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Abstract

Lysogens are bacterial cells that have survived after being infected by bacterial
viruses called bacteriophages. Instead of being killed by the virus, the infected cell
survives by integrating the viral DNA into its own genome. This is only possible with
“temperate” bacteriophages which do not always lyse their host to reproduce, but
sometimes replicate passively using the lysogenic pathway. After an infection resulting
in lysogeny, the lysogen continues to grow and divide normally, seemingly unaffected
by the integrated viral genome which is now referred to as a prophage. However, the
prophage can have an impact on the host’s phenotype and overall fitness in certain
environments. This makes competition between the lysogen and its nonlysogen coun-
terpart possible because both cells have different genomes and potentially different
growth rates. Additionally, the prophages within the lysogens are capable of sponta-
neously reverting back to the lytic pathway via spontaneous prophage induction (SPI),
causing death of the lysogen and the release of new progeny phages. These new phages
can then lyse or lysogenize other susceptible nonlysogens, thereby impacting the com-
petition between lysogens and nonlysogens. In a scenario with differing growth rates,
it is not clear whether SPI would be beneficial or detrimental to the lysogens since it
directly causes cell death but also attacks nonlysogenic competitiors, either lysing or
lysogenizing them. In this work we study the evolutionary dynamics of a mixture of
lysogens and nonlysogens and derive general conditions on the rate of SPI resulting
in lysogens displacing nonlysogens. We show that there exists an optimal SPI rate,
and apply the model to bacteriophage λ. We find that the model can explain why
the experimentally measured SPI rate for phage λ is so low. We also investigate the
impact of stochasticity and conclude that even at low copy numbers the SPI rate can
still be fairly low while still providing an advantage to the lysogens.

1 Introduction

Bacteriophages (or phages for short) are viruses which infect bacterial cells. By infecting
bacteria, the phages can replicate themselves using the host’s cellular machinery. The repli-
cated phages can then destroy the host cell and are released into the environment which
is known as the lytic or lysis pathway. Lysis is the typical outcome of infection, but some
phages can sometimes follow alternative pathway after infection called lysogeny. Phage λ is
a well-known example for such phages called “temperate” [20]. In the lysogenic pathway, the
phages integrate their viral DNA into the host’s genome. The host cell, now called a lysogen,
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is seemingly unaffected and continues to grow and divide normally. Typically this lysogenic
state is very stable and the cell remains a lysogen after many cell divisions. Sometimes the
lysogen can revert back to the lytic pathway in a process called prophage induction [18].
Prophage induction can be triggered by various environmental factors, such as DNA damage
by UV radiation, via induction of the host’s SOS response. Prophage induction can also
occur spontaneously in a process termed spontaneous prophage induction or SPI [18]. SPI is
likely due to spontaneous accumulation of DNA damage initiating the host’s SOS response
that occurs during cell replication [5, 16,18,21].

When a bacterial cell is converted to a lysogen, its genome now contains viral genes. This
means that the lysogens genome is different from the nonlysogen’s genome, and as a result
it is possible that natural selection can occur between the lysogens and nonlysogens. The
integrated viral genes can be expressed within the lysogen and affect the lysogen’s phenotype
and fitness. For many lysogenized cells, the lysogen strain has decreased sensitivity to
antibiotics, increased biofilm formation, and virulence [2,14,15,26,27] due to the integrated
viral genes. The additional viral genes could also slow cell growth because expression of extra
viral genes could deplete host cell resources that promote cell division [22,23]. For example, it
has been shown that multiple phage λ infections reduce host cell transcription and translation
[8,13,25]. Taken together, these facts imply that lysogens could outcompete nonlysogens or
vice versa because of their differing growth rates or fitnesses in certain environments. Thus,
in the long run the lysogens could be naturally selected over the nonlysogens or vice versa.
Evidence for competitive advantage of lysogens over their nonlysogenized counterparts comes
from experiments showing that mixtures of lysogens and lysogen-cured bacteria tend towards
a state in which the lysogen starts to displace the lysogen-cured strain [3, 7].

In a mixture of only lysogens and nonlysogens, SPI events could cause some lysogens to
lyse, thereby releasing phages into the mixture. The phages can then infect the nonlysogens
either killing them via lysis or converting them into lysogens. The lysogens are not affected
by additional infections because they are immune to superinfection. Thus, SPI could give the
lysogens a competitive advantage, increasing the chances they will be naturally selected. On
the other hand, SPI can also be costly to lysogenic fitness because SPI is concomitant with
cell death. If there are no nonlysogens left to convert, SPI simply adds to the intrinsic lysogen
death rate. It has been suggested that SPI enables lysogens to spread viral DNA within the
bacterial population by steady lytic-killing and lysogenic-conversion of the nonlysogens [18].
However, from the perspective of the lysogen, it remains unknown precisely how high or
low should the SPI rate be for the lysogens to be naturally selected over the nonlysogens?
In other words, does there exist an optimal SPI rate enabling the natural selection of the
lysogens over the nonlysogens? If so, then how does this optimal SPI rate depend, if at all,
on ecological factors?

In this work, we use replicator dynamics and simulation [19] to gain a theoretical un-
derstanding of how SPI influences the competition between lysogens and nonlysogens under
general parameter sets, and to identify an optimal SPI rate enabling the lysogens to be
naturally selected over the nonlysogens, which is comparable with experimental values. Our
model is intended to be general such that it can theoretically describe the competition be-
tween any lysogen and its nonlysogen counterpart so long as the lysogen can undergo SPI.
We quantitatively compare our model to the lysogens from bacteriophage λ infecting E.
coli because many of the model’s parameters for the phage λ - E. coli system have been
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measured previously [20]. Our major finding is that the SPI rate should be as low as possi-
ble but still greater than a lower bound which we derive analytically. For phage λ we find
that the experimentally measured SPI rate matches our model’s prediction. We also derive
expressions to describe how stochasticity affects the competition between nonlysogens and
lysogens undergoing SPI.

2 The LUV model

To understand how SPI plays into the natural selection of lysogenic cells over their uninfected
counterparts, we developed a model summarized by equation 1 - 5. This model simulates
evolutionary population dynamics using replicator equations [19] with carrying capacity
K ≈ 106 and in time units of per cell generation (≈ 30 minutes per cell [1]). Since the
lysogenic genome contains viral genes, there are many ways in which lysogenized cells could
be different from their nonlysogenized counterparts. These differences could influence host
cell physiology by directly affecting the intrinsic cell growth rate via expression of viral genes
integrated within the host’s genome. Therefore, in our model we assume that the lysogens, L,
grow at a rate r and the nonlysogens, U , grow at a rate g. The model simulates lysogenic and
nonlysogenic cells growing in the same environment with carrying capacity K (which reflects
nutrient and space limitations). The lysogens undergo SPI at a rate σ, and the resulting free
viruses, V , infect the nonlysogens U to induce α decision-making events per cell per phage
per generation. A proportion p of these phage-cell encounters enter the lysogenic pathway,
and the remaining proportion 1−p enter the lytic pathway. When the lytic pathway occurs,
b free viruses are released given by the burst size of the phage. The viruses degrade at rate
γ.

