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About 90% of risk variants identified from genome-wide association studies (GWAS) are located1

in non-coding regions, highlighting the regulatory role of genetic variants. We propose a unified2

statistical framework, IGREX, for quantifying the impact of genetically regulated expression3

(GREX). This is achieved by estimating proportion of phenotypic variations that can be4

explained by the GREX component. IGREX only requires summary-level GWAS data and5

a gene expression reference panel as input. In real data analysis, using 48 tissues from the6

GTEx project as the reference panel, we applied IGREX to a wide spectrum of phenotypes7

in GWAS, and observed a significant proportion of phenotypic variations could be attributed8

to the GREX component. In particular, the results given by IGREX revealed tissue-across9

and tissue-specific patterns of the GREX effects. We also observed strong association between10

GREX effect and immune-related proteins, further supporting the relevance between GREX11

and the immune processes.12
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13

Over the last decade, genome-wide association studies(GWASs) have successfully identified14

about 90,000 significant associations (p-value < 5× 10−8) between single-nucleotide polymor-15

phisms (SNPs) and a wide range of complex traits/diseases (http://www.ebi.ac.uk/gwas/).16

Nevertheless, more than 90% of identified risk variants are located in non-coding regions [1],17

leading to difficulties in understanding the biological basis of GWAS findings. Increasing18

evidence [2, 3, 4, 5, 6, 7, 8] suggests that the path from genotypes to phenotypes involves19

gene regulatory mechanisms. For example, a study of 18 complex traits revealed significant20

enrichment for expression quantitative trait loci (eQTLs) in 11% of 729 tissue-trait pairs [9],21

implying the pervasive involvement of regulation effects in a wide spectrum of human traits.22

These observations lead to a scientific hypothesis that a vast proportion of genetic variants23

affect phenotypes by regulating the gene expression levels. To test this hypothesis, there is a24

need to comprehensively characterize the role of genetically regulated gene expression (GREX)25

in human genetics.26

Fortunately, the advent of cellular-level data generated by genomic consortia provides an27

unprecedented chance to study the behavior of GREX effects. For example, the current V728

release of the Genotype-Tissue Expression (GTEx) project (https://gtexportal.org/home/)29

has collected gene expression samples from 53 non-diseased tissues across 714 individuals30

generated by Illumina Sequencing platforms [10], allowing for tissue-specific analysis. Multiple31

blood eQTL resources comprising thousands of individuals are made available for open access32

[11, 12]; other ongoing projects such as Genetics of DNA Methylation Consortium (GoDMC)33

and eQTLGen consortium are collecting expression data with sample size larger than 10, 00034

[13], serving as promissing resources for comprehensive analysis.35

The availability of these data sets along with GWAS data enables an integrative framework36

for studying the GREX effects: the gene expressions of the GWAS cohort can be first ‘imputed’37

based on statistical models fitted using a reference panel (e.g. GTEx) and then related to38

phenotypes [14, 15, 16, 17, 18, 19, 20, 21, 22]. This framework enjoys several benefits. First, it39

does not require the availability of gene expression information for GWAS data, which makes it40

applicable to a wide spectrum of phenotypes. Second, the prediction process naturally filters41

out the environmental noise and confounding variations that are ubiquitous in gene expression42

measurement, allowing the analysis to be focused on GREX effects. Third, the reverse influence43
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on gene expression caused by phenotypic variation is eliminated. However, the DNA variations44

(i.e., SNPs) and gene expression available from the reference panel (e.g., GTEx) are often45

collected from non-diseased individuals for general use. Therefore, the integrative analysis46

of general-purposed expression data with GWAS data of a specific phenotype depends on an47

assumption: there exists a steady-state component in gene expression regulated by genetic48

variants, and the variation of this steady-state component can further induce phenotypice49

variations. Based on this assumption, multiple statistical models have been proposed to test50

the association between a given phenotype and the ‘imputed’ gene expression [8, 23]. Examples51

include PrediXcan [14], TWAS [15], FOCUS [17], MetaXcan [19] and CoMM [20].52

While all the above methods can localize gene-trait associations based on the predicted53

gene expression, how much of the variance of a phenotype can be attributed to GREX remains54

unkonwn. As heritability of a phenotype that is defined as the proportion of phenotypic55

variance explained by DNA variations is often used to quantify the overall genetic effects, it is56

of great interest to characterize the impact of gene regulation on phenotypic variation from a57

global perspective. For example, how much of the phenotypic variations at the cellular level58

(e.g., glucose) and the organismal level (e.g., height) can be attributed to GREX? Are there any59

cross-tissue patterns or tissue-specific characteristics of GREX in different levels of phenotypes?60

To the best of our knowledge, there are two literatures that have attempted to address part of61

these problems [21, 22]. The first method (RhoGE) [21] estimates the proportion of phenotypic62

variation explained by GREX based on the idea of linkage-disequilibrium (LD) score regression63

(LDSC) [24]. Since it ignores the uncertainty in predicting gene expression, the proportion of64

variance explained by GREX could be substantially under-estimated. Another method, known65

as gene expression co-score regression (GECS) [22], have very stringent requirements that the66

analyzed SNPs are not in LD to ensure unbiasedness, which greatly limits its application in67

real data analysis.68

In this article, we propose a unified framework, named IGREX, for quantifying the impact of69

genetically regulated expression, while accounting for uncertainty in predicted gene expression70

under weak signal. IGREX only requires summary-level GWAS data as its input, greatly71

enhancing the applicability of the model to a wide range of phenotypes. We investigated the72

performance of IGREX with comprehensive simulation, which highlights the importance of73

accounting for uncertainty. Then, using 48 tissues from the GTEx project as the reference panel,74
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we applied IGREX to both individual-level and summary-level GWAS data sets comprised75

of various cellular and organismal phenotypes. Our results provide new biological insights76

regarding the function of gene expression in the genetic architecture of complex traits. We also77

demonstrate the reproducibility using independent datasets.78

Results79

Method overview. IGREX is a two-stage method that first evaluates the posterior distribution80

of GREX effects from a gene expression reference panel and then estimates the proportion of81

variance explained by GREX using the ‘predicted’ gene expression of GWAS data. It can be82

applied to both individual-level (IGREX-i) and summary-level (IGREX-s) GWAS data. Here,83

we briefly introduce the statistical formulation of IGREX-i and leave the technical details in84

the Methods Section.85

Suppose we have the reference eQTL data set Dr and individual-level GWAS data set Di:86

