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Motivation: Third-generation sequencing technologies Pacific Biosciences and Oxford Nanopore
allow the sequencing of long reads of tens of kbp, that are expected to solve various problems, such as
contig and haplotype assembly, scaffolding, and structural variant calling. However, they also display
high error rates that can reach 10 to 30%, for basic ONT and non-CCS PacBio reads. As a result, error
correction is often the first step of projects dealing with long reads. As first long reads sequencing
experiments produced reads displaying error rates higher than 15% on average, most methods relied
on the complementary use of short reads data to perform correction, in a hybrid approach. However,
these sequencing technologies evolve fast, and the error rate of the long reads now reaches 10 to 12%.
As a result, self-correction is now frequently used as the first step of third-generation sequencing data
analysis projects. As of today, efficient tools allowing to perform self-correction of the long reads are
available, and recent observations suggest that avoiding the use of second-generation sequencing reads
could bypass their inherent bias.
Results: We introduce CONSENT, a new method for the self-correction of long reads that combines
different strategies from the state-of-the-art. More precisely, we combine a multiple sequence alignment
strategy with the use of local de Bruijn graphs. Moreover, the multiple sequence alignment benefits
from an efficient segmentation strategy based on k-mer chaining, which allows a considerable speed
improvement. Our experiments show that CONSENT compares well to the latest state-of-the-art
self-correction methods, and even outperforms them on real Oxford Nanopore datasets. In particular,
they show that CONSENT is the only method able to efficiently scale to the correction of Oxford
Nanopore ultra-long reads, and is able to process a full human dataset, containing reads reaching
lengths up to 1.5 Mbp, in 15 days. Additionally, CONSENT also implements an assembly polishing
feature, and is thus able to correct errors directly from raw long read assemblies. Our experiments
show that CONSENT outperforms state-of-the-art polishing tools in terms of resource consumption,
and provides comparable results. Moreover, we also show that, for a full human dataset, assembling the
raw data and polishing the assembly afterwards is less time consuming than assembling the corrected
reads, while providing better quality results.
Availability and implementation: CONSENT is implemented in C++, supported on Linux platforms
and freely available at https://github.com/morispi/CONSENT.
Contact: pierre.morisse2@univ-rouen.fr

1 Introduction
Third-generation sequencing technologies Pacific Biosciences (PacBio)
and Oxford Nanopore Technologies (ONT) have become widely
used since their inception in 2011. In contrast to second-generation
technologies, producing reads reaching lengths of a few hundreds base
pairs, they allow the sequencing of much longer reads (10 kbp on
average [26], and up to >1 million bps [9]). These long reads are
expected to solve various problems, such as contig and haplotype
assembly [23, 10], scaffolding [3], and structural variant calling [27].
However, they are very noisy. More precisely, basic ONT and non-CCS
PacBio reads can reach error rates of 10 to 30%, whereas second-
generation short reads usually display error rates of 1%. The error
profiles of these long reads are also much more complex than those
of the short reads. Indeed, they are mainly composed of insertions and
deletions, whereas short reads mostly contain substitutions. As a result,
error correction is often required, as the first step of projects dealing
with long reads. As the error profiles and error rates of the long reads
are much different from those of the short reads, correcting long reads
requires specific algorithmic developments.

The error correction of long reads has thus been tackled by two
main approaches. The first approach, hybrid correction, makes use of
additional short reads data to perform correction. The second approach,
self-correction, aims at correcting the long reads solely based on the
information contained in their sequences.

Hybrid correction methods rely on different techniques such as:

1. Alignment of short reads to the long reads (CoLoRMAP [8], HECiL
[6])

2. Exploration of de Bruijn graphs, built from short reads k-mers
(LoRDEC [24], Jabba [19], FMLRC [31])

3. Alignment of the long reads to contigs built from the short reads
(MiRCA [11], HALC [1])

4. Hidden Markov Models, initialized from the long reads sequences
and trained using the short reads (Hercules [7])

5. Combination of different strategies (NaS (1+3) [17], HG-CoLoR
(1+2) [21])

Self-correction methods usually build around the alignment of the
long reads against each other (PBDAGCon [5], PBcR [12]). We give
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further details on the state-of-the-art of self-correction in Section 1.1.
As first long reads sequencing experiments resulted in highly

erroneous long reads (15-30% error rates on average), most methods
relied on the additional use of short reads data. As a result, hybrid
correction used to be much more widespread. Indeed, in 2014, for five
hybrid correction tools, only two self-correction tools were available.
However, third-generation sequencing technologies evolve fast, and
now manage to produce long reads reaching error rates of 10-12%.
Moreover, the evolution of long-read sequencing technologies also
allows to produce higher throughputs of data, at a reduced cost.
Consequently, such data became more widely available. As a result,
self-correction is now frequently used as the first step of data analysis
projects dealing with long reads.

1.1 Related works

Due to the fast evolution of third-generation sequencing technologies,
and to the lower error rates they now reach, various efficient self-
correction methods have recently been developed. Most of them share
a common first step of computing overlaps between the long reads.
This overlapping step can be performed in two different ways. First, a
mapping approach can be used, to simply provide the positions of similar
regions of the long reads (Canu [13], MECAT [32], FLAS [2]). Second,
an alignment approach can be used, to provide the positions of similar
regions, but also their actual base to base correspondence in terms of
matches, mismatches, insertions, and deletions (PBDAGCon, PBcR,
Daccord [29]). A directed acyclic graph (DAG) is then usually built, in
order to summarize the 1V1 alignments and compute consensus, after
recomputing actual alignments of mapped regions, if necessary. Other
methods rely on de Bruijn graphs, either built from small windows of the
alignments (Daccord), or directly from the long reads sequences with
no prior overlapping step (LoRMA [25]). These graphs are explored,
using the solid k-mers (i.e. k-mers occurring more frequently than a
given threshold) from the reads as anchor points, in order to correct low
quality, weak k-mers regions.

However, methods relying on direct alignment of the long
reads are prohibitively time and memory consuming, and current
implementations thus do not scale to large genomes. Methods solely
relying on de Bruijn graphs, and avoiding the overlapping step
altogether, usually require deep long reads coverage, since the graphs
are usually built from large, solid k-mers. As a result, methods relying
on a mapping strategy constitute the core of the current state-of-the-art
for long read self-correction.