L̇ = rL− σL+ pαUV − φL (1)

U̇ = gU − αUV − φU (2)

V̇ = (1− p)bαUV − γV + bσL (3)

φ =
(r − σ)L+ gU − αUV (1− p)

K
(4)

K = L+ U (5)

The parameter variables are summarized in detail in Table 1 along with the parameter
values for the phage λ - E. coli system. The burst size of phage λ is given by b ≈ 150. The
probability of lysogeny is known to be host cell volume and MOI dependent, ranging from
20% to 80% [9, 10, 24, 28], but we take p ≈ 0.3. Cell growth rates are determined by cell
doubling times ranging from 20 mins to 40 mins [1, 29], so we take g = 1 cell division per
cell per generation. Similarly, we take r to be ≈ 1 cell per generation, but we investigate
different r values in the range 0.9 ≤ r ≤ 1 to determine how the growth-cost due to lysogeny
affects the dynamics. Phage degradation occurs on the order of 0.1 per day per phage [6],
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which converts to γ ≈ 0.001 per generation per phage. The parameter α measures the rate at
which nonlysogens are infected and either lysed or lysogenized per generation per phage per
cell. This includes the phage infection/adsorption rate and the rate at which infected cells
develop lytically or lysogenically per generation. We estimated α from the phage adsorption
experiment in [4,17] by fitting a small mass-action model of the phage-cell infection dynamics
to the raw data. This α estimate allowed fixation events to occur on the timescale of a few
days, similar to the experimental results in [7] which compete phage λ lysogens against
their nonlysogenic counterparts. Increasing α by a factor of 10 resulted in fixation events
occurring on the timescale of 10s of days, but the overall behavior of the system remained
identical. The intrinsic SPI rate of phage λ in a recA− background is < 10−8, but in a recA+

background the SPI rate is estimated to be about 10−6 to 10−7 per generation [11, 12, 29].
Since recA− mutants probably don’t exist in nature, we use the recA+ SPI rate because
natural selection likely acts on the recA+ strain and not the recA− strain.

Table 1: LUV model parameters

Parameter Symbol Value

Lysogen replication rate r 0.9 ≤ r ≤ 1 per gen
Nonlysogen replication rate g 1 per gen

Carrying capacity K ≥ 106

Phage-cell binding/infection rate α ≈ 10−7 per phage per cell per gen
Phage burst size b ≈ 150

Lysogenization rate p ≈ 0.30
Phage degradation rate γ ≈ 0.001 per gen

SPI rate σ ≈ 10−6 per gen

We can take advantage of the differing time scales of the reactions to impose some
conditions (inequalities) on the parameters. From our parameter estimates, we find that
the quantity αbK/γ ≈ 1.5 · 104 which is quite large. The numerator ν1 = αbK is essentially
the rate (per generation) at which a population of K nonlysogens are lysed or lysogenized
given a single phage lytic event released b infecting phages. The denominator ν2 = γ is
the rate at which a single phage degrades per generation. Since phage degradation is on
the order of days and lysis-lysogeny decision-events occur on the order of hours, it is no
surprise that the ratio ν1/ν2 is quite large using our literature estimates. Thus, we assume
that αbK/γ � 1 throughout our study which should hold even if there is some uncertainty
in the parameter estimates since this quantity is so large compared to 1. We also assume
that r > σ because if σ > r the net growth rate of the lysogens would be negative indicating
an unsustainable population. The lysogen’s genome is the same as the nonlysogen’s genome
except that it contains more genes from the integrated viral genome (the genes from the
prophage). Maintenance of the lysogenic state generally requires continued gene expression
of a key viral repressor protein to block entrance into the lytic pathway, and in the specific
case of phage λ this protein is the CI repressor. It is possible that the cell incurs some
growth-rate cost by maintaining expression of this viral repressor. Experiments competing
λ lysogens against their nonlysogenic counterparts showed that their growth rates are not
statistically different, suggesting that r = g [7]. However, it is still possible that r could be
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different from g by a very small amount that could be difficult to detect. For example, this
could happen if g−r = 0.01 or less. From these observations we assume that the nonlysogenic
growth rate g is at least r or otherwise at least slightly larger. These inequalities will be
important later on when analyzing this model. Note that since g ≥ r then g > σ as well.
Also note that if r > g then the lysogens would displace the nonlysogens even without SPI
in the long run, and the inclusion of SPI when r > g would only accelerate the process.
Since this observation is somewhat trivial, we do not specifically investigate it in this work.
However, we do prove this analytically later on.

With the model and its parameters specified, we numerically simulated the LUV model
using the Runge Kutta integration scheme (see Fig. 1) for the parameter values in Table
1 to gain an understanding of the role of SPI in the competition between lysogens and
nonlysogens. The initial conditions we chose were L(t = 0) = 0.01K and U = 0.99K which
implies that the lysogens initially comprise 1% of the population. Since K ≥ 106 the initial
values of L and U were at least 104 which allows us to well-approximate the behavior of this
system using deterministic models. We investigate stochastic models later on in this work
given the fact that the low SPI rate can still introduce stochasticity into the model. The
simulations show that this system tends towards a state in which the lysogens completely
displace the nonlysogens in the long run even though the lysogenic growth rate is lower
(g > r). This suggests that SPI allows the lysogens to subvert the nonlysogens even if the
lysogenic state is costly to cell growth. This result is consistent with experiment observations
in which lysogen strains displaced lysogen-cured strains when growth together [3, 7, 18].
Essentially, a low but steady rate of lysogens undergoing SPI allows the released phages to
either kill off the nonlysogen strain or convert them to the lysogenic state.

Figure 1: LUV model simulated using parameters from Table 1. Specifically, we set r = 0.99
and σ = 10−6. We get the same results if we vary the model’s parameters.
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3 Lower bound on SPI rate for lysogenic advantage

To determine the exact bounds on the SPI rate necessary for the lysogens to displace the
nonlysogens, we analytically solved our model (equations 1 - 5) at steady state to obtain
its equilibrium points and then tested their stability by calculating the eigenvalues of the
system’s associated Jacobian matrix. At first glance, this seems like a very difficult task due
to the nonlinearity of the model, but fortunately the model admits analytical solutions for
its equilibrium points. We used Mathematica to check all calculations and derivations.

First, we set V̇ = 0 in equation 3 and solve for V . This gives us the following relationship.

V =
bσL

γ − b(1− p)αU
(6)

Next, we set U̇ = 0 using equation 2.