Dr = {Y,Xr} is comprised of nr ×G gene expression matrix Y and nr ×M genotype matrix87

Xr, where G is the number of genes, M is the number of SNPs and nr is the sample size;88

Di = {t,X} contains a phenotype vector t ∈ Rn and a genotype matrix X ∈ Rn×M , where n is89

the GWAS sample size. We first link each gene expression to its local SNPs by the following90

linear model:91

yg = Xr,gβg + er,g, (1)

where the subscript g represents the g-th gene, βg ∼ N (0, σ2
βg

IMg) is the genetic effects of Mg92

local SNP, er,g ∼ N (0, σ2
r,gInr) is the independent noise, and the local SNPs are defined as93

SNPs around the target gene (e.g. ±1 Mb around the transcription start site). Because we94

are interested in the steady-state component of gene expression regulated by genetic variants,95

βg is assumed to be the same for individuals in both Dr and Di. Consequently, the GREX of96

individuals in GWAS data can be evaluated by Xgβg. Next, we assume that the genetic effects97

on t can be decomposed into two parts, i.e. the genetic effect through GREX and the genetic98

effect through alternative ways:99

t =
G∑
g=1

αgXgβg + Xγ + ε, (2)

where αg ∼ N (0, σ2
α) is the effect size of Xgβg on t, γ ∼ N (0, σ2

γIM) is the alternative100

genetic effects vector of length M and ε ∼ N (0, σ2
ε In) is the independent noise. In this model,101
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∑G
g=1 αgXgβg and Xγ correspond to the overall impact of the GREX component and the102

alternative component on t, respectively. Thus, given a genotype vector x and a phenotype t,103

the impact of GREX can be quantified by the proportion of variance explained by the GREX104

component: PVEGREX =
Var(

∑G
g=1 αgx

T
g βg)

Var(t)
. To estimate this quantity, the inference procedure of105

IGREX is decomposed into two stages. At the first stage, we estimate σ2
βg

and σ2
r,g using a fast106

algorithm and evaluate the posterior distribution βg|yg,Xr,g ∼ N (µg,Σg) for all genes. At107

the second stage, by treating the posterior obtained in the stage one as the prior distribution108

of βg in model (2), we can obtain estimated values of σ2
α, σ2

γ and σ2
ε using either method of109

moments (MoM) or restricted maximum likelihood (REML). Following this procedure, the110

resulting estimate of PVEGREX is obtained (with details given in the Methods Section) by111

P̂VEGREX =
tr(
∑G

g=1 σ̂
2
αXg(µgµ

T
g + Σg)X

T
g )

tr(
∑G

g=1 σ̂
2
αXg(µgµTg + Σg)XT

g + σ̂2
γXgXT

g + σ̂2
ε In)

,

where the parameters with hat represent their corresponding estimates. As we can observe112

from the above estimation, the substitution of posterior βg|yg,Xr,g naturally results in the113

adjustment of uncertainty associated with βg, which is quantified by the posterior variance114

Σg. Besides the point estimate, the standard error of P̂VEGREX can be obtained by the delta115

method (see Supplementary Note).116

In real applications, individual-level GWAS data may not be accessible. Hence, we have117

further developed IGREX-s for handling summary-level GWAS data (See Methods). Based118

on the MoM, IGREX-s can well approximate IGREX-i while requiring only the z-scores of119

SNPs and a reference genotype matrix X̃ ∈ Rm×M of a similar LD pattern with X, where the120

sample size m can be as small as a few hundreds. In practice, X̃ can be a random subsample121

of individuals in X or a reference panel of the same ethnic origin. The estimate of PVEGREX122

given by IGREX-s is123

P̂VEGREX =
σ̂2
α

σ̂2
t

tr(
G∑
g=1

(µgµ
T
g + Σg)R̂g),

where R̂g = X̃T
g X̃g/m is the estimated LD matrix associated with the g-th gene and X̃g is124

the corresponding columns of X̃. Our method IGREX also allows to incorporate sex, age and125

principal components as covariates to minimize the influence of confounding factors (See details126

in Supplementary Note).127

Simulation. We conducted comprehensive simulation studies to evaluate the performance of128

IGREX. For all the simulated data, we fixed n = 4, 000, G = 200, M = 20, 000 (i.e. 100 SNPs129
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in each gene). The total phenotypic heritability was set as h2t =
Var(

∑G
g=1 αgx

T
g βg+xTβg)

Var(t)
= 0.5,130

where PVEGREX = 0.2 and PVEAlternative =
Var(xTg γ)

Var(t)
= 0.3 (results for other scenarios are shown131

in Supplementary Figs. 1-3). To simulate the genotype data, we first sampled the minor132

allele frequencies (MAF) from uniform distribution U(0.05, 0.5) and data matrices from normal133

distribution N (0,Σ(ρ)), where Σjj′ = ρ|j−j
′| characterizes the LD patterns between SNPs.134

Then, the genotype matrices Xr and X were obtained by categorizing the entries of generated135

data matrices into 0, 1, 2 according to MAF. Given the genotype matrices, the gene expression136

yg and phenotype t were simulated following the generative models (1) and (2). To assess137

IGREX-s, we calculated the z-score of each SNP and randomly subsetted m = 500 rows from138

X for estimating LD matrix R̂g (results for other settings of m are shown in Supplementary139

Fig. 4).140

We first evaluated the estimation performance of IGREX for different settings of eQTL141

reference data. Specifically, we varied nr at {800, 1000, 2000}, PVEy = Var(xTβg)

