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22 Abstract

23 Foraging decisions must balance the energy gained, the time investment and the 

24 influence of key environmental factors. In our work, we aimed to examine the 

25 importance of predation risk cues and experience in the feeding efforts and decision-

26 making process when a novel food resource is presented. To achieve this, free ranging 

27 wood mice Apodemus sylvaticus were live-trapped in “Monte de Valdelatas” (Madrid) 

28 by setting 80 Sherman traps in 4 plots. Traps were subjected to two food access 

29 difficulties three-night consecutive treatments: open plastic bottles and closed bottles, 

30 both using corn as bait. To generate predation risk, we set fox faeces in half of the traps 

31 in each plot. Also, we considered indirect predator cues as the moon phase. We analyse 

32 whether mice had bitten the bottles and the area gnawed of each bottle was measured. 

33 We discovered that mice feeding decisions and efforts were driven by food access 

34 difficulty, experience and predation risk. The ability of mice to properly balance their 

35 energy budget was probed since they bit and performed bigger orifices in the closed 

36 bottles, hence, individuals can adapt the feeding effort when a new food source is 

37 available. Moreover, experience was determinant in the use of this new resource since 

38 recaptured mice gnawed the bottles more successfully and the skill was improved each 

39 time an individual was recaptured. Additionally, direct predation risk cues prompt mice 

40 to bite the bottles whereas the effect of different moon phases varied among the 

41 treatments. This is the first study that provides direct evidence of wild mice formidable 

42 efficacy to exploit a new nutrient resource while deepening in crucial environmental 

43 factors that shape decision-making procedure.

44 Keywords

45 Apodemus sylvaticus, food access, energy budget, predation risk, decision making, 

46 learning, moonlight
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47 Introduction

48 Wild animals must cope with unpredictable environmental demands. In this 

49 particular setting, choices made by animals when selecting food and regulating intake 

50 aim to satisfy their specific levels of nutrient requirements [1, 2, 3]. The variable time 

51 and space food availability challenge animals to select the type of food which best 

52 meets their nutrient demands and to evaluate if it counterbalances the energetic effort 

53 they have to make to obtain it [4]. These changeable environmental conditions have led 

54 to the development of a wide array of adaptations to efficiently satisfy the energetic 

55 requirements of all life forms [5, 6, 7], making possible for them to exploit and utilize 

56 heterogeneous food sources. The mechanisms which underlay feeding choices are rather 

57 diverse, being both endogenous and environmental factors involved in the decision 

58 process [8, 9, 10, 11, 12]. It is known that animals possess the ability to learn about the 

59 characteristics of the items in their diet and that feeding choices are experience 

60 dependent [12, 13, 14, 15, 16]. In this manner, experience and learning can provide 

61 animals the key to quickly adapt to this ever-changing environment by displaying novel 

62 feeding strategies when new food sources are present. 

63 On the other hand, there is persuasive evidence of predation risk influence on 

64 prey’s behaviour [16, 17, 18, 19, 20, 21], complicating the decision-making process 

65 even more when it comes to feeding opportunities. Prey animals possess the ability to 

66 estimate predation risk and adjust their behaviour to reduce the probability of being 

67 preyed [22, 23, 24], which is critical in habitats where the magnitude of threats is 

68 spatially and temporally mutable [25, 26, 27]. Chemosensory cues are of vital 

69 importance for predation risk assessment in mice [16, 28]. These chemical signals are 

70 crucial for prey species since it can alert them of the presence of any potential predators 

71 and procure information about their activity and diet [29], modulating daily activity 
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72 patterns [21, 30, 31] and feeding habits of preys [32]. Moreover, perceived predation 

73 risk can vary depending on environmental factors such as habitat complexity and 

74 moonlight [21, 33, 34]. The influence of moonlight on mammal’s behaviour and its 

75 relationship with predator-prey dynamics is well documented [35, 36, 37, 38, 39]. For 

76 rodents, bright nights increase detectability by predators and hence, predation risk. As a 

77 consequence, rodent species tend to decrease their activity near to full moon nights [20, 

78 40, 41, 42, 43]. Hence, for prey species, feeding strategies should be a trade-off between 

79 predation risk avoidance and the benefits of obtaining energy [19, 20, 44, 45, 46]. 

