsic 

pathways and the prognostic and predictive significance of the ICR gene signatures. This 

information can be used to prioritize candidates for immunogenic conversion and to refine 

stratification algorithms. 
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Figure Legends 
 
Figure 1:  Immunologic classification of 31 cancer types based on expression of ICR 
gene signature A. Consensus cluster matrix of SKCM samples based on RNA-seq 

expression values of ICR genes (left panel). RNA-seq expression heatmap of ICR genes 

annotated with ICR consensus clusters (n = 469). Clusters with intermediate ICR gene 

expression levels (ICR Medium1 and ICR Medium2) were combined to obtain ICR High, 

Medium and Low groups (HML classification). ICR genes reflect 4 components of immune 

mediated tissue rejection: Th1 signaling, CXCR3/CCR5 chemokines, immune effectors and 

immune regulatory functions (right panel). B. Boxplot of ICR scores across ICR clusters in 

31 cancer types. Cancer types are ordered by mean ICR score per cancer. C. Forest plot 

showing HRs (overall survival) of ICR Low versus High, p-value and number of patients (N) 

for each of the cancer types. ICR-enabled cancer types (HR  > 1; p < 0.1) are indicated with 

orange asterisks and ICR-disabled cancer types (HR < 1; p > 0.1) are indicated with purple 

asterisks. Cancer types PCPG, THYM and TGCT are excluded from the plot, because 

confidence intervals ranged from 0 to infinite due to low number of deaths in these cancer 

types. D. Kaplan Meier curves showing OS across two three different ICR groups in ICR-

enabled and ICR-disabled cancer types. 

(Figures of panel A and Kaplan Meier curves for each individual cancer type are available in 

the cancer datasheets). 

 

Figure 2: Deconvolution of immune cell populations and enrichment of oncogenic 
pathways through single sample GSEA. A. Heatmap of enrichment values for cell-specific 

immune-signatures as described by Bindea et al. Samples are ordered by ICR cluster and 

ordered by cancer type within ICR clusters. B. Pearson coefficient of correlation between 

ICR score and enrichment scores of oncogenic pathways per cancer. Pathways that have a 

positive correlation with ICR are green and those with an inverse correlation are blue. 

 

Figure 3: Association of ICR with nonsilent mutation rate, predicted neoantigen load, 
and tumor aneuploidy. A. Scatter plot of log transformed nonsilent mutation count per ICR 

cluster for each cancer type. B. Log transformed predicated neoantigen load per ICR cluster 

for each cancer type. A.B. Red crossbar represents the mean value per ICR cluster. Cancer 

types are ordered by mean nonsilent mutation count per cancer. Nonsilent mutation rate and 

predicted neoantigen load were obtained from Thorsson et al (Thorsson et al., 2018). C. 
Correlation between aneuploidy score and raw/purity adjusted ICR score for all cohorts with 

significant relationships between ICR and aneuploidy. 
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Figure 4: Relationship between ICR score and mutations in individual genes. A. Top 

35 of mutated genes with negative non-zero coefficients of a trained elastic net model 

identified genes whose mutation is associated with a decrease of the ICR (left panel). Top 

35 mutated genes with a positive association with ICR score in pan-cancer trained model 

(right panel). Contributions of each individual cancer type to the coefficient in trained elastic 

net model are proportionally indicated by size of the bars. B. Ratio of mean ICR score in 

mutated samples and ICR score in WT samples. Cancer types are ordered manually based 

on patterns of calculated ratios. 

 

Figure 5: Pan-cancer clustering based on oncogenic pathway enrichment segregates 
ICR-enabled and ICR-disabled cancer types. A. Heatmap of enrichment scores of 

selected oncogenic pathways, samples are hierarchically clustered in two main clusters: one 

cluster consists mostly of ICR-enabled cancer types (ICR beneficial cluster), while the 

second cluster contains all samples from ICR-disabled cancer types (ICR non-beneficial 

cluster). B. Kaplan-Meier OS curves for ICR High, Medium, and Low clusters for samples in 

the ICR beneficial and ICR non-beneficial cluster separately. C. Subgroup survival analysis 

of all samples of ICR-neutral cancer types clustered in the ICR beneficial cluster and ICR 

non-beneficial cluster. 