Var(yg)
at {0.1, 0.2, 0.3},142

where PVEy quantifies the gene expression heritability explained by its local SNPs. To mimic143

the situation that uncertainty was incorrectly ignored, we obtained the posterior mean of βg in144

the first stage, and replaced the true effect size βg by its posterior mean µg while specified145

posterior variance Σg = 0 at the second stage, and then conducted REML and MoM as before.146

We denote these methods as REML0 and MoM0. The simulation results summarized in Fig.147

1a show that both PVEGREX and PVEAlternative are accurately estimated using REML-based148

IGREX-i under all circumstances. The MoM-based IGREX-i slightly underestimates PVEGREX149

when both sample size nr and signal strength PVEy are very small, but steadily converges to150

the same performance of REML as either nr or PVEy increases. For all settings, IGREX-s151

well approximates MoM, producing almost identical estimations. In contrast, as both REML0152

and MoM0 do not account for uncertainty arising in the first stage, they have poor estimation153

performance even with very large sample size and very strong signal in our simulation study.154

Next, we conducted simulations to evaluate the situation that the IGREX model was155

mis-specified. First, we considered the situation where genetic effects βg and α were sparse.156

To evaluate the influence of different sparsity patterns on our method, we first fixed the157

proportion of non-zero effects πα = (NO. of nonzero entries in α)/G at 0.2 and varied πβ =158

(NO. of nonzero entries in βg)/Mg at {0.2, 0.5, 0.8}, then we fixed πβ = 0.2 and varied πα at159

{0.2, 0.5, 0.8}. As shown in Figs. 1b-c, all three methods of IGREX produce accurate estimates160
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in the presence of sparse genetic effects, imlying the robustness of IGREX to model mis-161

specification. Besides, the estimation performances are not influenced by the degree of sparsity.162

Second, we investigated the influence of LD pattern by setting ρ varied at {0.1, 0.3, 0.5, 0.8}.163

From Fig. 1d., we can observe that IGREX produces accurate estimations despite the magnitude164

of LD. On the other hand, REML0 and MoM0 consistently underestimate PVEGREX as a result165

of ignoring estimation uncertainty.166

In addition, we made comparisons between IGREX and the method proposed in RhoGE167

[21], which provides an LDSC-based approach for estimating PVEGREX. However, this model168

does not adjust for estimation uncertainty. The results are shown in Fig. 1e. As we can169

expect, the pattern of IGREX is consistent with that in Fig. 1a. On the other hand, RhoGE170

substantially underestimates PVEGREX for most cases despite the reference sample size. It171

only achieves the same accuracy as IGREX when the signal strength PVEy ≥ 0.9, which is not172

realistic for eQTL data.173

Real data application on individual-level GWAS data. We applied our approaches to174

two individual-level GWAS datasets, the Northern Finland Birth Cohorts program 1966 (NFBC)175

[25] and the Wellcome Trust Case Control Consortium (WTCCC) [26], with eQTL data from176

48 human tissues in GTEx project. The details of the datasets and the data preprocessing177

procedures are described in the Methods Section.178

After sample quality control of the NFBC dataset, we have ten quantitative traits from179

5, 123 individuals with 309, 245 SNPs. We first estimated the heritabilities of the ten traits and180

then exluded four traits of very small heritabilities including body mass index (BMI), C-reactive181

protein (CRP), insulin and diastolic blood pressure (DiaBP) and restricted our analysis within182

the remaining six traits with high heritabilities: high-density lipoprotein cholesterol (HDL),183

low-density lipoprotein cholesterol (LDL), triglycerides (TG), total cholesterol (TC) and systolic184

blood pressure (SysBP). Figs. 2a-b show the P̂VEGREX of the six traits on 48 GTEx tissues185

obtained using REML and MoM, respectively. We can observe that the two methods produced186

quite similar estimates in most of the tissues. Although the REML estimates are slightly187

higher than the MoM estimates in some cases, the discrepancy is not significant. Of the188

outcomes shown in the figures, LDL and TC deserve special attention: both of them have a189

large proportion of variations can be explained by the GREX component in liver. According190

to the REML approach (Fig. 2a), the P̂VEGREX for LDL in liver is as high as 14.3% (with191
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Figure 1: Simulation studies to compare estimation accuracies of IGREX with other methods.

REML and MoM in the legend are abbreviations of methods on which IGREX-i is based. The

blue and red dashed lines represent the true values of PVEGREX and PVEAlternative, respectively.

We conducted 30 replications and generated box plots for analyzing the estimation performance

of: a the three models of IGREX ,REML0 and MoM0 when nr was varied at {800, 1000, 2000}
and PVEy was varied at{0.1, 0.2, 0.3}; (b) the three models of IGREX when πα = 0.2 and

πβ was varied at {0.2, 0.5, 0.8}; (c) the three models of IGREX when πβ = 0.2 and πα
is varied at {0.2, 0.5, 0.8}; (d) the three models of IGREX, REML0 and MoM0 when ρ is

varied at {0.1, 0.3, 0.5, 0.8}; (e) the three models of IGREX and RhoGE when nr is varied at

{800, 1000, 2000}.

standard error 2.6%), capturing 52.6% of total heritability defined as PVEGREX/h
2; TC also has192

high P̂VEGREX = 13.7% (with standard error 2.5%), which captures 79.4% of total heritability193
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(see Supplementary Fig. 6). These resuts are verified by the MoM (Fig. 2b). In fact, LDL194

synthesized in liver is an important lipoprotein particle for transporting cholesterol in the195

blood. Our finding suggests that the genetic architecture of LDL synthesis in liver extensively196

involves the gene regulation mechanism, which provides a new insight of this biological process.197

Additionally, we analyzed the impact of ignoring the uncertainty (with the complete results198

given in the Supplementary Fig. 5). By observing the slopes of fitted regression lines in Figs.199

2c-d, it is clear that half of P̂VEGREX is lost because of ignoring the uncertainty. To evaluate200

the performance of IGREX-s, we also generated z-scores from NFBC data and applied IGREX-s201

based on the summary statistics. The resulting estimates are then compared to MoM estimates202

in Fig. 2e. For all six traits, IGREX-s estimates well approximate the MoM estimates using203

the individual level data, which is consistent with our simulation result.204

Now we investigate the role of GREX in complex human traits and diseases, using the205