80 However, behaviours that maximize food intake often increases exposure to predation 

81 risk, so preys must gather all the environmental information, decide how to allocate 

82 resources and pursue the option which maximizes their fitness [47]. Therefore, properly 

83 balancing the energy budget should be an important selective force for the evolution of 

84 life-history traits.

85  The aim of this study was to analyse feeding efforts under restricted food access 

86 conditions in the wood mouse (Apodemus sylvaticus). Concretely, we focused on 

87 studying mice feeding behaviour when facing a new food resource with limited access 

88 and unravelling the importance of experience testing the ability to learn and develop 

89 new effective strategies in a brief period of time to maximize food obtaining. 

90 Furthermore, we also evaluated if feeding efforts performed under different food access 

91 restriction were conditioned by predation risk cues (predator faeces and moonlight). On 

92 one hand, we predicted that mice feeding efforts would be certainly influenced by the 

93 difficulty of the food access. We expected that individuals only would spend energy 

94 trying to gain access to food if it is necessary. Thus, mice facing an easier food access 

95 restriction should spend less energy trying to reach the bait than those ones facing a 

96 more complicated food access treatment. On the other hand, it was expected that 
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97 recaptured individuals would have developed a more efficient feeding technique, 

98 allowing them accessing food in an easier way than those ones which do not have 

99 previous experience with this kind of food resources. Finally, we also expected 

100 diminished food efforts in those traps treated with fox faeces and during brighter nights, 

101 due to a higher perceived predation risk causes a decrease in the activity of mice [20].

102

103 Materials and methods

104 Study area

105 The research was conducted in the “Monte de Valdelatas” (Madrid, Spain), a 

106 Mediterranean forest located at an altitude of 650 m a.s.l. The characteristic vegetation 

107 is forests of holm oak (Quercus ilex ballota) and scrubland (gum rock roses Cistus 

108 ladanifer, thyme Thymus zygis and umbel-flowered sun roses Halimium umbellatum). 

109 Wild predators are frequent in this habitat, being of importance the red fox (Vulpes 

110 Vulpes) and the common genet (Genetta genetta) [19, 48].

111

112 Live-trapping and data collection

113 Fieldwork was performed in March 2017-2018 in four plots with similar vegetation and 

114 composition. The distance between plots was 35 m to ensure that they were independent 

115 and that they corresponded to different mice populations [16, 28]. In each plot, 20 

116 Sherman® live traps were set in in a 4 x 5 grid with 7 m of distance among them [16, 

117 28]. Total trapping effort was 960 traps-night (20 traps x 4 plots x 3 nights x 2 food 

118 treatments x 2 trapping sessions). All traps were hidden under vegetation cover to 

119 protect animals from adverse weather conditions and bait was provided inside traps (see 
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120 details below). Traps were opened at sunset and data collection was daily started after 

121 the sunrise. 

122 All captured animals were identified to species by external morphology and each 

123 captured mouse was weighed with a scale (PESNET, 100 g, PESNET 60g). Sex and 

124 breeding condition were checked according to Gurnell and Flowerdew [46]. Sex was 

125 determined using the anal-genital distance, which is longer in males than in females. In 

126 breeding adult males, the testicles were bigger, whereas breeding adult females showed 

127 conspicuous nipples in the abdomen and thorax and the vaginal membrane appeared 

128 perforated. Harmless waterproof paints (Marking stick DFV, www.divasa-

129 farmavic.com) were used to mark captured individuals in non-conspicuous areas (e.g. 

130 ears, toes and tail) for discriminating recaptures [49]. Finally, all captured animals were 

131 immediately released after handling in the same place of capture.