1.2 Contribution

We present CONSENT, a new self-correction method that combines
different efficient approaches from the state-of-the-art. CONSENT
indeed starts by computing multiple sequence alignments between
overlapping regions of the long reads, in order to compute consensus
sequences. These consensus sequences are then further polished with
the help of local de Bruijn graphs, in order to correct remaining errors,
and reduce the final error rate. Moreover, unlike current state-of-the-art
methods, CONSENT computes actual multiple sequence alignments,
using a method based on partial order graphs [14]. We also introduce
an efficient segmentation strategy based on k-mer chaining, which
allows to reduce the time footprint of the multiple sequence alignments.
This segmentation strategy thus allows to compute scalable multiple
sequence alignments. In particular, it allows CONSENT to efficiently
scale to ONT ultra-long reads.

Our experiments show that CONSENT compares well to the latest
state-of-the-art self-correction methods, and even outperforms them
on real ONT datasets. In particular, they show that CONSENT is the
only method able to efficiently scale to the correction of ONT ultra-
long reads, and is able to perform correction on a full human dataset,

containing reads reaching lengths up to 1.5 Mbp in 15 days.
Additionally, CONSENT is also able to polish assemblies generated

from raw long reads. Our experiment on a full human dataset shows
that assembling the raw data and polishing the assembly is less time
consuming than assembling the corrected data, while offering better
results. Our experiments also show that CONSENT outperforms state-
of-the-art assembly polishing tools in terms of resource consumption,
while providing comparable results.

2 Methods

2.1 Overview

CONSENT takes as input a FASTA file of long reads, and returns a
set of corrected long reads, reporting corrected bases in uppercase,
and uncorrected bases in lowercase. Like most efficient methods,
CONSENT starts by computing overlaps between the long reads using
a mapping approach. These overlaps are computed using an external
program, and not by CONSENT itself. This way, only matched regions
need to be further aligned in order to compute consensus. These
matched regions are then divided into smaller windows, that are aligned
independently. The alignment of these windows is performed via a
multiple sequence alignment strategy based on partial order graphs. This
multiple sequence alignment is computed by iteratively constructing and
adding sequences to a DAG. It also benefits from an efficient heuristic,
based on k-mer chaining, allowing to reduce the time footprint of
computing multiple sequence alignments between noisy sequences. The
DAG is then used to compute the consensus of the window it originates
from. Once the consensus has been computed, a second step makes use
of a local de Bruijn graph, in order to further polish it. This allows to
correct weakly supported regions, that are, regions containing weak k-
mers, and thus reduce the final error rate of the consensus. Finally, the
consensus is realigned to the read, and correction is performed for each
window. CONSENT’s workflow is summarized in Figure 1.

2.2 Definitions

Before presenting the CONSENT pipeline, we recall the notions of
alignment piles and windows on such piles, as proposed in Daccord,
since we rely on these throughout the rest of the paper.

2.2.1 Alignment piles
An alignment pile represents a set of reads that overlap with a given
read A. More formally, it can be defined as follows. For any given
read A, we define an alignment pile for A as a set of alignment tuples
(A,R,Ab,Ae,Rb,Re, S) where R is a long read id, Ab and Ae

represent respectively the start and the end positions of the alignment on
A, Rb and Re represent respectively the start and the end positions of
the alignment on R, and S indicates whether R aligns forward (S = 0)
or reverse complement (S = 1) toA. One can remark that this definition
is slightly different from that of Daccord. In particular, Daccord adds
an edit script to each tuple, representing the sequence of edit operations
needed to transform A[Ab..Ae] into R[Rb..Re] if S = 0, or into
R[Rb..Re] if S = 1 (where R represents the reverse-complement of
read R). This edit script can easily be retrieved by Daccord, as it relies
on DALIGNER [22] to compute actual alignments between the long
reads. However, as CONSENT relies on a mapping strategy, it does not
have access to such information, and we thus chose to exclude the edit
script from our definition of a tuple. In its alignment pile, we call the
read A the template read. The alignment pile of a given template read
A thus contains all the necessary information needed for its correction.
An example of an alignment pile is given in Figure 2.
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Fig. 1: Overview of CONSENT’s workflow for long read error correction.

A

R1 R2

R3 R4

R5 R6

Fig. 2: An alignment pile for a template read A. The pile is delimited
by vertical lines at the extremities of A. Prefixes and suffixes of reads
overlapping A outside of the pile are not considered during the next
steps, as the data they contain will not be useful for correcting A.

2.2.2 Windows on alignment piles
In addition to the notion of alignment piles, Daccord also underlined the
interest of processing windows from these piles instead of processing
them as a whole. A window from an alignment pile is defined as follows.
Given an alignment pile for a template read A, a window of this pile
is a couple (Wb,We), where Wb and We represent respectively the
start and the end positions of the window on A, and are such as 0 ≤
Wb ≤We < |A| (i.e. the start and end positions of the window define
a factor of the template read A). We refer to this factor as the window’s
template. Additionally, in CONSENT, only windows having the two
following properties are processed for correction:

• We −Wb + 1 = L (i.e. windows have a fixed size)
• ∀i, Wb ≤ i ≤We, A[i] is supported by at least C reads of the pile,

including A (i.e. windows have a minimum coverage threshold)

This second property allows to ensure that CONSENT has sufficient
evidence to compute a reliable consensus for each window it processes.
Examples of windows CONSENT does and does not process are given
in Figure 3.

In the case of Daccord, this window strategy allows to build local
de Bruijn graphs with small values of k, and overcome the high error
rates of the long reads, which cause issues when using large values of
k [4]. More generally, processing windows instead of whole alignment
piles allows to divide the correction problem into smaller subproblems
that can be solved faster. Specifically, in our case, as we seek to correct
long reads by computing multiple sequence alignments, working with
windows allows to save both time and memory, since the sequences that
need to be aligned are significantly shorter.

2.3 Overlapping

To avoid prohibitive computation time and memory consuming full
alignments, CONSENT starts by overlapping the long reads using a
mapping approach. By default, this step is performed with the help of
Minimap2 [16]. However, CONSENT is not dependent on Minimap2,
and the user can compute the overlaps with any other method, as long as
the overlaps file follows the PAF format. We included Minimap2 as the
default overlapper for CONSENT, since it offers good performances,
and is thus able to scale to large organisms on reasonable setups.

A

R1 R2

R3 R4

R5 R6

Fb Fe

L

Wb We

L

Fig. 3: When fixing the length toL and the minimum coverage threshold
to 4, the window (Wb,We) will be processed by CONSENT. With
these same parameters, the window (Fb, Fe) will not be processed by
CONSENT, as A[i] is not supported by at least 4 reads ∀Fb ≤ i ≤ Fe.