WTCCC dataset [26]. We applied IGREX to estimate the PVEGREX of seven diseases including206

bipolar disorder (BD), coronary artery disease (CAD), Crohn’s disease (CD), hypertension207

(HT), rheumatoid arthritis (RA), type 1 diabetes (T1D) and type 2 diabetes (T2D). For208

diseases, we analyzed percentage of heritability explained by GREX (PVEGREX/h
2) to avoid209

the influence of ascertainment bias. The estimated PVEGREX/h
2 obtained by REML are shown210

in Supplementary Fig. 8. The results show that all the diseases have moderate to high estimated211

PVEGREX/h
2 in some subsets of the tissues. The top PVEGREX/h

2’s are 12.8% for BD in212

amygdala, 21.2% for CAD in spinal cord, 18.4% for CD in amygdala, 16.7% for HT in spleen213

and 17.9% for T2D in anterior cingulate cortex. Two diseaes that deserve special attention214

are RA and T1D, whose average PVEGREX/h
2 estimates are as high as 34.1% and 71.2%,215

respectively. It is well known that RA and T1D are both autoimmune diseases whose strong216

associations with major histocompatibility complex (MHC) region have been well established in217

previous studies [26, 27]. To have a better unserstanding of our observations, we compared the218

estimated PVEGREX/h
2 with those obtained by removing the MHC region (results are given219

in the Supplementary Fig. 9). The distributions of PVEGREX/h
2 estimates are shown in Fig.220

3a. We observed a substantial downward shift of the distribution after removing the MHC221

region in RA and T1D: the mean P̂VEGREX dropped from 34.1% to 7.6% for RA and from222

71.2% to 11.7% for T1D. In addition, the tissue-specific comparisons shown in Fig. 3b reveal223

an extensive reduction of PVEGREX in all tissues for T1D and RA, while such change does224
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Figure 2: Tissue-specific P̂VEGREX of the six traits from NFBC data set. (a-b) P̂VEGREX

obtained by REML and MoM. Tissues are colored according to their categories. The number

of asterisks represents the significance level: p-value< 0.05 is annotated by ∗; p-value< 0.05/48

is annotated by ∗∗. (c-d) All pairs of estimates generated by REML and MoM against their

counterparts without accounting for uncertainty. A regression line is fitted and the estimated

coefficients are given in the plot. (e) Each panel is a plot of P̂VEGREX generated by IGREX-s

against those generated by MoM for all 48 tissues in one of the six traits.
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not appear in other traits. This finding implies that the steady-state gene regulation process225

pervasively participates in the immune functionality of the MHC region for RA and T1D. We226

note that this discovery reveals a potential rationale behind the etiologies of the MHC-related227

autoimmune diseases such as RA and T1D.228
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Figure 3: Percentage of heritability explained by GREX (PVEGREX/h
2) of the seven traits from

WTCCC data. (a) The distributions of estimated PVEGREX/h
2 across 48 GTEx tissues. (b)

Tissue-specific comparisons of PVEGREX/h
2 estimated by whole genome with those estimated

by excluding the MHC region.

Analysis results using the summary-level GWAS data. Since the summary statistics229

are much easier to access than the individual-level GWAS data, we are allowed to analyze230

a wider spectrum of phenotypes using IGREX-s. To study the pattern of GREX impact in231

multiple levels of human traits, we applied our method to proteins, metabolites as well as232

high-level complex phenotypes such as schizophrenia, height and waist-to-hip ratio adjusted233

BMI (WHRadjBMI). In the following analyses, we used the genotypes of 379 individuals of234

European ancestry from the 1,000 genome project as the reference panel.235

Firstly, we quantified PVEGREX in the protein level using the summary statistics from236

a plasma protein quantitative trait loci (pQTL) study [28]. Fig .4a shows the heritability237

distributions of all 3, 283 proteins in the dataset estimated using MQS [29]. Protens with238

insignificant heritabilities were excluded and 249 remained for inclusion in our analysis (See239

Supplementray Table 3). The outcomes show that the heritabilities estimated by IGREX240

(ĥ2t = P̂VEGREX + P̂VEAlternative) are strongly consistent to those estimated by MQS (See241

Supplementary Fig. 10). The p-values for testing the significance of GREX effects on these242

proteins are shown by the QQ-plot in Fig. 4b, where the tissues were categorized into 16 groups243
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(tissue-specific QQ-plots are given in Supplementary Fig. 11, Manhattan plot and heatmap of244

all tissue-protein pairs are given in Supplementary Figs. 12-13). As we can observe, the GREX245

components have significant contribution in many tissue-protein pairs. In particular, 9 out246

of 249 proteins have significant GREX components in at least one tissue at 0.05 level using247

Bonferroni correction. As illustrated in Fig. 4d-e, the contribution of GREX components shows248

heterogeneous across-tissue patterns in the nine proteins: CD96, DEFB119, MICB and PDE4D249

have high P̂VEGREX regardless of the tissue type; on the other hand, significant GREX impacts250

for CFB, CXCL11, EVI2B, IDUA and LRPAP1 exist only in some subsets of tissues. We found251

that these tissue-specific patterns are consistent with the protein functions. For example, the252

CFB protein, which is implicated in the growth of preactivated B-lymphocytes, is found most253

associated with GREX in EBV-transformed lymphocytes (P̂VEGREX = 18.7%); besides, the254

CXCL11 with its highest P̂VEGREX = 16.6% in pancreas is known to have a high expression255

level in pancreas. We also noted that 6 out of the 9 proteins were immune-related, suggesting256

that the genetics of immune process could be more related to gene regulation effects.257