132

133 Predation risk simulation 

134 To simulate predation risk, we used red fox faeces since this species is known to 

135 be present in the study area [19, 48] being one of the most common small mammal 

136 predators [50, 51]. Furthermore, red fox faeces have been previously demonstrated to 

137 elicit antipredatory responses effectively [19, 20, 28, 52]. Fresh faeces used for the 

138 treatment were obtained from captive red foxes (one male and one female) on a 

139 carnivorous diet from the Centro de Naturaleza Opennature Cañada Real (Peralejo, 

140 Madrid). We considered as fresh faeces only those ones with a layer of mucus, an 

141 elevated level of hydration and strong odour [53, 54], and all faecal samples were frozen 

142 at -20 ºC until treatment preparation. Seasonal and individual factors are known to 

143 influence volatile compounds variation among individuals [55, 56, 57, 58] so, to 
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144 guarantee homogenization (providing a similar degree of predation risk in all the treated 

145 traps, and therefore) and avoiding possible result bias, all collected red fox faeces were 

146 properly mixed.

147 In each plot, half of the traps were subjected to a predator odour treatment 

148 consisting in 2 g of fresh fox faeces. Within the 4x5 grids set in each plot, predator 

149 treatment was set on two non-consecutive rows (10 traps) while the other two rows (10 

150 traps) acted as controls (i.e. without predator faecal cues). In order to avoid the 

151 influence of border effects due to treatment distribution, control and predator treatment 

152 rows were alternated in each plot. The faecal material was placed on one side of the trap 

153 entrance to avoid blocking the entry for rodents but close enough to act as a potential 

154 predation risk cue (i.e. 3 cm approximately). Predator treatment was replaced every day 

155 at sunset to guarantee odour effectiveness when mice are more active, i.e. two or four 

156 hours after the dusk [59]. 

157 Regarding indirect predation risk cues, since mice are known to be more active 

158 when moonlight is dim due to a reduced predation risk perception [20, 40, 41, 60], we 

159 avoided trapping during high illuminated conditions (i.e. full moon phase and closer 

160 nights). Thus, live-trapping sessions were carried out under low (< 25%, new moon) 

161 and medium (25-54%, waxing crescent phase to the beginning of the first quarter) 

162 moonlight conditions. Moon percent illumination corresponding to each sampling night 

163 was downloaded from the AEMet website (National Meteorological Service, 

164 www.opendata.aemet.es). 

165

166  Food access experiments 
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167 All traps were subjected to two different consecutive food access treatments in which 

168 food access difficulty was experimentally manipulated using polyurethane plastic 

169 bottles of 6 cm length, 2,7 cm of total diameter and 2 cm of aperture diameter, baited 

170 with 5 g of toasted corn inside. First treatment (first three nights) consisted in opened 

171 plastic bottles inside all traps while for the second treatment (next three consecutive 

172 nights) all traps were provided with baited closed bottles (we performed ten 1 mm holes 

173 with a needle in order to allow mice to smell the bait). 

174 After trapping sessions, plastic bottles from the experiments were analysed in 

175 the laboratory to determine mice feeding efforts. For each bottle, we firstly confirmed 

176 mice handling through the presence or the absence of bite marks made by individuals. 

177 To quantify feeding efforts, we measured the total area gnawed by each mouse (i.e. size 

178 of the orifice performed in the bottle). For this, gnawed areas were exactly transferred to 

179 translucent paper sheets and they were scanned. Later, to measure the gnawed area, we 

180 analysed the scanned sheets through the Adobe Photoshop CC® software in a similar 

181 way to [61], selecting the target gnawed area with the magic wand tool and using the 

182 image analysis tool to know the gnawed area size in pixels.

183 Finally, to determine the amount of food eaten by each individual, we collected 

184 the unconsumed bait from each trap. The remnant bait was dried at 80 ºC in a heater for 

185 1 h to eliminate moisture and weighed with an electronic balance (C-3000/0.01 g CS, 

186 COBOS; precision 0.01 g). Thus, food intake by each individual was obtained by 

187 deducting the remnant bait weight to the initial 5 g of corn supplied inside each bottle. 