0 = U [g − αV − φ] (7)

The only way for 7 to be zero is if either U = 0 or if [g − αV − φ] = 0. We will analyze
both cases.

If U = 0 it immediately requires that L = K by constraint equation 5. This then
immediately implies that V = bσK/γ by equation 6. Thus, the point PLUV

1 = (L,U, V ) =
(K, 0, bσK/γ) is one equilibrium point of our system.

Otherwise, if g − αV − φ = 0 then we can plug in 4 for φ. The relation g − αV − φ = 0
immediately implies that equation 8 must hold.

(g − r + σ) (K − U) (γ − b(1− p)αU) = αbσ (K − U) (K − U(1− p)) (8)

We can immediately note that U = K is a possible solution of equation 8. Setting
U = K implies L = 0 by the constraint 5. Then, using equation 6 we immediately see
that V = 0 if U = K. Thus, the second equilibrium point of our system is given by
PLUV

2 = (L,U, V ) = (0, K, 0).
If U 6= K, then we can cancel the factor (K − U) and solve for U to obtain U =

γ (g − r − σ (αbK/γ − 1)) /αb(1 − p)(g − r). We can then use this value for U to calculate
L and V using L = K − U and equation 6. This solution set defines equilibrium point 3,
which we denote using PLUV

3 .
The equilibrium points of our system are summarized in Table 2. To summarize, PLUV

1

describes a state in which the lysogens have displaced the nonlysogens, PLUV
2 describes a

state in which the nonlysogens have displaced the lysogens, and PLUV
3 describes a state in

which both the lysogens and nonlysogens coexist. Given these equilibrium points, we seek
to determine the conditions necessary for the lysogens to displace the nonlysogens.

3.1 Stability of equilibrium points for LUV model

To determine the conditions required for the lysogens to displace the nonlysogens, we in-
vestigated the stability of the LUV model’s equilibrium points (Table 2) by computing the
eigenvalues of our model’s associated Jacobian matrix JLUV .
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Table 2: LUV model equilibrium points

Equilibrium point L U V

PLUV
1 K 0 bσK/γ
PLUV

2 0 K 0

PLUV
3 K − g−r−σ(αbK/γ−1)

(1−p)(g−r)αb/γ
g−r−σ(αbK/γ−1)
(1−p)(g−r)αb/γ

(g−r+σ)−αbK((g+r)(1−p)−σ)/γ
α(1+αbK)(1−p)/γ

JLUV =

∂L̇/∂L ∂L̇/∂U ∂L̇/∂V

∂U̇/∂L ∂U̇/∂U ∂U̇/∂V

∂V̇ /∂L ∂V̇ /∂U ∂V̇ /∂V

 (9)

We calculate the partial derivatives in JLUV using equations defining the LUV model
(equations 1 - 5) and we define JLUVi to be JLUV evaluated at equilibrium point PLUV

i .
First, we analyze the stability of equilibrium point PLUV

1 from Table 2, namely (L,U, V ) =
(K, 0, bσK/γ). This point characterizes a state of the system in which the lysogens have
displaced the nonlysogens. Using these values for L, U , and V we calculate JLUV1 .

JLUV1 =

−r + σ −g + αbKσ/γ 0
0 g − r + σ − αbKσ/γ 0
bσ αb2K(1− p)σ/γ −γ

 (10)

The eigenvalues of JLUV1 are given by calculating the determinant det(JLUV1 −λI) where I
is the identity matrix. This results in the following characterisic polynomial with eigenvalue
λ (equation 11).

0 = (−r + σ − λ) (g − r − σ(αbK/γ − 1)− λ) (−γ − λ) (11)

The eigenvalues are the values of λ which solve equation 11. We see that these values are
λ1 = −r+σ, λ2 = g−r−σ(αbK/γ−1), and λ3 = −γ. The equilibrium point (K, 0, bKσ/γ)
is a stable point of the system if all eigenvalues are negative. Since γ > 0 we know that λ3 is
negative. Since σ < r we have that λ1 is negative since λ1 = −(r − σ) < 0. The eigenvalue
λ2 is negative if and only if σ > σLB with σLB given by equation 12.

σLB =
g − r

αbK/γ − 1
(12)

Using literature estimates for the parameter values from Table 1, and specifically with
r = 0.99 and σ = 10−6, we estimate σLB ≈ 6 · 10−7. Thus, σ must be larger than this lower
bound (defined as σLB) in order to establish (K, 0, bKσ/γ) as a stable equilibrium point.
This is very close to the experimentally measured value between 10−6 or 10−7 per generation
for phage λ measured most recently [29].

Recall that we assume g ≥ r so there are two possibilities, either g = r or g > r.
If g = r then the lysogenic state does not hurt cell growth rate and, as a consequence,
any σ > σLB = 0 would cause the point (K, 0, bKσ/γ) to be a steady equilibrium point.
Furthermore, if g = r then critical point PLUV

3 no longer exists (the system goes from having
3 equilibrium points to only 2). Otherwise, if g > r then the factor g − r is greater than 0
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and hence makes the lower bound σLB nonzero. Using the values in Table 1 we estimated
that if g − r ≈ 0.01 per generation then σLB ≈ 6 · 10−7 per generation. If the lysogenic
growth-cost was even smaller (e.g. if g − r is smaller), then σLB < 10−7. For example, with
g = 0.999 then σLB = 6 · 10−8. The literature estimate for σ∗ is 10−6 [29] which is ≥ σLB
even in the case that r = 0.99. This literature estimate is roughly 10 times larger than
this lower bound, which means σ∗ > σLB, implying that equilibrium point PLUV

1 is a stable
state and equilibrium point PLUV

3 does not exist. Note that if g − r was smaller (e.g. the
lysogenic and nonlysogenic growth rates were very similar, which is what we expect) or if
K was larger (say K = 109), this lower bound would be even smaller causing σLB to tend
towards 0. Thus, the literature estimate of the phage λ SPI rate σ∗ is likely much larger
than the lower bound σLB. The important thing to note here is that this lower bound is
easily a very small number due to the size of the constants in the denominator. Although we
assume g ≥ r, for completeness we also examine what happens when r > g. In this case the
lower bound σLB is negative. Thus, if r > g then the lysogens will displace the nonlysogens
even if σ = 0 because 0 > σLB.

Next, we examine equilibrium point PLUV
2 = (0, K, 0). This point describes a state in

which the nonlysogens have displaced the lysogens. The stability of point 2 is assessed by
calculating the eigenvalues of JLUV2 matrix. The Jacobian matrix for (L,U, V ) = (0, K, 0) is
given in equation 13.

JLUV2 =

−g + r − σ 0 Kαp
σ − r −g −Kαp
bσ 0 Kαb(1− p)− γ

 (13)

The eigenvalues of JLUV2 are obtained by calculating its determinant, which results in a
characteristic polynomial (equation 14).