2.4 Alignment piles and windows computation

The alignment piles are computed by parsing the PAF file generated
by the overlapper during the previous step. Each line indeed contains
all the necessary information to define a tuple from an alignment pile.
It includes the identifiers of the two long reads, the start and the end
positions of their overlap, as well as the orientation of the second read
relatively to the first. Moreover, for each alignment pile, CONSENT
only includes the N highest identity overlaps (N = 150 by default,
although it can be user-specified), in order to reduce the time footprint,
and avoid computing costly multiple sequence alignments of numerous
sequences.

Given an alignment pile for a read A, we can then compute its set of
windows. To this aim, we use an array of length |A|, which counts how
many times each nucleotide of A is supported. We initialize the array
with 1s at each position, and for each tuple (A,R,Ab,Ae,Rb,Re, S),
we increment values at positions i such as Ab ≤ i ≤ Ae. After
processing all the tuples, we retrieve the positions of the piles by
finding, in the array, sketches of length L of values ≥ C. We search
for such sketches because CONSENT only processes windows of fixed
length and with a minimum coverage threshold. In practice, we extract
overlapping windows instead of partitioning the pile into a set of non-
overlapping windows. Indeed, since it is usually harder to exploit
alignments located on sequences extremities, consensus sequence might
be missing at the extremities of some windows. Such events would
thus cause a lack of correction on the reads, and using overlapping
windows allows to overcome the issue. Each window is then processed
independently during the next steps. Moreover, the reads are loaded into
memory to support random access and thus accelerate the correction
process. Each base is encoded using 2 bits in order to reduce memory
usage. The memory consumption is thus roughly 1/4 of the total size of
the reads.

2.5 Window consensus

We process each window in two distinct steps. First, we align the
sequences from the window using a multiple sequence alignment
strategy based on partial order graphs, in order to compute consensus.
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This multiple sequence alignment strategy also benefits from an efficient
heuristic, based on k-mer chaining, allowing to decompose the global
problem into smaller instances, thus reducing both time and memory
consumption. Second, after computing the window’s consensus, we
further polish it with the help of a local de Bruijn graph, at the scale
of the window, in order to get rid of the few errors that might remain
despite consensus computation.

2.5.1 Consensus computation
In order to compute the consensus of a window, CONSENT uses POAv2
[14], an implementation of a multiple sequence alignment strategy based
on partial order graphs. These directed acyclic graphs, store all the
information of the multiple sequence alignment. This way, at each
step (i.e. at each alignment of a new sequence), the graph contains
the current multiple sequence alignment result. To add a new sequence
to the multiple sequence alignment, the sequence is aligned to the DAG,
using a generalization of the Smith-Waterman algorithm.

Other methods usually compute 1V1 alignments between the read
to be corrected and other reads overlapping with it, and then build a
result DAG to summarize the alignments, and represent the multiple
sequence alignment. In contrast, CONSENT’s strategy allows us to
compute actual multiple sequence alignments, and to directly build
the DAG, during the alignment computation. Indeed, the DAG is first
initialized with the sequence of the window’s template, and is then
iteratively enriched by aligning the other sequences from the window,
until it becomes the final, result graph. We then extract a matrix,
representing the multiple sequence alignment, from the graph, and
compute consensus by performing a majority vote. When a tie occurs,
we chose the nucleotide from the window’s template as the consensus
base.

However, even on small windows, computing multiple sequence
alignments on hundreds of bases from dozens of sequences is
computationally expensive, especially when the divergence among
sequences is high. To avoid the burden of building a consensus by
computing full multiple sequence alignments, we search for collinear
regions shared by these sequences, in order to split the global task into
several smaller instances. We thus build several consensus on regions
delimited by anchors shared among the sequences, and reconstruct
the global consensus from the distinct, smaller consensus sequences
obtained. The rationale is to benefit from the knowledge that all the
sequences come from the same genomic area. This way, on the one hand,
we can compute multiple sequence alignments of shorter sequences,
which greatly reduces the computational costs. On the other hand, we
only use related sequences to build the consensus, and therefore exclude
spurious sequences. This behavior allows a massive speedup along with
an improvement in the global consensus quality.

To find such collinear regions, we first select k-mers that are
non-repeated in their respective sequences, and shared by multiple
sequences. We then rely on dynamic programming to compute the
longest anchors chain a1, . . . , an such as:

1. ∀i, j such that 1 ≤ i < j ≤ n, ai appears before aj in every
sequence containing ai and aj

2. ∀i, 1 ≤ i < n, there are at least T reads containing ai and ai+1

(with T a solidity threshold equal to 8 by default).

We therefore compute multiple, local consensus, using substrings
bordered by consecutive anchors, in sequences that contain them,
and are then able to reconstruct the global consensus of the window:
consensus(prefix) + ai + consensus(]a1, a2[) + a2 + · · · +
consensus(]an−1, an[)+an+consensus(suffix). We illustrate this
segmentation strategy in Supplementary Figures S1 (longest anchors
chain computation) and S2 (local consensus computation and global
consensus reconstruction).

2.5.2 Consensus polishing
After processing a given window, a few erroneous bases might remain
on the computed consensus. This might happen in cases where the
coverage depth of the window is relatively low, and thus cannot yield
a high-quality consensus. Consequently, we propose an additional,
second correction phase, that aims at polishing the consensus obtained
during the previous step. This allows CONSENT to further enhance its
quality, by correcting weakly supported k-mers. This feature is related
to Daccord’s local de Bruijn graph correction strategy.

First, a local de Bruijn graph is built from the window’s sequences,
using only small, solid, k-mers. The rationale is that smallk-mers allows
CONSENT to overcome the classical issues encountered due to the high
error rate of the long reads, when using large k values. CONSENT then
searches for regions only composed of weakk-mers, flanked by sketches
of n (usually, n = 3) solid k-mers. Afterwards, CONSENT attempts to
find a path allowing to link a solid k-mer from the left flanking region to
a solid k-mer from the right flanking region. We call these solid k-mers
anchors. The graph is thus traversed, in order to find a path between
two anchors, using backtracking if necessary. If a path between two
anchors is found, the region containing the weak k-mers is replaced by
the sequence dictated by this path. If none of the anchors pairs can be
linked, the region is left unpolished. To polish sketches of weak k-mers
located at the left (respectively right) extremity of the consensus, highest
weighted edges of the graph are followed, until the length of the path
reaches the length of the region to polish, or no edge can be followed
out of the current node.