188

189 Statistical analysis
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190 Since model residuals were not normally distributed, behavioural responses were 

191 analysed using Generalized Linear Models (GLMs). Robust estimator (Huber/White/ 

192 sandwich estimator) was used to correct homogeneous variances criteria deviations. To 

193 analyse factors triggering mice handling of plastic bottles we performed a binomial 

194 distribution logit link GLM being the response variable the presence or absence of bite 

195 marks in the plastic bottles. Furthermore, to assess feeding effort, we use a GLM with 

196 normal distribution and identity link, being the response variable the missing area 

197 gnawed by mice in each bottle measured in pixels.  For both models, the explanatory 

198 variables considered were the same: food access (opened bottle/closed bottle), recapture 

199 (first captured/recaptured), moonlight (new moon/waxing crescent), predation risk 

200 (control/predator), reproductive status (breeding/non-breeding) and sex (female/male), 

201 including weight as a covariate. We also tested the interactions food access*recapture 

202 and food access*moonlight. Furthermore, we also conducted separate ANOVA tests to 

203 analyse whether the gnawed area varied through repeated consecutive recaptures. 

204 Finally, a nonparametric Spearman's correlation analysis was performed to check the 

205 relationship between the effort made by mice to obtain the bait (gnawed area) and food 

206 intake. Because mice did not need to gnaw open bottles to obtain the bait provided and 

207 due to the statistically significant relationship between food access with the extension of 

208 the gnawed area by mice, we only considered data from closed bottles for this 

209 correlation analysis.

210  Results were considered significant at α < 0.05. Data are represented as mean ± 

211 standard error (SE). The software used to perform the statistical analysis was SPSS 23.0 

212 for Windows (SPSS Inc, Chicago, IL, USA).

213

214 Results
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215 The total number of captures was 142, corresponding to 84 different individuals. 

216 Results of the binomial model showed that food access, recapture, predation risk and the 

217 interaction between food access and moonlight were the factors which explained the 

218 presence of bite marks in bottles (Table 1). 

219 In open bottles (N= 89), only the 33.7% showed bite marks whereas in the 

220 closed bottles treatment (N= 53) the 90.6% of them were bitten by mice. The 75.9% of 

221 the recaptured mice bitted bottles (N= 58), while this percentage decreases to 40.5% for 

222 first-captured ones (N= 84). As for the predation risk influence, we found bite marks in 

223 67.5% (N= 51) of the bottles treated with fox faeces, being this percentage lower in the 

224 absence of predator cues (50.0%, N= 27). Regarding the interaction between food 

225 access and moonlight, we found that mice bite marks were particularly less frequently 

226 found in open bottles during new moon nights (27.8%, N=20), while this percentage 

227 was higher during waxing crescent (58.8%, N=10). By contrast, bite marks appeared in 

228 the majority of the closed bottles independently of the moon phase: new moon nights 

229 95.7% (N= 22) and 86.7% (N= 26) during waxing crescent nights.

230 Results of the GLM analysing mice feeding efforts (i.e. gnawed area) are 

231 showed in Table 2; main influencing factors were food access, recapture and moonlight. 

232 The average area gnawed by mice in open bottles was lower (6690.0 pixels ± 2141.0 

233 SE) than in closed ones (26277.4 ± 4361.0). Overall, recaptured individuals gnawed an 

234 average area of 24864.3 ± 4090.5 pixels, while a reduced area of 6499.8 ± 2213.9 was 

235 performed by first-captured mice. Interestingly, separate analyses showed that the area 

236 gnawed by mice exponentially increased during consecutive recaptures (F4,48= 7.641, 

237 p< 0.001), but this significant effect was driven by individuals facing closed bottles 

238 (F4,48= 3.226, p< 0.05) (Fig. 1). 
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239 Furthermore, the interaction between food access and moonlight showed that 

240 mice gnawed particularly broad areas in the closed bottles during new moon nights 

241 (45373.4 ± 7735.7) (Fig. 2). Finally, a correlation analysis showed that there was a 

242 positive correlation between the effort made (i.e. area gnawed) to obtain the bait and 

243 mice food intake (Spearman correlation, r= 0.805, N= 142, p < 0.0001). 