0 = (−g − λ)[λ2 − λ (−g + r − σ +Kαb(1− p)− γ)

+ (−g + r − σ)(Kαb(1− p)− γ)−Kαpbσ]
(14)

The eigenvalues are then obtained in a straightforward manner. First, λ1 = −g < 0.
For λ2 and λ3, we see that these are the roots of the quadratic inside the square brackets
in equation 14. The roots of this quadratic take the form λ = q ±

√
q2 + ε with q =

(−g − γ + αbK(1− p) + r − σ) /2 and ε = ((αbK(1− p)− γ)(g − r) + (αbK − γ)σ)). It is
easy to show that if ε > 0 then one of the solutions λ > 0. In this case, we have ε > 0
because every factor and term in the ε expression is positive. We have that (αbK/γ−1) > 0,
(g− r) ≥ 0, γ > 0, and σ > 0. Since αbK/γ � 1 we also have that (1−p)αbK/γ > 1. Thus,
equilibrium point PLUV

2 = (0, K, 0) is an unstable equilibrium point of this system.
Finally, we examine the stability of PLUV

3 which describes a state of the system in which
both the lysogens and nonlysogens coexist. First, note that this equilibrium point does not
exist if σ is larger than the lower bound σLB in 12. Thus, if inequality 12 holds then we do not
need to analyze point 3’s stability. Since the literature estimate σ∗ > σLB we hypothesize that
this equilibrium point indeed does not exist, but for completeness we examine its stability
here.

If σ < σLB then both PLUV
1 and PLUV

2 are unstable. If a steady state indeed does exist
under the condition σ < σLB then it must be true that PLUV

3 becomes the (only) steady
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state of the system. The Jacobian matrix for this equilibrium point, JLUV3 , is a 3 by 3 matrix
with extremely complicated expressions for its elements due to the fact that the expressions
for L, U , and V for PLUV

3 are quite complicated themselves. Therefore, we do not show the
full Jacobian here, but we numerically evaluate its eigenvalues by using parameter values
from Table 1 except we set σ = θ · σLB so that inequality 12 does not hold, which means
θ < 1. We discovered that for all θ < 1 the eigenvalues of JLUV3 all had strictly negative
real parts, implying that this becomes a steady state of the system if σ < σLB. Therefore, if
σ is extremely small (so that the SPI rate is lower than σLB) then the steady state of the
system is one in which both the lysogens and nonlysogens coexist.

Overall, we have shown that lysogens will displace nonlysogens even if the lysogenic state
is costly to cell growth provided that σ is at least (g− r)/ [Kαb/γ − 1]. We have also shown
that the true SPI rate of phage λ is likely greater than this lower bound, suggesting that
the SPI rate has evolved so that lysogens can displace nonlysogens. However, this analysis
only tells us the lower bound on σ required for lysogens to have the advantage. That is, σ
is allowed to be any number greater than σLB. Thus, it is natural to ask if a larger SPI rate
is advantageous.

4 The LUV2 model

In the previous section we showed that if r > σ > (g−r)/ [Kαb/γ − 1] = σLB then a mixture
of lysogenic and nonlysogenic cells will tend towards a state in which the nonlysogens are
displaced in favor of the lysogens. Note that this inequality places no strong restriction on
the exact value of σ. The only requirement is that it must be strictly greater than σLB and
must be less than the intrinsic cell replication rate r. To understand what value of σ may
be optimal, we adjusted the LUV model so that it included two lysogen strains, L1 and L2,
which differ only in their SPI rates σ1 and σ2 respectively. These lysogens will compete with
each other and with the nonlysogenic cells U . These lysogen strains also produce their own
phages, denoted V1 and V2, respectively. All other parameters and interactions between the
two lysogen strains and the nonlysogens is kept the same so that we ensure we are only
comparing different SPI rates. The overall idea here is that we want to identify an SPI rate
which would allow a lysogen strain to outcompete another lysogen strain while also being
able to displace the nonlysogens. The new model is summarized by equations 15 - 21.

L̇1 = rL1 − σ1L1 + pαUV1 − φL1 (15)

L̇2 = rL2 − σ2L2 + pαUV2 − φL2 (16)

U̇ = gU − αU (V1 + V2)− φU (17)

V̇1 = (1− p)bαUV1 − γV1 + bσ1L1 (18)

V̇2 = (1− p)bαUV2 − γV2 + bσ2L2 (19)
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φ =
1

K
[(r − σ1)L1 + (r − σ2)L2 + gU − αU (V1 + V2) (1− p)] (20)

K = L1 + L2 + U (21)

In this model, L1 denotes the number of lysogen strain 1 with SPI rate σ1 and L2 denotes
the number of lysogen strain 2 with SPI rate σ2. The variables V1 and V2 are the phages
emitted from lysogen strains 1 and 2, respectively, via the SPI process. All parameters are
the same as in the previous model. Without loss of generality, we assume that σ1 > σ2 so
that lysogen strain 1 has a higher SPI rate than lysogen strain 2. Note that here we are also
assuming the same inequalities hold from analyzing the LUV model, namely αbK/γ > 1,
g − r ≥ 0, and r > σ1. Since σ1 > σ2 we also have r > σ2.

To gain an understanding of the behavior of this system, we simulated it using the
parameter values in Table 1. We r = 0.99 and σ1 to be 10 times greater than σ2 with
σ2 = 10−6. In Fig 2 we show a sample trajectory of the system using initial conditions
L1(t = 0) = 0.005K, L2(t = 0) = 0.005K, and U(t = 0) = 0.99K so that the lysogens
initially only comprise 1% of the population, and this 1% is split evenly among the two
lysogen strains. We see that early on, L1 has a clear advantage in the sense that it greatly
outnumbers both L2 and the nonlysogens U . However, in the long run we see that L2 actually
starts to overtake L1, and that this switch occurs after U decreases towards 0.

Figure 2: LUV2 model simulation using default parameters from Table 1. We used r = 0.99,
σ2 = 10−6, and σ1 = 10−5.

Numerical simulations of various parameter sets showed similar behavior, with L2 always
displacing both L1 and U in the long run. This suggests that lower SPI rates are favorable
in the long run. Intuitively, we can reason that once the nonlysogens go extinct there is no
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more benefit to having a higher SPI rate. Thus, we can conclude that if both lysogen strains
L1 and L2 survive after U reaches 0, then the lysogen with the lower SPI rate will be selected
for in the long run.

5 Slower SPI rates are advantageous

To prove that the lysogenic strain with the lower SPI rate is the one which is favored by nat-
ural selection, we calculate the equilibrium points of our model and assess their stability. We
impose the requirement that each of these lysogen strains be able to outcompete nonlysogens
if separately competed with them, which implies that both σ1 > σLB and σ2 > σLB. As in
the LUV model, we first begin with setting the free phage rate equations to zero (equations
18 and 19) i.e. V̇1 = V̇2 = 0. This results in the following relationships for V1 and V2.