 

Figure 6: Examples of pan-cancer binary classifications based on enrichment of 
individual tumor intrinsic gene signatures and corresponding stratified pan-cancer 
survival analysis. A. Histogram showing pan-cancer classification based on median pan-

cancer enrichment value of the proliferation signature as described by Miller et al (Miller et 

al., 2016) (Proliferation Low: ES is lower than median ES observed pan-cancer; Proliferation 

High: ES is higher or equal to median ES observed pan-cancer). B. Pan-cancer Kaplan 

Meier curves of ICR groups stratified by Proliferation High (left panel) and Proliferation Low 

(right panel) groups corresponding to classification as shown in panel A. C. Histogram 

showing pan-cancer classification based on pan-cancer enrichment values of the Hallmark 

pathway TGF beta signaling. D. Pan-cancer Kaplan Meier curves stratified by TGF beta 

signaling Low (left panel) and TGF beta signaling High (right panel) groups corresponding to 

classification as shown in panel C. 

 

 

Figure 7: Conditional predictive value of ICR for response to immune checkpoint 
treatment. A. Predictive value of ICR across public datasets with response to immune 

checkpoint treatment indicated by p-value of two-sided t-test comparing ICR score in samples 
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of responding versus non-responding patients. ICR score was highest in response group for 

all significant comparisons. Response was defined as long-survival or response in the van 

Allen dataset, stable disease, partial response (PR) and complete response (CR) in the Chen 

dataset, and as PRCR in Riaz, Hugo and Prat datasets. B. Boxplot of ICR score in 

“nonresponse” compared with “long-survival or response” to anti-CTLA4 treatment in van Allen 

dataset (left). Boxplots of subgroup analysis of proliferation groups (middle) and TGF-beta 

signaling groups (right). P-value of t-test comparing means are indicated in the plot. C. Kaplan 

Meier curves showing OS across ICR tertiles in all samples (left), across proliferation (middle), 

and TGF-beta signaling subgroups (left). 

 
 

Supplementary Figures 
Supplementary Figure 1: Pearson correlation between RNA-seq expression values of ICR 

genes for each of the 31 cancer types. 

 

Supplementary Figure 2: Scatterplot showing correlation between ICR score and TIS score 

(Danaher et al., 2018) (A), ICR score and leukocyte fraction (B), and ICR score and TIL 

percentage (C). Leukocyte fraction and TIL percentage values were obtained from Thorsson 

et al (Thorsson et al., 2018). Each dot represents a single sample. 

 

Supplementary Figure 3: A. Boxplot showing mean ICR score for each cancer type per 

group of cancer types: ICR-enabled, ICR-neutral and ICR-disabled. A single dot represents 

a single cancer type. B. Boxplot showing delta between mean ICR score in ICR High cluster 

compared with mean ICR score in ICR Low cluster. A single dot represents a single cancer 

type. 

 

Supplementary Figure 4: Pan-cancer Kaplan-Meier curves in ICR-disabled (top left panel) 

and ICR-enabled (top right panel) groups and stratified analysis by AJCC pathologic stage I 

& II (middle panels) and stage III & IV (bottom panels). 

 

Supplementary Figure 5: Dotted heatmap showing mean ES for each immune cell 

population per cancer type, mean ES scores were z-scored per row.  

 

Supplementary Figure 6: A. Scatterplot of mean mutation rate versus mean neoantigen 

load per cancer type. B. Ratio of nonsilent mutation rate between ICR High and ICR Low 

groups versus the ratio of predicted neoantigen load between in ICR High compared to ICR 

Low groups. C. Ratio of nonsilent mutation rate between ICR High and ICR Low groups 
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versus mean nonsilent mutation rate. D. Ratio of predicted neoantigen load between ICR 

High compared to ICR Low groups versus mean predicated neoantigen load. 

 

Supplementary Figure 7: A. Boxplot of ICR score by MSI status in COAD (left panel) and 

STAD (right panel). P-values of t-test to compare mean ICR score per MSI group are 

indicated in the plot. B. Boxplot of number of mutated genes with a negative coefficient in 

ICR trained elastic net model by MSI status in COAD (left panel) and STAD (right panel). P-

values of t-test to compare mean number of mutations per MSI group are indicated in the 

plot. 
 
Supplementary Figure 8: Table to check overlap between tumor intrinsic pathways genes 

and frequently mutated genes. When a gene (columns) is part of a gene signature (rows), 

this is indicated by “YES”, if not, it is indicated by “NO”. Genes that have a negative 

coefficient in trained model are shown in blue, pathways that inversely correlate with ICR 

(Figure 2B) are indicated in blue. Genes that have a positive coefficient in trained model are 

shown in red, pathways that positively correlate with ICR (Figure 2B) are indicated in red. 

