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Abstract

In this paper, we present a Brain-Computer Interface (BCI) that is able to reach an information transfer rate (ITR) of
more than 1200 bit/min using non-invasively recorded EEG signals. By combining the EEG2Code method with deep
learning, we present an extremely powerful approach for decoding visual information from EEG. This approach can
either be used in a passive BCI setting to predict properties of a visual stimulus the person is viewing, or it can be used
to actively control a BCI spelling application. The presented approach was tested in both scenarios and achieved an
average ITR of 701 bit/min in the passive BCI approach with the best subject achieving an online ITR of 1237 bit/min.
The presented BCI is more than three times faster than the previously fastest BCI and allows to discriminate 500,000
different visual stimuli based on 2 seconds of EEG data with an accuracy of up to 100 %. When using the approach in
an asynchronous BCI for spelling, we achieved an average utility rate of 175 bit/min, which corresponds to an average
of 35 error-free letters per minute. As we observe a ceiling effect where more powerful approaches for brain signal
decoding do not translate into better BCI control anymore, we discuss if BCI research has reached a point where the
performance of non-invasive BCI control cannot be substantially improved anymore.

1. Introduction

A brain-computer interface (BCI) is a device that
translates brain signals into output signals of a computer
system. The BCI output is mainly used to restore several
functionalities of motor disabled people, e.g. for pros-
thesis control or for communication [1]. Beside the use
of BCIs that give the user the ability to actively control
a device, passive BCIs have been accepted as a different
kind of BCIs that do not have the purpose of voluntary
control [2].

In the area of BCIs for communication purposes,
BCIs based on visual evoked potentials (VEPs) have
emerged as the fastest and most robust approach for BCI
communication. Although the idea to use VEPs for BCI
control dates back to Vidal [3], Sutter [4] suggested the
use of VEPs for a BCI-controlled keyboard in 1984 and
showed in 1992 that an ALS patient can use such a sys-
tem at home to write up to 12 words per minute [5].

Since then, different approaches were demonstrated
that use VEPs for BCI control. The majority of VEP-
based BCI systems is based on frequency-modulated
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SSVEPs. The highest information transfer rate (ITR)
for an SSVEP-based system was reported by Chen et
al. [6], with 267 bit/min on average and up to 319
bit/min for the best subject, which also happens to be
the highest ITR being reported for any BCI system, so
far.

Instead of using a frequency-modulated visual stim-
ulus for SSVEPs, visual stimuli can also be modulated
with a certain pattern to evoke so called code-modulated
visual evoke potentials (c-VEPs) that can be used for
BCI control. Although Sutter was the first to use this
approach [5], it was ignored by BCI research for a long
time, and reemerged in 2011 when Bin et al. [7] pre-
sented a c-VEP based BCI-system reaching an average
ITR of 108 bit/min up to 123 bit/min for the best sub-
ject, which was the highest reported ITR at that time.
In 2012, Spüler et al. [8] improved the methods for de-
tection of c-VEPs and reached an average ITR of 144
bit/min, up to 156 bit/min for the best subject, which
was the highest reported ITR at that time.

A completely different approach to utilize VEPs for
BCI control was presented by Thielen et al. [10] in
2015, who created a model to predict the response to
short and long visual stimulation pulses and showed that
it can be used for BCI control reaching an average ITR
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Figure 1: General setup of the BCI speller experiment. The matrix-keyboard layout is as shown on the monitor, it has 32 targets labeled alphabeti-
cally from A to Z followed by ’ ’ and numbers 1 to 5. The targets are separated by a blank black space and above targets is the text field showing the
written text. Each target is modulated with its own random stimulation pattern. During a trial, the participant has to focus a target. The measured
EEG is amplified and afterwards the EEG2Code model predicts the stimulation pattern as shown in Fig. 2. The picture modified from [9]

of 48 bit/min.
While the model by Thielen et al. was only able to

predict responses consisting of short and long pulses,
we presented the EEG2Code method [9] to create a
model that allows to predict the EEG response to arbi-
trary stimulation patterns (codes). Using the EEG2Code
model for BCI communication resulted in an average
ITR of 108 bit/min. In a following publication, we
further improved the method and presented an asyn-
chronous BCI with robust non-control state detection to
reach an average ITR of 122 bit/min, up to 205 bit/min
for the best subject [11].