V1 =
bσ1L1

γ − b(1− p)αU
(22)

V2 =
bσ2L2

γ − b(1− p)αU
(23)

Next, we set equation 17 to 0 so that U̇ = 0. This implies that:

0 = U [g − α(V1 + V2)− φ] (24)

Equation 24 can be solved if either U = 0 or if g−α(V1+V2)−φ = 0. We will examine both
cases. If U = 0 then we immediately see that V1 and V2 are determined by their respective
lysogen strain levels. That is, if U = 0 we have that V1 = bσ1L1/γ and V2 = bσ2L2/γ. Thus,
we focus on L1 and L2 next. If U = 0 then K = L1 + L2 by the constraint 21. This means
that L1 = K − L2. We can plug this into the rate equation for L̇1 (equation 15) and set
L̇1 = 0. After simplifying, this results in an equation with only 1 unknown variable, namely
L2.

0 = L2

[
1− L2

K

]
(25)

The two solutions to this equation are L2 = 0 or L2 = K. Along with the con-
straint (equation 21), we know that (L1, L2) = (K, 0) and (L1, L2) = (0, K) are both
solutions of equation 25. Using equations 6 and 23, we can write down two equilibrium
points of our system (L1, L2, U, V1, V2), namely PLUV 2

1 = (K, 0, 0, bσ1K/γ, 0) and PLUV 2
2 =

(0, K, 0, 0, bσ2K/γ).
If instead g − α(V1 + V2)− φ = 0 then we can combine this equation with equations 22,

23, and 20 to show that the following equation must hold.

L1(g − r + σ1) + L2(g − r + σ2)

α [K − (1− p)U ]
=

bσ1L1 + bσ2L2

γ − b(1− p)αU
(26)

We can immediately see that if L1 = L2 = 0 then equation 26 holds. If L1 = L2 = 0 then
U = K by the constraint 21. Furthermore, if L1 and L2 are both zero then we also have
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that V1 = V2 = 0 by equations 6 and 23. Thus, the third equilibrium point of the system is
given by PLUV 2

3 = (0, 0, K, 0, 0).
If both L1 and L2 are not zero, then we need to solve the equation 26 for both L1, L2,

and U along with equations 15 - 21. However, this is very difficult to do by hand. Thus, we
use Mathematica here to derive the additional solutions. It turns out that there are three
additional solutions, which we denote using PLUV 2

4 , PLUV 2
5 , and PLUV 2

6 . However, some of
these solutions are extremely complicated expressions, so we do not show them in their full
detail. These additional solutions describe states of the system in which L1, L2, and U
coexist in the long run. Hence, these solutions are not of particular interest since our goal
is to determine the conditions required for a lysogen strain to displace all others and the
nonlysogens.

For equilibrium points PLUV 2
4 and PLUV 2

5 , we find that the expression for U has the
same form, namely U = [γ(g − r + σj)− αbKσj)] /(αb(1 − p)(g − r)) with j = 1 for point
4 and j = 2 for point 5. In order for these equilibrium points to be unique (i.e. different
from points 1,2 and 3) we must have that 0 < U < K. We find that U > 0 if and only if
σj < (g−r)/ [Kαb/γ − 1] = σLB. However, this contradicts our initial assumption that both
σ1, σ2 > σLB. Indeed, σ1 > σLB and σ2 > σLB implies that U < 0 which is unphysical since
population counts cannot be negative. Therefore, equilibrium points PLUV 2

4 and PLUV 2
5 do

not exist under our parameter regime.
Finally, we analyze the equilibrium point PLUV 2

6 for which expressions for L1, L2, and U
are as follows:

U =
γ

αb

L1 =
γp(g − r)− γσ2 (αbK/γ − 1)

αb (σ1 − σ2)

L2 =
−γp(g − r) + γσ1 (αbK/γ − 1)

αb (σ1 − σ2)

(27)

Using the fact that (σ1 − σ2) > 0 we can easily show that L1, L2 > 0 if and only if
σ1 > p(g− r)/ [Kαb/γ − 1] and σ2 < p(g− r)/ [Kαb/γ − 1]. These conditions are consistent
with σ1 > σ2, but they contradict the fact that σ2 > σLB. To see this, note that σ2 < p(g −
r)/ [Kαb/γ − 1] < (g − r)/ [Kαb/γ − 1] = σLB since 0 < p < 1. Indeed, σ2 > σLB implies
that L1 < 0 which is unphysical. Therefore, our original requirement that σ1, σ2 > σLB
causes equilibrium point PLUV 2

6 to not exist.
All equilibrium points of the LUV2 model which exist under our parameter regime are

summarized in Table 3. Note that these equilibrium points are similar to the ones we found
for the LUV model.

5.1 Stability analysis of LUV2 equilibrium points

To understand what conditions enable one lysogen strain to outcompete the other, we an-
alyzed the stability of our model’s equilibrium points by calculating the eigenvalues of the
Jacobian matrix JLUV 2 for each equilibrium point in Table 3.
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Table 3: LUV2 model equilibrium points

equilibrium point L1 L2 U V1 V2

equilibrium point 1 K 0 0 bσ1K/γ 0
equilibrium point 2 0 K 0 0 bσ2K/γ
equilibrium point 3 0 0 K 0 0

JLUV 2 =


∂L̇1/∂L1 ∂L̇1/∂L2 ∂L̇1/∂U ∂L̇1/∂V1 ∂L̇1/∂V2

∂L̇2/∂L1 ∂L̇2/∂L2 ∂L̇2/∂U ∂L̇2/∂V1 ∂L̇2/∂V2

∂U̇/∂L1 ∂U̇/∂L2 ∂U̇/∂U ∂U̇/∂V1 ∂U̇/∂V2

∂V̇1/∂L1 ∂V̇1/∂L2 ∂V̇1/∂U ∂V̇1/∂V1 ∂V̇1/∂V2

∂V̇2/∂L1 ∂V̇2/∂L2 ∂V̇2/∂U ∂V̇2/∂V1 ∂V̇2/∂V2

 (28)

For PLUV 2
1 = (L1, L2, U, V1, V2) = (K, 0, 0, Kbσ1/γ, 0), the Jacobian matrix is given by

29. This equilibrium point describes a state in which lysogen strain L1 (with the higher SPI
rate) displaces both the nonlysogens U and lysogen strain L2.

JLUV 2
1 =


−r + σ1 −r + σ2 −g + (αbKσ1)/γ 0 0

0 σ1 − σ2 0 0 0
0 0 g − r + σ1 − (αbKσ1)/γ 0 0
bσ1 0 −((αb2K(−1 + p)σ1)/γ) −γ 0
0 bσ2 0 0 −γ

 (29)

The eigenvalues of JLUV 2
1 are determined by solving the equation det(JLUV 2

1 − λI) = 0
which results in the following characteristic polynomial.