Besides the proteins, metabolic phenotypes also serve as an important intermediate for258

high level biological processes. To understand the role of gene regulation in the genetics of259

such traits, we applied IGREX-s to a summary level data set of circulating metabolites [30],260

which was comprised of meta-analysis of 123 metabolites. We focused our analysis on the 21261

metabolites that were highly heritable (estimated h2 > 10%) including glycine, various features262

of HDL, LDL, very low-density lipoprotein (VLDL) and intermediate-density lipoprotein (IDL)263

and other polyunsaturated fatty acids (otPUFA). The distributions of PVEGREX/h
2 estimates264

in different tissues are given in Fig. 5a. The median values of percentage estimates are higher265

than 10% in 6 out of the 48 tissues and only higher than 15% in liver and spinal cord (cervical266

c-1). According to the estimated values shown in the heat map of Fig. 5b, we can see that the267

features associated with IDL, LDL and VLDL have estimated PVEGREX/h
2 around 20% in268

liver and 16% in spinal cord, suggesting that they are more related to the GREX effects in269

these two tissues. On the contrary, there is no signal of GREX components detected under the270

nominal level 0.05 in any GTEx tissue for HDL associated features and glycine.271

We also applied IGREX-s to the summary data of complex human traits. Here we analyzed272

schizophrenia (SCZ), height and WHRadjBMI. We considered four datasets of schizophrenia273

with increasing sample sizes: SCZ subset [31], SCZ1 [32], SCZ1+Sweden (SCZ1Swe)[33] and274
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Figure 4: Analysis of plasma pQTL summary statistics. (a) The distribution of 3, 283 proteins

estimated using MQS. The whole study is colored in grey, while the 249 proteins with significant

heritabilities are colored in yellow. Dashed lines represent the means of corresponding distribu-

tions. (b) QQ-plot of PVEGREX p-values of tissue-protein pairs. GTEx tissues are categorized

into 16 types and colored accordingly. (c) The Manhattan plot of the protein encoding genes

in aorta, cerebellum, liver and whole blood. Each point represents a tissue-protein pair. (d)

P̂VEGREX in the 9 proteins whose P̂VEGREX are significant in at leat one tissue at 0.05 level

using Bonferrni correction. (e) P̂VEGREX obtained by IGREX-s. Tissues are colored according

to their categories. The number of asterisks represents the significance level: p-value< 0.05/48

is annotated by ∗; p-value< 0.05/(48 ∗ 9) is annotated by ∗∗.

SCZ2 [34]. We found that the estimated PVEGREX/h
2 in all four SCZ datasets have higher275

values in brain than in other tissues (Fig. 6b), implying stronger GREX effects for SCZ in276
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Figure 5: P̂VEGREX/h
2 for 21 circulating metabolites. (a) The distributions of estimated

PVEGREX/h
2 in different tissues. (b) The heat map of estimated PVEGREX/h

2. Entries that

are significant at nominal level (0.05) are labeled with their estimate values.

brain. Besides, increasing number of tissues are found to have a significant impact of the277

GREX component as the sample size increases, as shown in Fig. 6a. This trend is also278

observed by comparing the significance levels of PVEGREX/h
2 estimates in the four datasets279

(Supplementary Fig. 14), where the estimation accuracy increases with the sample size. For the280

human height and WHRadjBMI, we considered pairs of independent datasets for replication281

purpose: height datasets included GWAS anthropoetric 2014 (height2014) [35] and UK Biobank282

(UKB) summary statistics provided by Neale Lab (http://www.nealelab.is/uk-biobank/),283

WHRadjBMI datasets include summary statistics obtained by analyzing men and women,284

seperately [36]. By comparing the panels of Fig. 6c, we can observe that IGREX produced285

similar results in the two independent datasets. While the outcomes are reproducible, we286
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noted the estimated percentages of heritability explained by GREX for all three complex traits287

are less than 10% (6.7% for schizophrenia, 7.1% for height and 3.7% for WHRadjBMI in the288

most expressed tissue. See Fig. 6c and Supplementary Fig. 15), lower than those of other289

phenotypes. There are two possible reasons of this observation. First, IGREX only takes290

account of the local genetic effects on gene expression due to the limited sample size of eQTL291

studies. However, the gene regulation mechanisms of some complex traits may involve distant292

SNPs, resulting in underestimated P̂VEGREX. With a large eQTL sample size, this problem293

can be addressed by accounting for the regulation effects across the whole genome. Second, the294

genetic effects on gene expression may not be steady-state but rely on the biological status of295

tissues and individuals. As GTEx data serve as a general-puposed reference, the dynamics of296

genetically regulated gene expression may not be captured [37]. For example, the schizophrenia297

patients may have different gene expression patterns and mechanisms from healthy individuals298

in disease related tissues. Similarly, the genetic effects on gene expression associated with299

height may vary between adult tissues and teenage tissues. In this scenario, condition-specific300

gene expression data are demanded to provide more reliable estimates of PVEGREX.301
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Figure 6: Analyses of complex traits: schizophrenia and height. (a) Number of significant GREX

components revealed under different significance level for the four schizophrenia datasets. (b)

Mean estimated percentages of heritability for schizophrenia explained by GREX in brain tissues

and in other tissues. (c) P̂VEGREX and P̂VEAlternative of height estimated using height2014 and

UKB datasets, respectively.
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Discussion302

Despite the great success of GWAS in the past 10 years, the biological basis of a large303

proportion of discovered genetic variants locating in the non-coding regions remains unknown.304

As cumulated evidence suggests the involvement of gene regulation mechanism for these genetic305

variants, there is a pressing need to characterize the role of gene regulation in the genetics of306

various phenotypes. By leveraging the general-purposed eQTL data (e.g. GTEx) with GWAS,307

our proposed method, IGREX, quantifies the impact of genetically regulated expression and308

provides new insights for the genetic architectures of extensive phenotypes.309

IGREX is closely related to several existing methods such as TWAS [15], PrediXcan [14]310

and RhoGE [21]. Here we briefly discuss the relationship between IGREX and these methods.311

TWAS and PrediXcan can be considered within a more general MetaXcan framework that312

integrates eQTL information with GWAS results and identifies trait-associated genes. While313

both IGREX and MetaXcan ‘impute’ the gene expression based on eQTL reference, IGREX is314

distinct from MetaXcan in two perspectives:315

• First, MetaXcan aims at identifying genes whose expressions are associated with pheno-316

types. In contrast, IGREX explores the impact of genetically regulated expression from a317

global perspective by quantifying the phenotypic variation that can be attributed to the318