2.6 Read correction via window consensus alignment

Once the consensus of a window has been computed and polished,
we need to realign it to the template, in order to actually perform
correction. To this aim, we use an optimized library of the Smith-
Waterman algorithm [33]. To avoid time-costly alignment, we locally
align the consensus around the positions of the window it originates
from. This way, given a window (Wb,We) of the alignment pile of the
read A, its consensus will be aligned to A[Wb −O..We +O], where
O represents the length of the overlap between consecutive windows
processed by CONSENT (O = 50 by default, although it can be user-
specified). Aligning the consensus outside of the original window’s
extremities as such allows to take into account the error profile of the
long reads. Indeed, as insertions and deletions are predominant in long
reads, it is likely that a consensus could be longer than the window it
originates from, thus spanning outside of this window’s extremities.

In the case alignment positions of the consensus from the ith window
overlap with alignment positions of the consensus from the (i + 1)th
window, we compute the overlapping sequences of the two consensus.
The one containing the largest number of solid k-mers (where the k-
mer frequencies of each sequence are computed from the window their
consensus originate from) is chosen and kept as the correction. In the
case of a tie, we arbitrarily chose the sequence from the (i + 1)th
consensus as the correction. We then correct the aligned factor of the
long read by replacing it with the aligned factor of the consensus.

3 Experimental results

3.1 Impact of the segmentation strategy

Before comparing CONSENT to state-of-the-art self-correction tools,
we first validate our segmentation strategy. To this aim, we simulated
a 50x coverage of long reads from E.coli, with a 12% error rate,
using SimLoRD [28]. The following parameters were used for
the simulation: –probability-threshold 0.3 –prob-ins

0.145 –prob-del 0.06, and –prob-sub 0.02. We then ran
the CONSENT pipeline, with, and without the segmentation strategy.
Results of this experiment are given in Table 1. We obtained these results
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using ELECTOR [18], a tool specifically designed to precisely measure
correction accuracy on simulated data. In particular, ELECTOR outputs
metrics such as recall, precision, and error rate before and after
correction. These results show that, in addition to being 47x faster
than the regular MSA implementation, our segmentation strategy also
allows us to reach slightly lower memory consumption, as well as
higher quality. In particular, the post-correction error rate is divided
by 1.77, and the precision increases by almost 0.15% when using the
segmentation strategy. This gain in quality can be explained by the fact
that our segmentation strategy allows to get rid of spurious sequence
and thus to compute more accurate alignments and consensus.

Without segmentation With segmentation
Throughput 214,836,958 215,702,126
Error rate (%) 0.3394 0.1915
Recall (%) 99.9711 99.9790
Precision (%) 99.6659 99.8115
Runtime 5 h 31 min 7 min
Memory (MB) 750 675

Table 1. Comparison of the results produced by CONSENT, with and without
our segmentation stategy, as reported by ELECTOR. Using the segmentation
strategy allows a 47x speed-up, while producing a slightly higher quality
correction.

3.2 Comparison to the state-of-the-art

We now compare CONSENT against state-of-the-art error correction
methods. We include the following tools in the benchmark: Canu,
Daccord, FLAS, and MECAT. We voluntarily exclude LoRMA from the
comparison, as it tends to aggressively split the reads, and thus produce
reads that are usually shorter than 900 bp. We however report LoRMA’s
result in Supplementary Tables S3 and S4. We also exclude hybrid error
correction tools from the benchmark, as we believe it makes more sense
to only compare self-correction tools. We performed experiments both
on simulated and real data. Comparison on simulated data is presented
in Section 3.2.2, and comparison on real data in Section 3.2.3. Datasets
used for the different experiments are presented in Section 3.2.1. We
ran all tools with default or recommended parameters. For CONSENT,
we set the minimum support to define a window to 4, the window size
to 500, the overlap size between consecutive windows to 50, the k-mer
size used for chaining and polishing to 9, the solidity threshold for k-
mers to 4, and the solidity threshold for the anchors chain computation
to 8. Additionally, only windows for which at least two anchors could
be found during the segmentation algorithm were processed.

3.2.1 Datasets
For our experiments, we used both simulated PacBio and real ONT
long reads. PacBio reads were simulated with SimLoRD, using the same
parameters as in Section 3.1. We generated two datasets with a 12% error
rate for E. coli, S. cerevisiae and C. elegans: one with a 30x coverage, and
one with a 60x coverage, corresponding to typical sequencing depths
in current long reads experiments. As for the real ONT data, we used a
63x coverage dataset from D. melanogaster, and a 29x coverage from
H. sapiens chr 1, containing ultra-long reads, reaching lengths up to
340 kbp. Further details and accession numbers for all the datasets are
given in Supplementary Table S1. Details on the reference sequences
are given in Supplementary Table S2.

3.2.2 Comparison on simulated data
To precisely assess the accuracy of the different correction methods, we
first tested them on the simulated PacBio datasets. ELECTOR was used
to evaluate the correction accuracy of each method. Correction statistics

of all the aforementioned tools on the different datasets, along with their
runtime and memory consumption, are given in Table 2. For methods
having distinct, easily identifiable, steps for overlapping and correction
(i.e. Daccord, MECAT and CONSENT), we additionally report runtime
and memory consumption of these two processes apart. We ran all the
correction experiments on a computer equipped with 16 2.39 GHz cores
and 32 GB of RAM.

Daccord clearly performed the best in terms of throughput and
quality, outperforming all the other methods on the E. coli and the
S. cerevisiae datasets. However, the overlapping step, relying on actual
alignment of the long reads against each other, consumed high amounts
of memory, 3x to 11x more than CONSENT or MECAT mapping
strategies. As a result, Daccord could not scale to the C. elegans datasets,
DALIGNER reporting an error upon start, even when run on a cluster
node equipped with 128 GB of RAM. On the contrary, Canu displayed
the highest error rates on all the datasets, except on the C. elegans dataset
with a 30x coverage, but consumed relatively stable, low amounts of
memory. In particular, on the two C. elegans datasets, it displayed the
lowest memory consumption among all the other methods.