0 = ((λ+ γ)2(λ+ r − σ1)(λ− g + r − σ1 + αbKσ1/γ)(λ− σ1 + σ2)) (30)

The eigenvalues are then easily obtained by setting each factor to 0 and solving for λ.
The eigenvalues are λ1 = −γ, λ2 = −γ, λ3 = −r + σ1, λ4 = g − r − σ1(αbK/γ − 1), and
λ5 = σ1−σ2. Without inspecting each eigenvalue, we can immediately conclude PLUV 2

2 is an
unstable equilibrium point because eigenvalue λ5 > 0 since σ1 > σ2. Thus, the system will
not tend to a state in which lysogen strain L1 displaces lysogen strain L2 and the nonlysogens
U .

Next, we analyze equilibrium point PLUV 2
2 = (0, K, 0, 0, Kbσ2/γ). This point describes a

state in which lysogen strain L2 (with the lower SPI rate) displaces both the nonlysogens U
and lysogen strain L1. The corresponding Jacobian is given by JLUV 2

2 in equation 31.

JLUV 2
2 =


−σ1 + σ2 0 0 0 0
−r + σ1 −r + σ2 −g + (αbKσ2)/γ 0 0

0 0 g − r + σ2 − (αbKσ2)/γ 0 0
bσ1 0 0 −γ 0
0 bσ2 −((αb2K(−1 + p)σ2)/γ) 0 −γ

 (31)

The corresponding characteristic equation is given by:
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0 = (γ + λ)2(λ+ r − σ2)(λ+ σ1 − σ2)(λ− g + r − σ2 + αbKσ2/γ) (32)

The eigenvalues are given by λ1, λ2 = −γ, λ3 = −r + σ2, λ4 = −σ1 + σ2, and λ5 =
(g − r) − σ2 (αbK/γ − 1). Eigenvalues 1 - 4 are obviously negative since γ > 0, σ1 > σ2,
and σ1, σ2 < r. The inequality σ2 > σLB can be rewritten as 0 > (g − r) − σ2 (αbK/γ − 1)
which shows that 0 > λ5. Therefore, all eigenvalues are negative and therefore equilibrium
point PLUV 2

2 = (0, K, 0, 0, Kbσ2/γ) is a stable equilibrium point of the system. Thus, this
system will tend towards a state in which lysogen strain L2 displaces lysogen strain L1 and
the nonlysogens U .

Finally, we examine equilibrium point PLUV 2
3 = (0, 0, K, 0, 0) which describes a state in

which both lysogen strain L1 and L2 are displaced by the nonlysogens U . The Jacobian for
this equilibrium point is given by JLUV 2

3 .

JLUV 2
3 =


−g + r − σ1 0 0 αKp 0

0 −g + r − σ2 0 0 αKp
−r + σ1 −r + σ2 −g −αKp −αKp
bσ1 0 0 −γ − αbK(−1 + p) 0
0 bσ2 0 0 −γ + αbK(1− p)

 (33)

The characteristic equation is given by:

0 = (g + λ)

×
[
λ2 + λ(γ + g − r + σ1 − αbK(1− p)) + γ(g − r + σ1)− αbK((1− p)(g − r) + σ1)

]
×
[
λ2 + λ(γ + g − r + σ2 − αbK(1− p)) + γ(g − r + σ2)− αbK((1− p)(g − r) + σ2)

]
(34)

The first eigenvalue is given by (g+λ) = 0⇒ λ1 = −g < 0. The remaining eigenvalues are
given by solving the quadratic equations within both square brackets [·]. These eigenvalues
are λ2,3 = q1±

√
q2

1 + ε1 and λ4,5 = q2±
√
q2

2 + ε2, with qj = (−g − γ + αbK(1− p) + r − σj) /2
and εj = −gγ + αbK((g − r)(1 − p) + σj) + γr − γσj for j = 1, 2. If εj > 0 then it
must be true that at least one of the eigenvalues is positive, implying that this equilib-
rium point is not a stable steady state. It is straightforward to show that εj < 0 only
if we have σj < −(g − r) [αbK(1− p)/γ − 1] / [αbK/γ − 1] < 0. However, we require
σj > σLB > 0 ⇒ εj > 0 and hence this equilibrium point is unstable. Thus, the sys-
tem will not tend towards a state in which the nonlysogens dipsplace both lysogen strains
L1 and L2.

Overall these results collectively show that L2 will displace both L1 and U if σLB < σ2 <
σ1. The upper half of the inequality σ2 < σ1 gives L2 a competitive advantage against L1,
and the lower half of the inequality σLB < σ2 gives L2 the competitive advantage against the
nonlysogens. Thus, a lower SPI rate is advantageous over a higher SPI rate in the long run.
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6 Stochastic factors influencing selection of SPI rate

To understand how stochastic factors could influence the competition between lysogens and
nonlysogens, we simulated the LUV model with some modifications. Since the SPI rate is
fairly small, at low lysogen counts (e.g. L ≈ 100 or less) it is possible for several generations
to pass before a single SPI reaction takes place. This is difficult to capture in the LUV model
because it is simulated using ODEs which are deterministic. In this deterministic setting,
some SPI reactions occur from the start of the dynamics since the net rate of SPI, L · σ,
is > 0 at t = 0. Thus, we modified our LUV model so that the SPI reactions would occur
stochastically during the dynamics. Over an small time interval ∆t over which we integrate,
the probability that a single lysogen undergoes SPI is σ ·∆t. For L lysogens, the probability
that ` ≤ L of them undergo SPI in ∆t is given by a binomial distribution as in equation 35
with the average number of SPI events in a time interval ∆t given by ¯̀= Lσ∆t.

Pr(`) =

(
L

`

)
[σ∆t]L [1− σ∆t]L−` (35)

In Figure 3 we show 2 sample simulations of our model at an initial lysogen count of
L0 = L(0) = 0.001 ·K. In the right panel we observe the lysogens being slowly displaced by
the nonlysogens (since r < g) but when an SPI reaction occurs this “saves” the lysogens and
they end up taking over the population. However, it can also happen that the SPI reaction
does not occur at all. If an SPI reaction fails to fire early enough (as in the left panel), the
probability that an SPI reaction will fire later approaches 0. This is because the probability
of an SPI reaction is proportional to L ·σ, and since σ is already a very low number (≈ 10−6)
having low L makes this probability approach 0. Thus, if stochasticity plays a major role
(e.g. at low population counts) and if r < g, then the total SPI rate, L · σ, must not be too
low if the lysogens are to displace the nonlysogens.