The EEG2Code method was based on the idea that
the VEP response to a complex stimulus is generated
by a linear superposition of single-flash VEP responses
[12, 13]. In our previous work, we found that we can use
a linear method to model the VEP response, but that the
VEP response also has non-linear properties that cannot
be described by a superposition and cannot be recon-
structed with a linear model [9].

As deep learning has become popular in the last years
as a powerful machine learning method to create non-
linear prediction models, that outperform other meth-
ods in tasks like image classification or speech recogni-
tion [14], deep learning methods seem like a natural fit
to apply them for neural data.

One class of neural network used in deep learning are
convolutional neural networks (CNNs), which were al-
ready used in the field of BCIs. The first work which
explored CNNs for a BCI is by Cecotti et al. [15], who
applied CNNs to P300 data and found CNNs to outper-
form other methods. In 2017, Kwak et al. [16] proposed

a 3-layer CNN that uses frequency features as input for
robust SSVEP detection. They compared their CNN ap-
proach to other state-of-the-art methods for SSVEP de-
coding and found CNNs to outperform all of them. Es-
pecially for noisy EEG data obtained by a moving par-
ticipant they achieved an accuracy of 94.03 % compared
to 84.65 % achieved by the best compared method.
Thomas et al. [17] performed a similar comparison, with
the result that the CNN outperformed all other state-of-
the-art methods as well.

As we found that the VEP response cannot be appro-
priately modelled by linear methods, this paper presents
an approach to combine the EEG2Code method with
deep learning to create a non-linear model that predicts
the VEP response to arbitrary stimuli and we show how
this method can be used in a BCI.

2. Methods

2.1. EEG2Code model

In a previous work [9] we proposed a new stimulation
paradigm, based on fully random visual stimulation pat-
terns for the use in BCI. In the same work we proposed
the EEG2Code model which allows to predicted the
stimulation pattern based on the EEG. Furthermore, we
have shown how the model can be used for synchronous
BCI control. In a subsequent work [11] we have shown
that the EEG2Code model can also be used for high-
speed asynchronous BCI control. In those works, the
EEG2Code model was based on a linear ridge regres-
sion. For the sake of completeness, the central parts of
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Figure 2: Example of one run where the EEG2Code model with a convolutional neural network (CNN) was used in the passive BCI setting to
predicted the visual stimulation pattern. The visual stimulus was modulated with a random stimulation pattern (black line). For each 250 ms
window (slided sample-wise) of the measured EEG signals (blue lines), the EEG2Code CNN model predicts a probability value (orange line),
which indicates whether the stimulus is black or white. This procedure is shown for 3 exemplary windows (magenta, green, cyan). Note that
the model prediction is delayed by 250 ms due to the sliding window approach. The resulting model prediction is now down-sampled to the
corresponding number of bits (magenta line). Using a threshold of 0.5 (gray dotted line), the EEG2Code prediction is transformed to the predicted
stimulation pattern, which in turn can be compared to the real stimulation pattern (green = match, red = mismatch). For this plot, EEG data and
results from the best run were used where an accuracy of 92.6 % was achieved, corresponding to an ITR of 2122 bit/min. An animated version of
this figure can be found in the supplementary materials.

the EEG2Code method are explained briefly in the fol-
lowing paragraphs, but a more detailed description can
be found in our previous works [11, 9].

The general setup of the BCI is shown in Fig. 1.
The EEG2Code method is based on a bit-representation
(code) of the visual stimulation pattern, where the prop-
erties of the visual stimulus are encoded as one bit (0:
black, 1: white). The idea of the EEG2Code method is
to predict each bit of the stimulation pattern based on
the following 250 ms of EEG data.

In our previous works we trained a linear ridge re-
gression method for that purpose, but any regression
method can be used. For training the model, the sub-
ject has to watch a visual stimulation that is randomly
flickering between black and white. After training the
EEG2Code model using the bit-sequence of the stimu-
lation pattern and the concurrently recorded EEG signal,
the resulting model can be used to predict the property
of the visual stimulus in real time. This procedure is also
depicted in Fig. 2. In our work we recorded EEG with
a sampling rate of 600 Hz and shifted the 250 ms pre-
diction window sample-wise to obtain 600 predictions
per second. As the visual stimulus is modulated with
60 Hz (refresh rate of the monitor), we obtained 10 pre-
diction samples for each bit in the stimulation sequence.
Those 10 real-valued predictions are averaged to obtain
one prediction value for each bit. For the final predic-

tion of the pattern, a threshold of 0.5 is used to either
predict the stimulus property as black (0) or white (1).