MECAT performed the best in terms of runtime, outperforming
all the other tools on all the datasets. Its overlapping strategy was
also highly efficient, and displayed the lowest memory consumption
among all the other strategies, on all the datasets. However, compared to
Minimap2 (the overlapping strategy adopted in CONSENT) MECAT’s
overlapping strategy displayed higher runtimes, although it remained
faster than Daccord’s DALIGNER. Minimap2’s memory consumption,
however, was larger than that of MECAT’s overlapping strategy, on all
the datasets. The memory consumption of Minimap2 can nonetheless
easily be reduced, at the expense of a slightly larger runtime, by
decreasing the size of the index used for computing the overlaps, which
CONSENT sets to 1 Gbp by default.

Compared to both FLAS and CONSENT, MECAT displayed lower
throughputs on all the datasets. As for FLAS, this can be explained
by the fact that it is a MECAT wrapper, allowing to retrieve additional
overlaps, and thus correct a greater number long reads. As a result,
since it relies on MECAT’s error correction strategy, FLAS displayed
highly similar memory consumption. Runtime was however higher, due
to the additional steps allowing to retrieve supplementary overlaps, and
to the resulting higher number of reads to correct. Throughputs and
error rates of FLAS and CONSENT were highly similar on all the
datasets, varying by 0.1% at most, on the S. cerevisiae dataset with
a 30x coverage. Runtimes were also comparable on the E. coli and S.
cerevisiae datasets. However, on the C. elegans datasets, CONSENT
displayed higher runtimes. As for the memory consumption of the error
correction step, CONSENT was less efficient than MECAT on most
datasets. This can be explained by the fact that CONSENT loads the
correction jobs into a thread pool of default size 100,000. Reducing
the size of the thread pool would allow CONSENT to consume less
memory, at the expense of a slightly higher runtime.

3.2.3 Comparison on real data
We then evaluated the different correction methods on larger, real ONT
datasets. For these datasets, we not only evaluate how well the corrected
long reads realign to the reference genome, but also how well they
assemble. For the alignment assessment, we report how many reads
were corrected, their throughput, their N50, the proportion of corrected
reads that could be aligned, the average identity of the alignments,
as well as the genome coverage, that is, the percentage of bases of
the reference genome to which at least a nucleotide aligned. For the
assembly assessment, we report the overall number of contigs, the
number of contigs that could be aligned, the NGA50 and NGA75, and,
once again, the genome coverage. We obtained alignment statistics using
ELECTOR’s second module, which performs alignment to the reference
genome with Minimap2. We performed assemblies using Minimap2 and
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Overlapping Correction Total
Dataset Corrector Throughput (Mbp) Error rate (%) Recall (%) Precision (%) Runtime Memory (MB) Runtime Memory (MB) Runtime Memory (MB)

E
. c

ol
i3

0x

Original 140 12.2862 _ _ N/A N/A N/A N/A N/A N/A
Canu 130 0.4156 99.7647 99.5887 _ _ _ _ 19 min 4,613
Daccord 131 0.0248 99,9965 99,9757 1 min 6,813 13 min 639 14 min 6,813
FLAS 130 0.2720 99.9291 99.7385 _ _ _ _ 12 min 1,639
MECAT 107 0.2569 99.9302 99.7533 25 sec 1,600 1 min 14 sec 1,083 1 min 39 sec 1,600
CONSENT 130 0.3350 99.9419 99.6701 19 sec 2,212 16 min 08 sec 534 16 min 27 sec 2,212

E
. c

ol
i6

0x

Original 279 12.2788 _ _ N/A N/A N/A N/A N/A N/A
Canu 219 0.7404 99.4781 99.2658 _ _ _ _ 24 min 3,674
Daccord 261 0.0214 99.9971 99.9790 3 min 18,450 51 min 1,191 54 min 18,450
FLAS 260 0.1547 99.9546 99.8526 _ _ _ _ 38 min 2,428
MECAT 233 0.1714 99.9547 99.8362 1 min 2,387 4 min 1,553 5 min 2,387
CONSENT 259 0.1800 99.9801 99.8229 1 min 4,913 36 min 1,759 37 min 4,913

S.
ce

re
vi

si
ae

30
x Original 371 12.283 _ _ N/A N/A N/A N/A N/A N/A

Canu 226 1.1052 99.1766 98.9036 _ _ _ _ 29 min 3,681
Daccord 348 0.1259 99.9874 99.8762 7 min 31,798 1 h 12 min 3,487 1 h 19 min 31,798
FLAS 344 0.3272 99.9131 99.6843 _ _ _ _ 29 min 2,935
MECAT 285 0.3040 99.9160 99.7072 1 min 2,907 4 min 1,612 5 min 2,907
CONSENT 344 0.4258 99.9296 99.5807 1 min 5,514 46 min 1,500 47 min 5,514

S.
ce

re
vi

si
ae

60
x Original 742 12.2886 _ _ N/A N/A N/A N/A N/A N/A

Canu 599 0.7919 99.4488 99.2148 _ _ _ _ 1 h 11 min 3,710
Daccord 695 0.0400 99.9928 99.9606 10 min 32,190 2 h 16 min 1,160 2 h 26 min 32,190
FLAS 689 0.2034 99.9418 99.8049 _ _ _ _ 1 h 30 min 4,984
MECAT 616 0.2088 99.9428 99.7996 4 min 4,954 12 min 2,412 16 min 4,954
CONSENT 688 0.2812 99.9582 99.7231 2 min 11,335 1 h 47 min 4,735 1 h 49 min 11,335

C
. e

le
ga

ns
30

x

Original 3,006 12.2806 _ _ N/A N/A N/A N/A N/A N/A
Canu 2,773 0.5008 99.7103 99.5040 _ _ _ _ 9 h 09 min 6,921
Daccord _ _ _ _ _ _ _ _ _ _
FLAS 2,729 0.7613 99.8613 99.2541 _ _ _ _ 3 h 07 min 10,565
MECAT 2,084 0.3908 99.8903 99.6212 27 min 10,535 21 min 2,603 48 min 10,535
CONSENT 2,787 0.6720 99.8970 99.3378 16 min 16,772 7 h 39 min 5,304 7 h 55 min 16,772

C
. e

le
ga

ns
60

x

Original 6,024 12.2825 _ _ N/A N/A N/A N/A N/A N/A
Canu 5,112 0.7934 99.4573 99.2131 _ _ _ _ 9 h 30 min 7,050
Daccord _ _ _ _ _ _ _ _ _ _
FLAS 5,584 0.3997 99.9175 99.6104 _ _ _ _ 10 h 45 min 13,682
MECAT 4,938 0.2675 99.9258 99.7415 1 h 28 min 10,563 1 h 15 min 3,775 2 h 43 min 10,563
CONSENT 5,586 0.3806 99.9489 99.6254 57 min 15,607 18 h 16 min 7,887 19 h 13 min 15,607

Table 2. Metrics output by ELECTOR on the simulated PacBio datasets. Daccord results are missing for the two C. elegans datasets, as DALIGNER failed to
perform alignment, reporting an error upon start, even when ran on a cluster node with 28 2.4 GHz cores and 128 GB of RAM. Recall and precision are not
reported for original reads, since they cannot be computed from uncorrected reads.