GREX component.319

• Second, while MetaXcan increases the power of gene-based association mapping by320

incorporating the eQTL information, the identified signals may not be totally attributed321

to GREX effects. In fact, when the signal from SNP to gene expression is weak, the322

posterior distribution of βg will not change a lot from its prior (i.e., µg ≈ 0 and323

Σg ≈ σ2
βg

IMg). Consequently, Xg(µgµ
T
g + Σg)X

T
g and XgX

T
g are numarically very close,324

resulting in a tagging effect between the two relatedness matrices. If the alternative325

genetic component is not adjusted for, the GREX effects can absorve the signals from326

the alternative genetic effects. This hampers MetaXcan from distinguishing the GREX327

effects and alternative genetic effects (See Supplementary Fig. 16). On the other hand,328

IGREX filters out the alternative genetic component by accounting for the alternative329

impact Xγ and captures the GREX signal only. This feature allows IGREX to produce330

results that are more biologically interpretable.331
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RhoGE is designed for identifying and estimating correlation between gene expression and trait.332

It also provides an LDSC-based approach for estimating PVEGREX. Unlike IGREX, this method333

does not adjust for estimation uncertainty. Consequently, it significantly underestimates the334

PVEGREX when the signal is weak. In fact, RhoGE estimated the PVEGREX for the majority335

of 1, 350 tissue-trait pairs to be almost negligible (the first quantile, the median, and the336

third quantile are 0.00125%, 0.162% and 0.616%, respectively. See Table S9 of [21]). On337

the contrary, by accounting for the estimation uncertainty, IGREX can accurately estimate338

PVEGREX under weak signal. Through simulation studies, we have demonstrated that IGREX339

has better performance than RhoGE under various signal strengths.340

A key assumption in applying IGREX to general-purposed eQTL data is the existence of341

steady-sate component in GREX, i.e., the genetic effects on gene expression βg should be the342

same in eQTL reference and GWAS data. However, there are situations where this assumption343

is violated. For example, it has been observed that more gene regulatory effects of CAD-risk344

SNPs are identified in the disease tissues than in the healthy GTEx tissues [37]. In the presence345

of this dynamic component, the P̂VEGREX based on GTEx tissues may not be accurate enough,346

and substituting the gene expression reference by those derived from trait associated tissues is347

expected to produce better estimates.348

In conclusion, we have presented a statistical approach, IGREX, that integrates GWAS349

data and eQTL reference to quantify the GREX impact in multiple levels of phenotypes. Not350

only does IGREX have better estimation accuracy than related methods, it also provides351

biological insights into the role of gene regulatory mechanisms in the genetics of various traits.352

Besides, IGREX enjoys a high practicality because it can be applied to both individual-level and353

summary-level GWAS data. We have successfully applied our method to both cellular level and354

organismal level traits and revealed cross-tissue and tissue-specific patterns of GREX in these355

traits. We have also applied IGREX to independent datasets of same traits, demonstrating the356

results given by our approach can be replicated.357

Methods358

The IGREX-i for individual-level GWAS data. First, let Dr = {Y,Xr} denote the359

reference data set from some eQTL studies, where Y ∈ Rnr×G is the gene expression matrix,360

Xr ∈ Rnr×M is the genotype matrix, nr is the sample size of eQTL study, G is the number361
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of genes and M is the number of single-neucleotide polymorphisms (SNPs). Then, suppose362

we have individual-level GWAS data set Di = {t,X} comprised of phenotype vector t ∈ Rn
363

and genotype matrix X ∈ Rn×M , where n is the GWAS sample size. For g = 1, ..., G, we let364

g-th gene expression vector yg ∈ Rnr denote the corresponding column of Y, local genotype365

matrices Xr,g ∈ Rnr×Mg and Xg ∈ Rn×Mg denote the corresponding Mg colums in Xr and366

X, respectively, where Mg is the number of local SNPs for g-th gene. To make the notation367

uncluttered, we further assume that Xr,g and Xg have been standardized and both yg and t368

have been properly adjusted for confounding factors. The complete model that accounts for369

confounders is described in the supplementary. Now, we consider linear model (1) that links370

the gene expression vector yg to Xr,g:371

yg = Xr,gβg + er,g,

where βg is an Mg × 1 vector of genetic effects on the gene expression, er,g ∼ N (0, σ2
r,gInr) is372

a vector of independent noise and I is the identity matrix with the subscript being its size.373

Assuming that there is a steady-state component in gene expression regulated by genetic variants,374

individuals in Dr and Di share the same βg. Hence, the genetically regulated expression (GREX)375

in Di can be evaluated by Xgβg. Then we assume that the pehontype t can be decomposed into376

two parts, i.e., the genetic effects through GREX and the genetic effects through alternative377

ways, as in model (2):378

t =
G∑
g=1

αgXgβg + Xγ + ε,

where αg is the effect of Xgβg on t, γ is an n × 1 vector of alternative genetic effects and379

ε ∼ N (0, σ2
ε In) is a vector of independent errors. The term

∑G
g=1 αgXgβg can be viewed as the380

over-all impact of GREX on the phenotype and Xγ represents the alternative impact. Given a381

genotype vector x ∈ RM and a phenotype t ∈ R, the impact of GREX can be quantified by the382

proportion of variance explained by the GREX component:383

PVEGREX =
Var(

∑G
g=1 αgx

T
g βg)

Var(t)
, (3)

where xg is the genotype vector corresponding to the g-th gene.384

To estimate PVEGREX, we introduce the following probabilistic structure for the effects in385

model (1) and (2):386

βg ∼ N (0, σ2
βgIMg), αg ∼ N (0, σ2

α), γ ∼ N (0, σ2
γIM), (4)
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which is motivated by a recent theoretical justification [38] for heritability estimation on387

mis-specified linear mixed model (LMM). This prior specification in (4) provides a great com-388

putational advantage as well as a stable performance for IGREX under model mis-specification,389

as demonstrated in the simulation study.390

The proposed method for individual-level GWAS data, IGREX-i, provides a two-stage391

framework for estimating PVEGREX. At the first stage, we estimate the parameters σ2
βg

and σ2
r,g392

in model (1) by a fast expectation-maximization (EM)-type algorithm, the parameter-expanded393