The EEG2Code method can either be used in a pas-
sive BCI approach to predict the property of the visual
stimulus a subject is currently watching (as described
above) or it can be used for an active BCI, e.g. a spelling
application.

In the BCI control scenario, multiple stimuli (targets)
are presented to the subject, where each stimulus is cor-
responding to a different action (or letter). By com-
paring the prediction of the EEG2Code model with the
stimulation patterns of all targets, we can identify the
target that is attended by the subject. For synchronous
BCI control, we calculated the correlation between the
predicted stimulation pattern and the patterns of all tar-
gets, and the target with the highest correlation is se-
lected. For asynchronous BCI control, the EEG2Code
prediction is compared to all stimulation patterns con-
tinuously. Instead of using the correlation, we calculate
the p-values under the hypothesis that the correlation is
greater than zero, as this takes the length of a trial into
account. If a certain threshold is exceeded, the corre-
sponding target is selected. A more detailed description
of the asynchronous classification method can be found
in our previous work [11].
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2.2. Combining EEG2Code with deep learning

Instead of a linear ridge regression that was used in
our previous works, we used a convolutional neural net-
work (CNN) as base for the EEG2Code method. The
topology of the CNN model is modified from the topol-
ogy of Gunsteren [18], where it was used for classifi-
cation of P300 data. Contrary to the EEG2Code ridge
regression model, the data is not spatially filtered be-
forehand. This means the model takes windows of size
T × C, whereby T = 150 corresponds to the number of
samples (250 ms) and C = 32 corresponds to the num-
ber of EEG channels. The model consists of five layers,
whereby the first layer uses convolutional kernels of size
1×32, which means they move over the channels and act
as spatial filters. As 16 Conv operation are performed,
this corresponds to 16 spatial filters in total. The sec-
ond layer consists of 8 convolutional kernels with a size
of 64 × 1 which act as different temporal filters. The
remaining layers are used for predicting the stimulation
property based on the spatially, and temporally filtered
data.

A detailed structure of the EEG2Code CNN is de-
picted in Fig. 3. It shows each performed operation in-
cluding the used parameters as well as the input and out-
put dimensions of each operation.

MaxPooling operations are performed to reduce the
size of intermediate representation between layers. The
BatchNorm operation results in a faster and more stable
training. The Dropout operation is used for regulariza-
tion to avoid overfitting of the model. The Dense op-
eration fully connects the input neurons with the given
number of output neurons. The Activation operations
defines/transforms the output of each neuron depend-
ing on a given activation function, whereby the softmax
function takes an un-normalized vector, and normalizes
it into a probability distribution, and therefore gives the
probabilities that the initial input belongs to one of the
classes. Since the model is trained on two classes (0 or
1), the output are two probabilities p0 and p1, one for
each class. It must be noted that p1 = 1− p0. The model
is trained using a learning rate of 0.001 and a batch size
of 256. In total, 25 epochs were trained and the best
model was selected as the final model. In this case, the
best model refers to the model with the highest valida-
tion accuracy, where the validation dataset is indepen-
dent from the testing dataset. Since the model is trained
on two classes (0 or 1), the output are two values p0 and
p1, which are the probabilities that the input belongs to
the corresponding classes, with p1 = 1 − p0.

Figure 3: Topology of the EEG2Code convolutional neural net-
work. The five layers are indicated by the gray boxes. Each layer
consists of different operations, whereby the same operations are
colored the same. Below each operation, the used parameters are
given, whereby the parameters for the Conv and MaxPooling are
(kernel/pooling size, stride, padding), and for BatchNorm
(axis, scale, center). The edges are labeled with the shape of
the input and output data, respectively. The input of the model is a
250 ms (T = 150 samples) window of EEG data with C = 32 chan-
nels. The output are two values which are the probabilities that the
input belongs to each class (binary 1 or 0). As the window is shifted
sample-wise over the complete trial data, the output is the prediction
of the corresponding stimulation pattern.