Miniasm [15], and obtained statistics with QUAST-LG [20]. Results
are given in Table 3 for the alignment assessment, and in Table 4
for the assembly assessment. Runtimes and memory consumption of
the different methods are also given in Table 3. As for the simulated
data, we report runtime and memory consumption of the overlapping
and correction steps apart, when possible. We ran all the correction
experiments on a cluster node equipped with 28 2.39 GHz cores and
128 GB of RAM.

On these two datasets, Daccord failed to run, as DALIGNER could
not perform alignment, for the same reason as for the simulated C.
elegans datasets. CONSENT corrected the largest number of reads,
and reached the highest alignment identity on the two datasets. Its
N50 was also higher than that of all the other methods, except Canu.
CONSENT also reached the highest throughput, and the largest genome
coverage, for the two datasets. When it comes to runtime and memory
consumption, MECAT once again outperformed all the other methods,
as in the experiments on simulated data. Moreover, it reached the highest
proportion of aligned reads, on both datasets. However, CONSENT was
close, since only 1.14-1.25% fewer reads could be aligned.

Moreover, on the H. sapiens (chr 1) dataset, CONSENT and Canu
were the only tools able to deal with ultra-long reads. Indeed, other
methods reported errors when attempting to correct the original dataset.
As a result, in order to allow these methods to perform correction, we
had to manually remove the reads longer than 50 kbp. There were 1,824
such reads, accounting for a total number of 135,364,312 bp. However,
even if it managed to scale to the correction of ultra-long reads, Canu
was almost four times slower than CONSENT, making CONSENT the
only tool to efficiently scale to ultra-long reads.

On the D. melanogaster dataset, the assembly yielded from Canu
corrected reads slightly outperformed all the other assemblies in terms
of genome coverage. However, it was composed of a higher number of
contigs compared to all the other assemblies, except the one obtained
from the raw reads. The assembly obtained from CONSENT corrected
reads outperformed all the other assemblies in terms of NGA50, NA75
as well as error rate per 100 kbp. The genome coverage of the CONSENT
assembly was also slightly larger than that of FLAS and MECAT.

On the H. sapiens (chr 1) dataset, the assembly obtained from
CONSENT corrected reads outperformed all the other assemblies in
terms of number of contigs, NGA50, and NGA75. In particular, the
NGA50 of the CONSENT assembly was almost 700 kbp larger than that
of other assemblies. However, 11 contigs of the CONSENT assembly
could not be aligned to the reference. As a result, compared to the
assemblies obtained from FLAS and MECAT corrected reads, the
assembly yielded from the CONSENT corrected reads covered 4% less
of the reference sequence, and displayed a higher error rate per 100
kbp. These unaligned contigs and differences could likely be reduced
by further adapting both CONSENT and Miniasm parameters.

3.3 Assembly polishing

As an additional feature, CONSENT also allows to perform assembly
polishing. The process is pretty straightforward. Indeed, instead of
computing overlaps between the long reads, as presented in the previous
sections, overlaps are simply computed between the assembled contigs
and the long reads used for the assembly. The rest of the pipeline remains
the same. We present assembly polishing results on the simulated E.
coli, S. cerevisiae, and C. elegans datasets with a 60x coverage, as
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Dataset Corrector
Number

Throughput (Mbp) N50 (bp)
Aligned Alignment Genome Overlapping Correction Total

of reads reads (%) identity (%) coverage (%) Runtime Memory (MB) Runtime Memory (MB) Runtime Memory (MB)
D

. m
el

an
og

as
te

r Original 1,327,569 9,064 11,853 85.52 85.43 98.47 N/A N/A N/A N/A N/A N/A
Canu 829,965 6,993 12,694 98.05 95.20 97.89 _ _ _ _ 14 h 04 min 10,295
Daccord _ _ _ _ _ _ _ _ _ _ _ _
FLAS 855,275 7,866 11,742 95.65 94.99 98.09 _ _ _ _ 10 h 18 min 18,820
MECAT 827,490 7,288 11,676 99.87 96.52 97.34 28 min 13,443 1 h 26 min 7,724 1 h 54 min 13,443
CONSENT 1,096,046 8,299 12,167 98.62 97.10 98.22 1 h 07 min 31,284 15 h 58 min 5,655 17 h 05 min 31,284

H
.s

ap
ie

ns
(c

hr
1) Original 1,075,867 7,256 10,568 88.24 82.40 92.46 N/A N/A N/A N/A N/A N/A

Canu 717,436 5,605 11,002 97.60 90.40 92.33 _ _ _ _ 22 h 06 min 12,802
Daccord _ _ _ _ _ _ _ _ _ _ _ _
FLAS1 670,708 5,695 10,198 99.06 91.00 92.37 _ _ _ _ 4 h 57 min 14,957
MECAT1 655,314 5,479 10,343 99.95 91.69 91.44 26 min 11,075 1 h 27 min 4,591 1 h 53 min 11,075
CONSENT 893,736 6,477 10,823 98.81 92.87 92.38 22 min 17,350 8 h 08 min 4,694 8 h 30 min 17,350

Table 3. Statistics of the real long reads, before and after correction with the different methods.
1 Reads longer than 50 kbp were filtered out, as ultra-long reads caused the programs to stop with an error. There were 1,824 such reads in the original dataset,
accounting for a total number of 135,364,312 bp.
Daccord could not be run on these two datasets, due to errors reported by DALIGNER.