EM (PX-EM) algorithm [39]. Based on the estimates, denoted as σ̂2
βg

and σ̂2
r,g, the posterior394

distribution of βg is given by395

βg|yg,Xr,g ∼ N (µg,Σg), where Σg =

(
1

σ̂2
r,g

XT
r,gXr,g +

1

σ̂2
βg

IMg

)−1
, µg = Σg

1

σ̂2
r,g

XT
r,gyg. (5)

At the second stage, we treat the posterior distribution obtained in (5) as the prior distribution396

of βg in model (2). This substitution naturally accounts for the uncertainty associated with βg397

captured by Σg. To evaluate the covariance of t, we first note that E(t|α) =
∑G

g=1 αgXgµg398

and Cov(t|α) =
∑G

g=1 α
2
gXgΣgX

T
g + σ2

γXgX
T
g + σ2

ε In; then, using the law of total expectation399

and total variance, we obtain E(t) = E(E(t|α)) = 0 and400

Cov(t) = Cov(E(t|α)) + E(Cov(t|α)) =
G∑
g=1

σ2
αXg(µgµ

T
g + Σg)X

T
g + σ2

γXgX
T
g + σ2

ε In, (6)

respectively. By observing the form of (6), it is clear that the i-th diagonal element of401 ∑G
g=1 σ

2
αXg(µgµ

T
g + Σg)X

T
g and σ2

γXgX
T
g represents the variance explained by GREX and402

alternative genetic effects, respectively. Therefore, the PVEGREX defined in (3) can be estimated403

by404

P̂VEGREX =
tr(
∑G

g=1 σ̂
2
αXg(µgµ

T
g + Σg)X

T
g )

tr(
∑G

g=1 σ̂
2
αXg(µgµTg + Σg)XT

g + σ̂2
γXgXT

g + σ̂2
ε In)

, (7)

where σ̂2
α, σ̂2

γ and σ̂2
ε are the estimated values of σ2

α, σ2
γ and σ2

ε , respectively.405

IGREX-i provides two approaches for estimating the parameters and P̂VEGREX at the406

second stage. Let ψ =
[
σ2
α, σ

2
γ, σ

2
ε

]T
be the vector of parameters to be estimated, Kα =407 ∑G

g=1 Xg(µgµ
T
g +Σg)X

T
g and Kγ = XgX

T
g . The first method is based on the method of moments408

(MoM), which minizes the distance between the second moment of t at the population level and409

that at the sample level f(ψ) = ||ttT −(σ2
αKα+σ2

γKγ+σ2
ε In)||2. Let ∂f(ψ)

∂σ2
α

= ∂f(ψ)
∂σ2
γ

= ∂f(ψ)
∂σ2
ε

= 0,410

we obtain the estimating equation411

Sψ = q, (8)
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412

with S =

 tr(K2
α) tr(KαKγ) tr(Kα)

tr(KαKγ) tr(K2
γ) tr(Kγ)

tr(Kα) tr(Kγ) n

 , ψ =

σ2
α

σ2
γ

σ2
ε

 , q =

tTKαt

tTKγt

tT t

 .
The solution of Equation (8) is given by ψ̂ = S−1q. And Cov(ψ̂) = S−1Cov(q)S−1 by413

sandwich estimator. Then, the standard error of P̂VEGREX can be obtained by delta method414

(Supplementary). The second method applies the restricted maximum likelihood (REML) by415

further assuming the normal distribution of t: t ∼ N (0, σ2
αKα + σ2

γKγ + σ2
ε In). The variance416

components are estimated by Minorization-Maximization (MM) algorithm [40].417

The IGREX-s for summary-level GWAS data. The special formulation of method of418

monents allows IGREX to be extended (IGREX-s) to handle summary-level GWAS data (i.e.419

z-scores) when the individual-level data Di is not available. Suppose we only have the z-scores420

from summary-level GWAS data {zj}Mj=1 generated from Di. The definition of the z-score is421

zj =
(xTj xj)

−1xTj t√
σ̂2
j (x

T
j xj)−1

, where xj is the j-th column of X and σ̂2
j is the estimate of residual variance422

by regressing xj on t. By assuming that z-scores are calculated from a standardized genotype423

matrix X, we have xTj xj = n. Besides, the polygenicity assumption implies that σ̂2
j ≈ σ̂2

t , where424

σ̂2
t is the estimate of Var(t). Hence, we have425

zj ≈
xTj t√
nσ̂2

t

, (9)

and PVEGREX defined in (3) can be estimated by426

P̂VEGREX =
1
n
tr(
∑G

g=1 σ̂
2
αXg(µgµ

T
g + Σg)X

T
g )

σ̂2
t

≈ σ̂2
α

σ̂2
t

tr(
G∑
g=1

(µgµ
T
g + Σg)R̂g), (10)

where R̂g = X̃T
g X̃g/m is the estimated LD matrix associated with the g-th gene and X̃g is427

the corresponding columns of some genotype matrix X̃. In practice, X̃ ∈ Rm×M can be the428

genotype matrix either from reference panel (e.g. eQTL studies such as GTEx) or the 1000429

genome project. Now, we consider the method of moments in the estimating equation (8) to430

obtain σ̂2
α

σ̂2
t
. By eliminating σ2

ε and dividing both sides by n2, we have431  tr(K2
α)−

tr2(Kα)
n

n2

tr(KαKγ)−
tr(Kα)tr(Kγ )

n

n2

tr(KαKγ)−
tr(Kα)tr(Kγ )

n

n2

tr(K2
γ)−

tr2(Kγ )

n

n2

[σ2
α

σ2
γ

]
=

[
1
n2 t

TKαt− tr(Kα)
n3 tT t

1
n2 t

TKγt− tr(Kγ)

n3 tT t

]
. (11)

The terms on the left hand side does not involve t and thus can be approximated using432