2.3. Offline analysis
To evaluate the combination of EEG2Code and deep

learning, we evaluated the method offline on different
data that was obtained in two previous studies, where
the EEG2Code method was uses for synchronous BCI
control [9] and an improved version of EEG2Code was
demonstrated with asynchronous BCI control [11]. For
the offline evaluation, we simulated an online experi-
ment, where the data for training and testing the model
was the same as in the online experiment, when the data
was recorded.

The data was used for two different scenarios: the ac-
tive BCI scenario where a target/letter is selected. And
the passive BCI scenario, where each bit of the stimu-
lation sequence is predicted. In the latter scenario, the
terminology is different and one trial in the passive BCI
scenario refers to predicting one bit (16.6 ms stimulus
presentation) based on 250 ms of EEG data.
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For the synchronous mode, we used a presentation
layout with 32 targets arranged as a matrix-keyboard. In
total, 384 s of training data were recorded, which means
384 s · 60 bit/s = 23040 random bits were presented.
The testing phase was split into 14 runs with a trial du-
ration of 2 s each. Those runs were alternated using
fully random stimulation patterns and optimized stimu-
lation patterns, see [9] for details. For the bit prediction
accuracy the 7 runs with fully random stimulation were
used, whereby for the synchronous BCI control, the 7
runs with optimized stimulation were used. The partic-
ipants had to perform each run in lexicographic order,
with 32 trials per run, so that a total of 448 letters were
selected. As we found in our previous study [9] that a
trial duration of 1 s is optimal for the synchronous sce-
nario, the simulated online experiment in this study was
performed with a trial duration of 1 s.

We further tested how well the EEG2Code method
can discriminate 500,000 different stimuli. As each
target is modulated with a random stimulation pattern,
there is no need to record data from 500,000 targets. In-
stead, we compared the predicted stimulation pattern, to
a set of 500,000 patterns, where one pattern is identical
to the one used for stimulation, while the other 499,999
are different random stimulation patterns. Such an anal-
ysis was already performed for the EEG2Code ridge re-
gression model in our previous publication [9], where
we tested different numbers of stimuli. Although one
could test for larger numbers, we stopped at 500,000
due to the increasing computational demands and there-
fore only used this number for this publication.

For the asynchronous BCI control, the data from [11]
was used. The training data also consists of 384 s of
recorded EEG data, whereby the optimized stimulation
patterns were used. The testing phase consists of 6 runs
with 32 trials each and with optimized stimulation pat-
terns. Note that the trial duration varies due to the asyn-
chronous approach, whereby the inter-trial time was set
to 500 ms. The trials were performed in lexicographic
order. For comparison reasons, the same p-value thresh-
olds were used as determined during the online experi-
ment, see [11] for details.

The experimental setup for recording these data was
very similar to the setup described later in this paper,
but is also described in more detail in the corresponding
publications [11, 9].

2.4. Online experiment

To demonstrate that the EEG2Code model using a
CNN can also be used in an online BCI to provide
real-time feedback, we performed an online experiment.

This online experiment should only serve as a proof-of-
concept and only one subject was tested.

The subject was the best-performing subject (S01)
from our first study. The participation in our first
study and the proof-of-concept experiment were ap-
proximately 14 month apart.

For training the EEG2Code CNN model, the partic-
ipant first performed a training phase consisting of 96
runs with 4 s of random stimulation each. Afterwards,
96 runs were performed, whereby each run consisted of
285 trials, with each trial corresponding to one bit of the
random stimulation sequence. At the end of the run, an
additional 250 ms of random stimulation followed, so
that one run had a total length of 5 seconds.

2.5. Hardware & Software
The setup was similar to the one used in a previ-

ous study [11], except that the EEG2Code CNN com-
putations were performed on an IBM Power System
S822LC with four Nvidia R© Tesla P100 GPUs using
Python v2.7 [19] and the Keras framework [20].

The system consists of a g.USBamp (g.tec, Aus-
tria) EEG amplifier, three personal computers (PCs),
Brainproducts Acticap system with 32 channels and a
LCD monitor (BenQ XL2430-B) for stimuli presenta-
tion. Participants are seated approximately 80 cm in
front of the monitor.