Dataset Corrector Contigs Aligned contigs (%) NGA50 (bp) NGA75 (bp) Genome coverage (%) Errors / 100 kbp

D
.m

el
an

og
as

te
r Original 423 96.45 864,011 159,590 83.22 10,690

Canu 410 92.93 2,757,690 822,577 92.95 1,896
Daccord _ _ _ _ _ _
FLAS 407 98.53 1,123,346 363,017 92.16 2,736
MECAT 310 99.68 1,414,076 480,297 92.02 1,731
CONSENT 348 98.56 4,081,831 958,935 92.06 1,549

H
. s

ap
ie

ns
(c

hr
1) Original 201 93.53 1,008,692 _ 77.52 11,318

Canu 361 98.61 946,029 245,015 94.85 4,689
Daccord _ _ _ _ _ _
FLAS 237 100.00 1,698,601 289,968 94.97 4,404
MECAT 259 100 1,378,242 287,113 94.89 3,413
CONSENT 166 93.37 2,385,471 580,981 91.76 4,669

Table 4. Statistics of the assemblies generated from the raw and corrected long reads.
As previously mentioned, Daccord results on the two datasets are absent, since it could not be run.
For the assembly of the original reads on the H. sapiens (chr 1) dataset, QUAST-LG did not provide a metric for the NGA75.

well as on the real D. melanogaster and H. sapiens (chr 1) datasets.
We compare CONSENT to RACON [30], a state-of-the-art assembly
polishing method. Results are presented in Table 5.

These results show that CONSENT outperformed RACON in terms
of quality of the results, especially dealing better with errors, and thus
greatly reducing the error rate per 100 kbp, on the E. coli, S. cerevisiae,
and C. elegans datasets. Moreover, the NGA50, NGA75 and genome
coverage of CONSENT were highly similar to those of RACON on
these three datasets.

For the larger, eukaryotic D. melanogaster dataset, RACON
outperformed CONSENT in terms of error rate and genome coverage,
but the NGA50, NGA75 of the two methods remained comparable.
On the H. sapiens (chr 1) dataset, RACON once again outperformed
CONSENT in terms of error rate and genome coverage, and also
displayed larger NGA50 and NGA75. However, polishing the assembly
with CONSENT allowed to align a greater proportion of contigs,
compared to both the raw and the RACON polished assembly.
Additionally, on all the datasets, CONSENT was 2x to 11x faster than
RACON, and also consumed up to three times less memory.

3.4 Results on a full human dataset

To further validate the scalability of CONSENT, we present results on a
full ONT human dataset. This dataset is composed of 113 Gbp, displays
an error rate of 17%, and contains ultra-long reads reaching lengths up
to 1.5 Mbp. Further details are given in Supplementary Table S1.
In this experiment, we not only evaluate how CONSENT behaves on
such a large dataset, but also study the impact of the correction /

assembly order on the quality of the results. We thus correct the raw
data with CONSENT, and then assemble the corrected long reads, but
also assemble the raw long reads first, and then polish the assembly with
CONSENT. Alignment statistics of the raw and corrected long reads
are presented in Table 6, while statistics of the different assemblies are
presented in Table 7.

Alignment statistics of Table 6 show that CONSENT managed to
process the whole dataset in 15 days, and required less than 100 GB of
RAM. More precisely, the more computationally expensive step, both in
terms of runtime and memory consumption, was actually the overlaps
computation, and not the error correction itself. The corrected reads
displayed a higher N50 than the raw reads, the longest read reaching
929 kbp, and almost 99% of them could be realigned to the reference
genome. The average identity of the alignments reached more than
93.5%, which is slightly higher, but consistent with the results on chr 1,
presented in Table 3. Moreover, CONSENT managed to correct a large
number of reads, and thus barely reduced the genome coverage of the
original dataset.

Assemblies statics of Table 7 are particularly interesting. Indeed,
they show that, in addition to being extremely more computationally
expensive, correcting the reads before assembling them produces less
satifying results than assembling the raw reads first, and then polishing
the assembly. Indeed, the correction + assembly pipeline required more
than 22 days and 1 TB of RAM, while the assembly + polishing pipeline
ran in less than 8 days, and consumed less than 400 GB of RAM.
In addition, the polished assembly displayed better metrics than the
assembly generated from corrected reads, reaching higher NGA50,
NGA75, and genome coverage, and lower error rate per 100 kbp. These
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Dataset Method Contigs Aligned contigs (%) NGA50 (bp) NGA75 (bp) Genome coverage (%) Errors / 100 kbp Runtime Memory (MB)
Original 1 100.00 4,939,014 4,939,014 99.91 10,721 N/A N/A

E. coli 60x RACON 1 100.00 4,663,914 4,663,914 99.90 499 5 min 55 sec 643
CONSENT 1 100.00 4,637,850 4,637,850 99.91 117 33 sec 971
Original 29 100.00 579,247 456,470 96.14 10,694 N/A N/A

S. cerevisiae 60x RACON 29 100.00 539,472 346,116 96.09 637 15 min 47 sec 1,703
CONSENT 29 100.00 532,246 332,862 96.07 208 3 min 30 1,336
Original 47 100.00 5,201,998 2,511,520 99.78 10,974 N/A N/A

C. elegans 60x RACON 47 97.87 6,405,523 2,726,529 99.74 819 2 h 24 min 14,288
CONSENT 47 97.87 6,336,755 2,699,456 99.72 410 14 min 4,379
Original 423 96.45 864,011 159,590 83.20 10,690 N/A N/A

D. melanogaster RACON 422 98.34 1,446,703 552,532 93.03 961 3 h 29 min 19,508
CONSENT 422 98.82 1,235,674 449,364 91.94 2,240 1 h 51 min 5,814
Original 201 93.53 1,008,692 _ 77.52 11,318 N/A N/A

H. sapiens (chr 1) RACON 201 97.01 3,481,900 1,282,763 95.69 2,393 2 h 30 min 16,202
CONSENT 201 97.57 3,283,830 891,052 93.88 4,805 59 min 7,101

Table 5. Statistics of the assemblies, before and after polishing with RACON and CONSENT.
The missing contig for the CONSENT and RACON polishings on the D. melanogaster dataset is 428 bp long, and could not be polished, due to the window
size of the two methods being larger (500).

Corrector
Number

Throughput (Mbp) N50 (bp)
Aligned Alignment Genome Overlapping Correction Total

of reads reads (%) identity (%) coverage (%) Runtime Memory (MB) Runtime Memory (MB) Runtime Memory (MB)
Original 15,243,243 112,970 12,196 80.57 82.74 93.56 N/A N/A N/A N/A N/A N/A
CONSENT 11,913,704 102,165 12,826 98.43 93.66 93.33 8 days 11 h 98,324 6 days 15 h 46,397 15 days 2 h 98,324

Table 6. Statistics of the full H. sapiens dataset, before and after correction with CONSENT.

results underline the fact that, for large datasets and complex genomes,
assembling the raw data first, and then polishing the assembly is much
more efficient than correcting the reads and then performing assembly.