X̃ [29]. For example,
tr(K2

α)−
tr2(Kα)

n

n2 can be well approximated by
tr(K̃2

α)−
tr2(K̃α)

m

m2 , where K̃α =433
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∑G
g=1 X̃g(µgµ

T
g + Σg)X̃

T
g . Other terms on the left hand side can be approximated in the same434

way. For the right hand side, each term can be approximated using R̂g and z-scores from435

approximation (9): tTKαt ≈ nσ̂2
t

∑
g zTg (µgµ

T
g +Σg)zg, where zg ∈ RMg is the vector of z-scores436

corresponding to the g-th gene; tr(Kα)
n

tT t ≈ nσ̂2
t tr(
∑

g(µgµ
T
g + Σg)R̂g); tTKγt ≈ nσ̂2

t

∑M
j=1 z

2
j ;437

and tr(Kγ)

n
tT t ≈ nσ̂2

t . With these approximations, Equation (11) becomes438  tr(K̃2
α)−

tr2(K̃α)
m

m2

tr(K̃αK̃γ)−
tr(K̃α)tr(K̃γ )

m

m2

tr(K̃αK̃γ)−
tr(K̃α)tr(K̃γ )

m

m2

tr(K̃2
γ)−

tr2(K̃γ )

m

m2

[ σ̂2
α

σ̂2
t
σ̂2
γ

σ̂2
t

]
=

[∑
g zTg (µgµ

T
g +Σg)zg−tr(

∑
g(µgµ

T
g +Σg)R̂g)

n∑M
j=1

z2j−1
n

]
.

Then, σ̂2
α

σ̂2
t

can be obtained by solving this equation. Plugging this estimate into Equation (10)439

gives the P̂VEGREX. The standard errors of P̂VEGREX can be estimated by block jackknife440

(Supplementary).441

IGREX can incorporate fixed effectsto adjust possible confounding factors, such as popula-442

tion structure. Details are provided in the Supplementary Note.443

GTEx eQTL dataset. We used the gene expression data from the V7 release of GTEx444

Consortium as our reference dataset. This data is comprised of 48 tissues collected from 620445

donors with total sample size 10, 294. The sample size of each tissue ranges from 80 to 491446

(details provided in Supplementary Table 4). We set the mappability cutoff at 0.9 to filter gene447

expressions, leaving 16, 333 ∼ 27, 378 genes for inclusion in our analysis. The genotype data448

were obtained from the third phase of the International HapMap project phase 3 (HapMap3)449

with 1, 189, 556 genotyped SNPs. For each gene, we included only the SNPs within 500kb of450

the transcription start and end of each protein coding genes. In real data analysis, we used451

the covarites provided by the GTEx consortium, including top 3 principal components (PC),452

Probabilistic Estimation of Expression Residuals (PEER) factors, genotyping platform and sex453

(as described in https://gtexportal.org/home/documentationPage).454

Individual level GWAS datasets. The NFBC dataset is comprised of 5, 402 individuals455

with ten continuous phenotypes related to cardiovascular diseases including body mass index456

(BMI), C-reactive protein (CRP), insulin, high-density lipoprotein cholesterol (HDL), low-457

density lipoprotein cholesterol (LDL), triglycerides (TG), total cholesterol (TC), diastolic blood458

pressure (DiaBP) and systolic blood pressure (SysBP). There are 364, 590 genotyped SNPs in459

this dataset. The individuals with contradictory in reported sex and sex determined from the460

X chromosome were first excluded. We then excluded the SNPs with minor allele frequency461
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less than 1%, with missing values in more than 1% of the individuals or with Hardy-Weinberg462

equilibrium (HWE) p-value below 0.0001. This quality control process yields 5, 123 individuals463

with 319, 147 SNPs in NFBC dataset for our analysis. We evaluated the genetic relatedness464

matrix (GRM) using the processed genotype data and selected the top 20 PCs as covariates in465

the study.466

The WTCCC dataset contains seven disease phenotypes including bipolar disorder (BD)467

with , coronary artery disease (CAD), Crohn’s disease (CD), hypertension (HT), rheumatoid468

arthritis (RA), type 1 diabetes (T1D) and type 2 diabetes (T2D). It includes around 2, 000469

cases and 3, 004 controls with 490, 032 genotyped SNPs. We first removed the individuals470

with genotyping rate less than 5%. Then we excluded the SNPs satisfying at least one of471

the following: minor allele frequency is less than 5%; genotypes are missed in more than 1%472

samples; HWE p-value is below 0.001. We also removed the individuals with estimated genetic473

correlation larger than 2.5%. After quality control, around 4, 700 individuals with 300, 000474

SNPs were remained for further analysis (See Supplementary Table 1). Based on the obtained475

data, we calculated the GRM and extracted top 20 PCs as covariates included in our study.476

GWAS summary statistics. We analyzed ten summary level GWAS datasets: human plasma477

pQTL data [28], circulating metabolite data [30], four schizophrenia datasets [31, 32, 33, 34], two478

independent height datasets [35] and European ancestry of WHRadjBMI datasets separated by479

men and women [36]. The SNPs with missing information (i.e. chromosome, minor allele, allele480

frequency) were first removed. Following the practice of LDSC [24], we checked the χ2 statistic481

of each SNP and excluded those with extreme values (χ2 > 80) to prevent dominant effect. The482

detailed information is provided in Supplementary Table 2. After preprocess, the remaining483

SNPs were further matched with reference data during analysis, which is automatically processed484

using our IGREX software.485

Software. Our software IGREX is publicly available on GitHub repository: https://github.486

com/mxcai/iGREX.487

Data availability. The GTEx gene expression data was downloaded from GTEx Consor-488

tium website https://gtexportal.org/home/datasets. The HapMap3 genotype data is489

available at ftp://ftp.ncbi.nlm.nih.gov/hapmap/. The NFBC study was downloaded from490

dbGAP using accession number phs000276.v1.p1. The WTCCC data was obtained from its491
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consortium website https://www.wtccc.org.uk/info/access_to_data_samples.html. The492

GWAS summary statistics can be caccessed using the links provided in Supplementary Table 2.493
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