244

245 Discussion

246 To our knowledge, this is the first study which provides evidence of the importance of 

247 experience and perceived predation risk in wood mice feeding efforts and decision-

248 making process. As expected, food access difficulty determined the presence of bite 

249 marks in the bottles, probing that mice understood the implications of the feeding 

250 devices since they tended to spend extra energy on food handling only if it was 

251 mandatory (i.e. closed bottles). Moreover, experience also determined mice choices in 

252 relation to bite or not to bite the food container. Naïve individuals were less inclined to 

253 gnaw the plastic bottles, demonstrating that experience is a decisive factor regulating 

254 wood mice feeding choices when a new source of food is available [12]. Predator cues 

255 also affected mice decision-making process, in this case, fox chemical signals seem to 

256 have a stimulating effect which prompted individuals to interact with the food 

257 containers. Predator scents have been previously demonstrated to modify food intake 

258 [16, 17, 19, 62], however, the direction of this association is not clear since there is 

259 evidence of both a rise and a decrease in the food intake. In our study, we hypothesise 

260 that traps could have provided mice a safe space to handle the food resources [16, 63], 

261 as a consequence, mice might have chosen to feed because they were sheltered against 

262 predator attacks. Alternatively, predation risk could have trigger physiological stress 
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263 response in mice [28] and the immediate mobilization of energy could have stimulated 

264 mice to bite the food containers.

265 Regarding the food access and moonlight interaction effect, while mice facing 

266 open bottles were more reluctant to try to get access to food during new moon nights, 

267 the moonlight did not influence mice behaviour when bottles were closed. When 

268 experience closed bottles, mice are compelled to bite the containers to obtain the food in 

269 spite of predation risk cues. In this particular setting, the prospect of obtaining a 

270 potentially highly nutritious food could counterbalance the risk of being detected [64, 

271 65]. On the other hand, when biting the food containers is not required to accomplish 

272 feeding, individuals behave different depending on indirect predator cues. During new 

273 moon nights, prey success to detect predators and competitors could be affected [66, 

274 67], thus, to be prepared to display fight or flight responses and to avoid unwanted 

275 interspecific interactions, mice could have decided to be more cautious and to save 

276 energy to cope with unpredictable events [32].  

277 As for the feeding effort, in accordance with the previous result, food access 

278 difficulty determined the extent of mice feeding endeavour, demonstrating that 

279 individuals adaptively adjust their energy expenditure depending on food accessibility 

280 and avoid to waste energy. Experience and learning have proved to be excellent 

281 adaptive features when it comes to feeding [68, 69, 70, 71, 72], making individuals 

282 extremely resourceful and giving them the essential responses to survive in highly 

283 variable environments. Our study showed that experience prompted individuals to 

284 invest energy trying to gain food access and the skill of the procedure was more 

285 efficient, since they managed to perforate a wider area of the bottles. In addition, the 

286 positive correlation found between the gnawed area and food intake, confirm that the 

287 endeavour they performed was justified, spending more energy only if they can 
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288 counterbalance the feeding costs associated [73, 74, 75]. Our results indicate that mice 

289 are fast learners, improving their skill twofold with only a single previous encounter 

290 with the food containers.  However, this endeavour was only significantly improved in 

291 mice facing closed bottles, demonstrating again the ability of individuals to make 

292 efficient energy budget decisions. The relevance of experience and learning upon mice 

293 feeding efforts is clear, providing mice the opportunity to exploit new food resources in 

294 a relatively short amount of time. Despite learning feeding techniques can have 

295 expensive associated costs in terms of energy and time [69], the highly variable natural 

296 living conditions could have induced the development of this remarkable evolutionary 

297 strategy by enhancing mice individual fitness [11, 76].