4 Discussion and future works
Experimental results on the human datasets are particularly promising.
Indeed, they show that CONSENT is the only method able to efficiently
scale to the ultra-long reads they contain. More precisely, on the human
chr 1 dataset, CONSENT is almost four times faster than Canu, the
only other method able to scale to the correction of ultra-long reads.
Moreover, it also produces more accurate results, and thus allows
to yield a more contiguous assembly. As such reads are expected to
become more widely available in the future, being able to deal with
them will soon become a necessity. In addition, results on the complete
human dataset show that CONSENT manages to efficiently process such
large datasets in 15 days, using less than 100 GB of RAM. Moreover,
this memory consumption could easily be reduced by adapting the
parameters of Minimap2, and reducing the size of the thread pool used
during the actual correction step. At the expense of an increased runtime,
CONSENT could thus process a full human dataset on a simple laptop.
Further experiments should therefore focus on the correction of larger
and more complex organisms. However, the runtime of CONSENT’s
correction step tends to be higher than that of other state-of-the-art
methods. We discuss how to further reduce these computational costs
below.

Our experiments show that the runtime of the correction step tends to
rise according to the complexity of the genome. This can be explained by
the highest proportion of repeated regions in more complex genomes.
Such repeated regions indeed impact the alignment piles coverages,
and could therefore lead to the processing of piles having very deep
coverages. For such piles, our strategy of only selecting the N highest
identity overlaps might prove inefficient, especially when the length
of the repeated regions grows longer. To further refine the overlaps
selection, we could use a validation strategy similar to that of HALC.
Such a strategy would allow us to only consider sequences from the pile
that actually come from the same genomic region as the long read we
are attempting to correct. This would, in turn, allow us to ensure the
selected sequences display low divergence, which would speed up the

multiple sequence alignment computation, while allowing to produce
higher quality consensus.

Moreover, further optimization of the parameters shall also be
considered. In particular, the window size and the minimum number
of anchors to allow the processing of a window significantly impact the
runtime. Running various experiments with different sets of parameters
could therefore allow us to find a satisfying compromise between
runtime and quality of the results. The fact that the CONSENT assembly
covers a smaller proportion of the reference sequence also gives us
further room for improvement. In particular, looking to the unaligned
contigs more into details could help us further improve the mechanisms
and principles of CONSENT. Another possible improvement would be
to consider multiple k-mer size for the k-mer chaining strategy. By
selecting the best possible chaining according to the coverage or the
repetitive elements of a given window, the method could be more robust
and more efficient by computing smaller multiple sequence alignments.

Finally, it is essential to note that, as mentioned in Section 2.3,
CONSENT uses Minimap2 as its default overlapper, but does not depend
on this tool. As a result, CONSENT will benefit from the progress of
future overlapping strategies, and will therefore allow to propose better
correction quality as the overlapping methods evolve.

5 Conclusion
We presented CONSENT, a new self-correction method for long reads
that combines different efficient strategies from the state-of-the-art.
CONSENT starts by computing overlaps between the long reads to
correct. It then divides the overlapping regions into smaller windows,
in order to compute multiple sequence alignments, and consensus
sequences of each window independently. These multiple sequence
alignments are performed using a method based on partial order graphs,
allowing to perform actual multiple sequence alignment. This method
is combined to an efficient k-mer chaining strategy, which allows to
further divide the multiple sequence alignments into smaller instances,
and thus significantly reduce computation times. After computing the
consensus of a given window, it is further polished with the help of a
local de Bruijn graph, at the scale of the window, in order to further
reduce the final error rate. Finally, the polished consensus is locally
realigned to the read, in order to correct it.
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Assembly Contigs Aligned contigs (%) NGA50 (bp) NGA75 (bp) Genome coverage (%) Errors / 100 kbp Runtime Memory (MB)
Raw 750 95.47 534,347 _ 69.83 11,175 2 days 20 h 382,191
Corrected 911 97.69 1,837,315 _ 77.36 5,862 22 days 2 h 1,058,085
Polished 749 98.13 2,869,858 176,799 83.63 4,654 7 days 15 h 382,191

Table 7. Statistics of the different assemblies for the full H. sapiens dataset. Raw corresponds to the assembly generated from raw reads. Corrected corresponds
to the assembly generated from corrected reads. Polished corresponds to the assembly generated from raw reads, and polished with CONSENT. Runtime and
memory consumption are reported for the whole correction + assembly or assembly + polishing pipelines. QUAST-LG did not provide a metric for the NGA75
of the assembly generated from corrected reads.

Our experiments show that CONSENT compares well to, or even
outperforms, other state-of-the-art self-correction methods in terms of
quality of the results. In particular, CONSENT is the only method able
to efficiently scale to the correction of ONT ultra-long reads, and is able
to process a full human dataset containing reads reaching lengths up
to 1.5 Mbp in 15 days. Although very recent, such reads are expected
to further develop, and thus become more widely available in the near
future. Being able to deal with them will thus soon become a necessity.
CONSENT could therefore be the first self-correction method able to
be applied to such ultra-long reads on a greater scale.

CONSENT’s assembly polishing feature also offers promising
results. In particular, our experiment on a full human dataset shows
that assembling the raw reads and then polishing the assembly allows
to greatly reduce the computational costs, but also provides better
results than assembling the corrected reads. This conclusion raises
the question of the interest of long-read error correction in assembly
projects. Moreover, as the processes of long read correction and
assembly polishing are not much different from one another, one can
also wonder why more error correction tools do not offer such a feature.
It indeed seems to be affordable at the expense of minimal additional
work, while providing satisfying results. We believe that CONSENT
could open the doors to more error correction tools offering such a
feature in the future. Finally, it would also be interesting to evaluate
already published correction tools on their ability to polish assemblies,
at the expense of minimal modifications to their workflows.

The segmentation strategy introduced in CONSENT also shows that
actual multiple sequence alignments techniques are applicable to long,
noisy sequences. In addition to being useful for error correction, this
could also be applied to various other problems. For instance, it could
be used during the consensus steps of assembly tools, for haplotyping,
and for quantification problems. The literature about multiple sequence
alignment is vast, but lacks application on noisy sequences. We believe
that CONSENT could be a first work in that direction.
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