PC1 is used for the presentation on the LCD monitor,
which is set to refresh rate of 60 Hz and its native reso-
lution of 1920 × 1080 pixels. A stimulus can either be
black or white, which can be represented by 0 or 1 in
a binary sequence and is synchronized with the refresh
rate of the LCD monitor, which means each bit of the
stimulation patterns are presented for 1/60 s. The tim-
ings of the monitor refresh cycles are synchronized with
the EEG amplifier by using the parallel port.

As correct synchronisation of EEG and visual stim-
ulation is crucial, we corrected for the monitor raster
latency as described in our previous work [21].

PC2 is used for data acquisition, whereby
BCI2000 [22] is used as a general framework for
recording the data of the EEG amplifier. The amplifier
sampling rate was set to 600 Hz, resulting in 10 samples
per frame/stimulus. A TCP network connection was
established to PC1 in order to send instructions to the
presentation layer and to get the modulation patterns of
the presented stimuli. During the online experiment, the
EEG data was continuously sent to PC3 using a TCP
connection. PC3 performs the EEG2Code prediction
and sent back the prediction to PC2.

A 32 electrodes EEG layout was used, 30 electrodes
were located at Fz, T7, C3, Cz, C4, T8, CP3, CPz, CP4,
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Table 1: Simulated online results of the EEG2Code method in a passive BCI scenario and for active BCI control
Pattern prediction Synchronous BCI control

Ridge regression CNN Ridge regression CNN
Subject ACC [%] ITR [bpm] ACC [%] ITR [bpm] ACC [%] ITR [bpm] ACC [%] ITR [bpm]

S01 69.1 389.9 83.4 1262.1 99.2 195.8 100.0 200.0
S02 64.5 222.4 72.9 567.3 94.1 175.5 94.6 177.3
S03 63.7 196.5 72.5 545.7 83.4 141.2 95.5 180.6
S04 65.6 257.8 76.8 787.9 95.9 182.1 98.7 193.2
S05 66.3 282.7 78.7 908.9 96.4 183.8 99.6 197.5
S06 67.1 308.2 75.4 704.9 98.1 191.0 98.7 193.2
S07 63.7 196.8 68.5 363.9 88.4 156.4 87.9 154.9
S08 60.9 124.5 77.1 807.1 65.6 94.6 99.6 197.5
S09 60.2 109.4 68.5 363.7 53.5 68.0 87.5 153.5

mean 64.6 232.0 74.9 701.3 86.1 154.3 95.9 183.1

Shown are the average results of all subjects, whereby best results are in bold font. The left part shows the results for the EEG2Code
pattern prediction, whereas the right part shows the results for the simulated synchronous BCI control with a trial duration of 1 s.
For both, the previous results using the ridge regression model as well as the new results using the CNN model are shown. For
all, the accuracies (ACC) and the corresponding ITRs are given. The ITRs are calculated using Eq. 2 with N = 2 (N = 32) and
T = 1/60s (T = 1.5s).

P5, P3, P1, Pz, P2, P4, P6, PO9, PO7, PO3, POz, PO4,
PO8, PO10, O1, POO1, POO2, O2, OI1h, OI2h, and
Iz. The remaining two electrodes were used for elec-
trooculography (EOG), one between the eyes and one
left of the left eye. The ground electrode (GND) was
positioned at FCz and reference electrode (REF) at OZ.

2.6. Performance evaluation
The BCI control performance is evaluated using the

accuracy, the number of correct letters per minute
(CLM) [23], the utility bitrate (UTR) [24] and the infor-
mation transfer rate (ITR) [25]. The CLM, which take
into account that erroneous letters have to be deleted
using a backspace symbol, can be computed with the
following equation:

CLM =

 60·(2P−1)
T if P ≥ 0.5

0 otherwise
(1)

The ITR can be computed with the following equa-
tion:

ITR =

(
log2 N + P log2 P + (1 − P) log2

1 − P
N − 1

)
·

60
T
(2)

with N the number of classes, P the accuracy, and T the
time in seconds required for one prediction. The ITR
is given in bits per minute (bit/min). For asynchronous
BCI control, N equals the number of targets (depending
on the layout) and T the average trial duration including
the inter-trial time. The ITR is generally used to assess

how much information a user can convey by BCI con-
trol and therefore mostly used as performance measure
for BCI communication. However, the ITR also mea-
sures how much information can be extracted from the
brain signals, which is applicable to all BCI approaches,
including passive BCIs.