298 As for the influence of the interaction between food access and moonlight on 

299 feeding effort, new moon nights were associated with increased feeding efforts when 

300 individuals were dealing with the more arduous treatment (i.e. closed bottles). This 

301 result gives us direct insight of mice decision-process and the behavioural response 

302 elicited when a trade-off between predation risk and feeding is presented (see predation 

303 risk allocation hypothesis [77]). According to this theory, individuals would increment 

304 feeding effort during new moon phase when perceived predation risk is low, since 

305 moonlight can increase prey detectability and hence, hunting success for predators [78, 

306 79].  Thus, darker nights caused mice to feel safer, allowing individuals to spend energy 

307 in the device handling costs. On the contrary, a rise in perceived predation risk caused 

308 by the increase in the moonlight probably caused mice to keep a low profile and to 

309 choose survival over increasing their exposure handling the food resource, even though 

310 the energetic reward was high. Further, this result would be in accordance with previous 

311 studies that show how mice activity and food intake diminish with the increase in night 

312 luminosity [20, 42, 43).  On the other hand, for opened bottle treatment, the feeding 
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313 effort remained low during both new moon and waxing crescent because it was not 

314 necessary to perforate the bottle to obtain the food, thus, it would be expected that 

315 animals did not spend energy when it was not required.

316 Contrary to our predictions, predator faecal cues did not affect mice feeding 

317 efforts. Nevertheless, this result would be in accordance with other studies that 

318 discovered no effect of predator cues on feeding behaviour [20, 21, 80]. As we 

319 suggested before, traps could have been perceived as a refuge against predators, 

320 allowing them to feed in a secure environment [16, 63]. Another plausible explanation 

321 would be that due to individuals remained several hours under the influence of this 

322 predation cues, they have to resume their feeding activity in order to not compromise 

323 their survival [77, 81].  

324 Additionally, we found that individual variables, such us breeding condition, sex 

325 or weight, had no effect on feeding behaviour. It could be possible that the higher 

326 energetic demands of certain individuals were only reflected upon the food intake rather 

327 than having an influence on mice feeding efforts. Although this was not expected, the 

328 results clearly show that these factors were not determinant, and that experience and 

329 moonlight were the phenomena which modulated wood mice feeding choices and 

330 efforts when a new source of food is available. The wood mouse plays a key role in the 

331 ecosystems, being a pivotal part of the diet of many often endangered predators [82, 83, 

332 84, 85]. These results provide certain hope about the resilience and plasticity of mice 

333 populations, frequently subjected to human-induced changes that can modify food 

334 resources and its availability. 

335

336 Funding
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591

592 Table 1. Results of the binomial logit GLM analysing the effect of individual, 

593 environmental and experimental factors on the absence or presence of bite marks 

594 performed by mice in the plastic bottles.

595

596

597

598

599

    
Factor F df p

Food access 14.113 1 0.000
Recapture 7.618 1 0.006
Moonlight 1.772 1 0.183
Predation risk 5.945 1 0.015
Reproductive status 0.022 1 0.883
Sex 2.627 1 0.105
Weight 0.242 1 0.623
Food access*Recapture 0.049 1 0.826
Food access*Moonlight 4.017 1 0.045
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600 Table 2. Results of the GLM testing the effect of individual, environmental and 

601 experimental factors on feeding effort (area gnawed by mice).

602

603

604

605

606

607

608

609

610

611

612

613
614
615

616

617

618 Figure 1. Mice feeding effort (mean area gnawed ± SE) through consecutive captures of 

619 each individual depending on the food access treatment (open bottle / closed bottle).

620

621

622 Figure 2. Mice feeding efforts (mean area gnawed ± SE) in relation to food access 

623 (opened bottle or closed bottle) and moonlight (low, new moon / medium, waxing 

624 crescent).

    

Factor F df p

Food access 4.811 1 0.028
Recapture 16.588 1 0.000
Moonlight 0.751 1 0.386
Predation risk 0.849 1 0.357
Reproductive status 1.556 1 0.212
Sex 0.626 1 0.429
Weight 0.015 1 0.902
Food access*Recapture 1.328 1 0.249
Food access*Moonlight 16.483 1 0.000
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