 

Supplementary Figure 9: Scatterplots of each of the combinations of: 1) ICR scores, 2) 

proliferation ES, 3) TGF beta signaling ES, and 4) mutation rate (n = 4452). Pearson’s 

correlation coefficient and regression line (red) are indicated in the plots. 

 

Supplementary Figure 10: Pan-cancer Kaplan Meier curves of ICR groups stratified by 

both Proliferation High (left panels) and Proliferation Low (right panels) groups 

(corresponding to classification of shown in Figure 6A) and by Mutation rate High (top 

panels) and Mutation rate Low (bottom panels) based on pan-cancer median mutation rate.   

 

Supplementary Figure 11: Multivariate Cox proportional hazards model including ICR 

classification, proliferation enrichment, TGF beta signaling enrichment, and tumor mutation 

rate. 
 

Supplementary Figure 12: Survival analysis of ICR Low versus ICR High in pathway 

enrichment categories across 40 pathway signatures (rows) for each cancer type (columns). 

HRs (hazard ratios) for death in high enrichment categories (A) are compared with HRs in 

low enrichment categories (B). C. Differences in prognostic impact of ICR classification 

between pathway signature enrichment categories for each cancer type. HR of ICR Low vs. 

ICR High was calculated per category from binary classification of enrichment of oncogenic 

pathway signatures (rows) within individual cancer types (columns). The delta between HR 
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in the highly enriched group and the HR in the group with low enrichment was calculated for 

each signature/cancer type combination.  

 

Supplementary Tables 
 
Supplementary Table 1: Association of ICR with OS across 31 cancer types with ICR as a 

categorical variable ICR Low versus ICR High (first and second column; yellow), and ICR as 

continuous variable (third and fourth column; blue). HR, hazard ratio for death. 

 

Supplementary Table 2: Comparison of mean ES of samples from ICR-disabled cancer 

types with mean ES of samples from ICR-enabled cancer types for 54 oncogenic pathway 

gene signatures.  

 

Supplementary Table 3: Pan-cancer survival analysis stratified by binary classification 

based on enrichment of selected oncogenic pathway signatures. HR, hazard ratio for death. 
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Table 1. Cox proportional hazards regression for association with overall survival in 
ICR-enabled and ICR-disabled tumors: ICR High and ICR Low samples included 
(ICR Medium samples excluded) 
 
 
 

Signif. codes: *** <0.001; ** <0.01; * <0.05 
 
ICR cluster entered as categorical (factor) variable (factor levels: “ICR High”, “ICR Low”) 
Pathologic stage as semi-continuous variable (Stage I = 1; Stage II = 2; Stage III = 3; Stage IV = 4) 
 
 

 

 

 Univariable   Multivariable  
Variables HR (95% CI) p  HR (95% CI) p 
ICR overall (n = 4735)      

~ ICR cluster  
(ICR Low vs. High) 

1.203 (1.081-	
1.339)  

0.00073 
*** 

 1.343 (1.180- 1.528) 7.85e-06 
*** 

~ Pathologic stage  
(Stage I, II, III, IV) 

1.72 (1.615-		
1.832) 

<2e-16 
*** 

 1.716 (1.611- 1.827) <2e-16 
*** 

      
Samples from ICR-enabled 
cancer types (n = 1742) 

     

~ ICR cluster  
(ICR Low vs. High) 

1.631(1.374- 	
1.937)  

2.26e-8 
*** 

 1.488 (1.233- 1.795) 3.35e-05 
*** 

~ Pathologic stage  
(Stage I, II, III, IV) 

1.817 (1.644- 		
2.008) 

<2e-16 
*** 

 1.798 (1.628- 1.987) <2e-16 
*** 

      
Samples from ICR-disabled 
cancer types (n = 721) 
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FIG7

Study Platform Treatment type Time of biopsy

ICR score in 
Responders > 
non-responders

p value
van Allen RNASeq anti-CTLA4 pre-treatment 0.024 (*)

Chen et al Nanostring anti-CTLA4 pre-treatment 0.95
anti-CTLA4 on-treatment 0.028 (*)

anti-PD1 pre-treatment 0.69
anti-PD1 on-treatment 0.00054 (***)

Riaz et al 
(GSE91061) RNASeq anti-PD1 pre-treatment 0.14

anti-PD1 on-treatment 0.015 (*)

Hugo et al 
(GSE78220) RNASeq anti-PD1 pre-treatment 0.92

Prat et al Nanostring anti-PD1 pre-treatment 0.05 (*)

A

C Proliferation High

Proliferation Low

TGF beta sig High

TGF beta sig Low

p = 0.02 p = 0.01

p = 0.02

n.s.
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