At high initial lysogen counts, the lysogens almost always displaced the nonlysogens
because an SPI event almost always occurs. On the other hand, when the initial lysogen
count is low (e.g. 10 or 100) then they often were displaced by the nonlysogens. A similar
trend was observed for σ, namely that high σ allowed the lysogens to displace the nonlysogens
more frequently relative to the case of a very low σ value. Additionally, if the lysogenic
growth-cost was small (e.g. g ≈ r), then the lysogens were able to displace the nonlysogens
with greater probability over a much wider range of L(0) and σ values. To systematically
understand the effect of L(0), σ, and r on the probability that the lysogens displace the
nonlysogens, we estimated the probability of lysogen-sweeping events from repeated runs of
the stochastic simulation. In Figure 4 we show the probability that L = K,U = 0 over a
range of L(0) and σ values for r = 0.9 and r = 0.999. Generally we see that at low L(0) and
σ values the lysogens usually cannot displace the nonlysogens. On the other hand, at higher
L(0) and σ the lysogens were always able to more probably displace the nonlysogens. For
intermediate values of L(0) and σ, the probability that the lysogens displace the nonlysogens
ranges from 0 to 1. But as r approaches g (right panel with r = 0.999), we see that the
lysogens can displace the nonlysogens over a much wider range of L(0) and σ values, even if
L(0) and σ are low. When g − r = 0, the lysogens always displace the nonlysogens even in
stochastic simulations. This is because the two populations remain at their initial values until
the first SPI reaction occurs, no matter how long it takes. Thus, if the lysogenic growth-cost
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Figure 3: Stochastic LUV model simulations using the parameters from Table 1. In the left
panel, the nonlysogens displaced the lysogens because no SPI reaction occurred. In the right
panel an SPI reaction occurred early enough for the lysogens to displace the nonlysogens.
We used parameter values from Table 1 with L(0) = 0.001 ·K = 1000. We also set r = 0.99,
σ1 = 10−5, and σ2 = 10−6.

is small or zero, we expect that the lysogens will generally displace the nonlysogens with
high probability.

In order for the lysogens to displace the nonlysogens, the SPI reaction must occur before
the time T at which the lysogen population drops to 0. To understand how this time T
depends on g − r and L0, we analytically calculated the latest time an SPI reaction must
occur by solving the LUV model (equations 15 - 5) with σ = 0 for L(t). The result is given
as in equation 36.

L(t) =
K

1 +
(
K−L0

L0

)
e(g−r)t

(36)

The latest time T that an SPI reaction can occur and still allow the lysogens to displace
the nonlysogens can be calculated by setting L(T ) = 1 and solving for T . We set L(T ) to 1
because by time T there is only 1 lysogen left which can undergo SPI. The approximation
in 37 is quite accurate since K is many orders of magnitude greater than 1, as is K/L0.

T =
1

(r − g)
ln
K/L0 − 1

K − 1
≈ 1

g − r
lnL0 (37)

If an SPI reaction occurs by time T , then the lysogens will displace the nonlysogens.
This establishes some additional constraints on the value of σ necessary for the lysogens to
displace the nonlysogens, namely that if there is a lysogenic growth cost then the SPI rate

16

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2019. ; https://doi.org/10.1101/546275doi: bioRxiv preprint 

https://doi.org/10.1101/546275
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: We calculated the fraction of simulations resulting in lysogens displacing the
nonlysogens for different values of L(0) and σ using the stochastic LUV model. The left
panel was simulated at r = 0.9 and the right panel was simulated at r = 0.999. The rest of
the parameters were estimated from Table 1

cannot be arbitrarily low in a stochastic setting. In Figure 5 we show the T value at different
values of r−g and L0. We see that T gradually increases with L0, implying that higher initial
lysogen count gives the lysogens more time to undergo an SPI event. However, we see that
as r becomes closer to g the value of T increases dramatically. This means that the lysogens
have a much longer time to initiate an SPI event when there is a small lysogenic growth rate
cost. If the lysogenic growth-cost is arbitrarily small, then r ≈ g ⇒ T →∞, implying that
eventually an SPI reaction will occur and the lysogens will displace the nonlysogens with
probability 1.

To understand how the probability, Ψ, that the lysogens will displace the nonlysogens
depends on general parameter values (e.g. not just when r ≈ g), we calculated the probability
that at least 1 SPI reaction occurs within time T by modeling our stochastic simulation
analytically. First, we split up the time interval 0 ≤ t ≤ T into small subintervals denoted
by ∆tk of fixed size ∆t of which there are N = T/∆t. Within each of these intervals,
the number of lysogens is denoted by Lk. The probability of at least 1 SPI reaction over
0 ≤ t ≤ T is equal to 1 minus the probability that 0 SPI reactions take place over 0 ≤ t ≤ T .
This is equivalent to 1 minus the probability that 0 SPI reactions occur within all N = T/∆t
subintervals ∆tk. In each subinterval, the probability of 0 SPI reactions is [1− σ∆t]Lk . The
total number of subintervals is N = T/∆t, which implies that the probability of 0 SPI
reactions over the entire interval 0 ≤ t ≤ T is

∏N
k=1 [1− σ∆t]Lk . This can be rewritten as

[1− σ∆t]ΣLk where the sum Σ ranges over the Lk from k = 1 to k = N = T/∆t. Using

ΣLk = NL̄ with L̄ = time average of Lk, we find that Ψ = (1− σ∆t)L̄T/∆t. As ∆t→ 0 one
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Figure 5: The T value calculated at different values of r and L0 using K = 106.

can easily show that Ψ is given by equation 38.

Ψ = 1− e−σT L̄ (38)

Since we know L(t) over time T from equation 36, we can calculate L̄ = 1
T

∫ T
0
L(t)dt.

Applying straightforward integration techniques, we find that L̄ is given by equation 39.

L̄ =
−K

T (g − r)
ln

[
1−

(
1− e−(g−r)T )

K/L0

]
(39)

We can then determine a final expression for Ψ by combining equations 38, 37, and 39
to derive equation 40.

Ψ = 1−
[
K − 1

K − L0

]−σK/(g−r)
(40)

Our expression for Ψ matches the results of our stochastic simulation remarkably well as
shown in Figure 6 using the same parameter values from Table 1. From this expression it
is clear that the probability that the lysogens displace the nonlysogens increases with L0, σ,
and K. There is also a strong dependence on g−r. If the lysogenic-growth cost is very small
then g − r → 0 and, as a result, Ψ → 1 − 0 = 1. Overall, the lysogens can maximize their
probability of displacing nonlysogens by maximizing the quantity σ/(g − r). The value of σ
can be arbitrarily small so long as the lysogenic growth-cost (e.g. g − r) is correspondingly
small (which it is expected to be). These insights from our analytical models agree with our
stochastic simulations. It is worth noting that when r ≈ g the simulations are extremely
time consuming, especially at low L0, because both the lysogen and nonlysogen population
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remains approximately constant in time until finally an SPI event inevitably occurs since
σ > 0. However, from our analytical results we can immediately see the effect of various
parameters on P without simulation. We take advantage of this by using Ψ to calculate
the probability the lysogens displace the nonlysogens over a range of L0 and σ values for
g − r = 10−5. Using the stochastic LUV model for the same calculation would have taken
10s of hours or longer.

Figure 6: Probability that the lysogens displace the nonlysogens using the Ψ function. Left
panel matches with stochastic simulation results in Figure 4, and right panel shows results
when g− r is very small (e.g. 10−5) the lysogens are more likely to displace the nonlysogens
for any L0 and σ.

To understand how the stochastic evolutionary dynamics occurs in the case that there is a
single initial lysogen, we created a separate model because our prior models don’t adequately
capture the case when L0 = 1. In this case, when t = 0 we have that V = 0, U = K − 1,
and L = 1 so the dynamics of L can be described by L̇ = (r−σ− g) [1− 1/K] ≈ (r−σ− g)
using 1. The approximation holds since 1/K is very small compared to 1. This expression
for L̇ shows that the initial rate of change for L is made of two parts. The g − r term
corresponds to the competitive growth of the lysogens vs the nonlysogens. The second term
σ corresponds to the SPI reaction. If g > r then there are only two possibilities for the next
reaction, namely i) either the nonlysogens will displace the nonlysogens by outgrowing them
or ii) an SPI event will occur and the lysogens will displace the nonlysogens. The time to the
next reaction in typical Gillespie fashion is given by τ = − ln [1−R] /(g − r + σ) with R as
a random number from a uniform distribution ranging from 0 to 1. The probability that the
next reaction at time τ is the SPI reaction is simply given by the proportion σ/(g − r + σ)
and can be written as in equation 41.

19

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2019. ; https://doi.org/10.1101/546275doi: bioRxiv preprint 

https://doi.org/10.1101/546275
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ψ{L0=1} =
σ/(g − r)

1 + σ/(g − r)
(41)

From equation 41 we clearly see that in the case L0 = 1 the probability the lysogens
displace the nonlysogens approaches 1 as r → g. Thus, at little to no lysogenic growth-cost,
the lysogens can displace the nonlysogens with high probability even when there is only 1
initial lysogen. As in equation 40, the higher the ratio σ/(g − r) is, the more likely the
lysogens displace the nonlysogens. It is easy to show that Ψ{L0=1} ≥ 0.5 if σ ≥ g − r. Thus,
with σ = 10−5 the lysogens have a 50% chance of winning if the lysogenic growth-cost is on
the order of 10−5. If g = r then in the model both L and U remain at their initial population
sizes until an SPI reaction fires, and so the lysogens win with probability Ψ = 1 in this case.
This is easily shown by letting g → r and taking a limit of equation 41.

To understand how stochastic factors influence the competition between two lysogen
strains, we modified the LUV2 model to be stochastic in the same way as in the LUV model.
The insights we gained were similar to the case of the LUV model with one extra detail. As
shown in Figure 7, we see that so long as either one of the lysogens undergoes SPI then L2

will always displace L1 in the long run. This is because when the SPI event initially occurs,
the nonlysogens start to be killed off, causing empty space to appear for both L1 and L2 to
both grow into. Once both L1 and L2 fill this empty space and the nonlysogens disappear, it
is simply a competition between only L1 and L2. From this point onward it is clear that L2

has the advantage because its effective growth rate r−σ2 is slightly greater than the effective
growth rate r−σ1 of L1 (since σ2 < σ1). The V1 curve jumps up and down a bit towards the
end because the stochasticity of SPI reactions becomes more apparent as L1 drops to lower
levels. Notice that L1 underwent an SPI reaction very early on (marked by the increase in
V1) while L2’s first SPI event occured much later on at ≈ 10 generations. Even though L2

was late to SPI, it still wins in the long run since its effective growth rate is higher.

7 Discussion

In this work we explore how SPI influences the natural selection among lysogens and nonlyso-
gens, and also between lysogen variants with different SPI rates. We find that there exists
a lower bound σLB ≈ 10−6 (or smaller) above which lysogens are expected to displace the
nonlysogens for general parameter values. Furthermore, we find that lower SPI rates are nat-
urally selected, because although higher SPI rates confer an early advantage they are costly
to growth in the long run. These results collectively show that natural selection should push
the SPI rate down towards σLB, and that this can be viewed as an optimal SPI rate in
terms of natural selection. It is plausible that there does exist a lysogenic growth-cost (i.e.
g − r > 0) but it is very likely that this growth-cost is very small such that g − r ≈ 10−n

for some large integer n. Thus, there likely is a lower bound given by σLB that is strictly
greater than 0, but it is likely to be very small.

If stochasticity plays a major role in the dynamics, then our same conclusions hold in
a probabilistic sense, with lysogenic fixation becoming increasingly probable at higher SPI
rates. Thus, stochastic effects on natural selection would tend to favor larger SPI rates. In
the stochastic setting, however, the SPI rate is scaled by the lysogenic growth-cost, implying
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Figure 7: A sample simulation from the stochastic LUV2 model. Early on L1 manages to
have an SPI reaction, causing V1 to rise and U to be killed off. During this, L2 begins to
grow since there is now free space to do so. It does not have its own SPI event until about
10 generations. Eventually, the relatively higher SPI rate of L1 causes it to slowly but surely
drop to 0 as L2 rises towards the carrying capacity K = 106. This simulation was run with
r = 0.99, σ1 = 10−5, and σ2 = 10−6. We observed the same qualitative behavior for other
parameter values.

that at very low lysogenic growth-cost the SPI rate can remain arbitrarily low while still
maintaining a high probability of lysogenic fixation. In the extreme case that there is only
1 initial lysogens, the probability they will fix in the population is ≈ 1 if the lysogenic
growth-cost is on the order of 10−6 at the naturally occuring SPI rate σ∗ ≈ 10−6.

Our estimate on the lower bound of the SPI rate is on the order of 10−6 or 10−7 (or
smaller according to g − r) lysogens per generation, which matches experimental estimates
of the recA+ SPI rate [11,12,29]. We show that deterministic evolutionary forces are pushing
the SPI rate down towards σLB, but stochastic factors tend to push it higher only if g − r
is not small. Otherwise, if g − r is very small then σ can also be very small and still allow
natural selection of lysogens over nonlysogens with high probability. Our theory suggests
that phage λ may be sitting at or near this optimal SPI rate.

Our results demonstrate how mathematical modeling can be effectively used to analyze
evolutionary scenarios and explore the consequences of ecological constraints and interactions
among competing species. Our theory shows how by sacrificing a little bit of growth rate,
a species can gain a competitive advantage over another. This has connections to bacterial
persistence, sporulation, and other cell growth strategies in which a small subpopulation
switches to a growth-reduced but phenotypically different state. It will be interesting to
validate our model further by applying it to other phages and their hosts such as P1, T4,
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and Mu once all the model’s parameters are measured for these phages.
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