It should also be noted that the ITR is based
on Shannon-Weaver’s model for communication [26],
which consists of a information source sending (binary)
information that is being encoded, transmitted via a
noisy channel, decoded and received by a receiver. As
the passive BCI scenario in this paper shows a clearer
analogy to Shannon-Weaver’s model than other BCIs, it
should be pointed out: Computer A is the information
source that decodes binary information in a visual stim-
ulus. The user’s nervous system (eye and brain) is the
noisy channel. The BCI acts as a decoder, which de-
codes the brain signals and the decoded information is
received by computer B.

3. Results

3.1. Offline analysis: simulated online experiment

In the simulated online experiment, we first analyzed
the EEG2Code stimulation pattern prediction, which re-
sulted in an average accuracy of 74.9 % using the fully
random stimulation patterns and corresponds to an av-
erage ITR of 701.3 bit/min. It is worth noting that for
S01 an average accuracy of 83.4 % was achieved, which
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Table 2: Simulated online results for an asynchronous BCI speller
Subject CLM Accuracy [%] ITR [bpm] Time [s] UTR [bpm]

S10 33.3 99.0 165.4 1.77 165.0
S11 48.2 97.9 238.9 1.19 238.8
S12 39.7 99.5 197.8 1.49 196.8
S13 28.7 99.5 142.8 2.07 142.1
S14 35.8 95.3 177.8 1.52 177.6
S15 30.7 99.0 152.4 1.92 152.0
S16 45.1 100.0 225.3 1.33 223.2
S17 25.8 97.4 127.8 2.21 127.7
S18 30.9 100.0 154.4 1.94 153.0
S19 34.8 97.4 172.3 1.64 172.2

mean 35.3 98.5 175.5 1.71 174.8

Shown are the results for the lexicographic-spelling (matrix-layout, 32 targets). The number of correct letters per minute (CLM),
the target prediction accuracy, the information transfer rates (ITR), the average trial duration (including an inter trial time of 0.5 s)
and the utility bitrate (UTR). Best results are in bold font.

Table 3: Simulated online results of the EEG2Code method for the
discrimination of 500,000 different stimuli

Ridge regression CNN
Subject ACC [%] ITR [bpm] ACC [%] ITR [bpm]

S01 96.3 431.8 100.0 454.3
S02 55.4 227.7 82.1 357.0
S03 42.0 167.1 79.9 345.7
S04 76.8 330.1 97.8 440.5
S05 71.9 306.0 96.9 435.3
S06 84.4 368.4 95.5 427.8
S07 53.1 217.4 52.7 215.4
S08 8.0 26.8 93.8 417.9
S09 6.3 20.3 57.1 236.0

mean 54.9 232.9 84.0 370.0

Shown are the average results of all subjects, whereby best
results are in bold font. The results are for the simulated syn-
chronous BCI control with 500,000 simulated targets based on
2 s of EEG data. The accuracies (ACC) and the corresponding
ITRs are given, whereby the ITRs are calculated using Eq. 2
with N = 500000 and T = 2.5s.

corresponds to 1262.1 bit/min. Additionally, the syn-
chronous BCI control was simulated, which results in
average accuracy of 95.9 % using the optimized stimu-
lation patterns and a trial duration of 1 s, which corre-
sponds to an ITR of 183.1 bit/min including the inter-
trial time of 0.5 s. Detailed results for each subject are
listed in Table 1.

Furthermore, also the asynchronous BCI control was
simulated using the 32-target matrix-keyboard layout.
The results for each participant are shown in Table 2.
The average target prediction accuracy is 98.5 % (ITR:

175.5 bit/min) with an average trial duration of 1.71 s
(including 0.5 s inter-trial time). In total, 91.6 % of all
trials could be classified faster compared to the ridge
regression model. Finally, this results in an average
spelling speed of 35.3 correct letters per minute (CLM)
with a maximum of 48.2 CLM, which corresponds to a
utility rate of 175 bit/min and 239 bit/min, respectively.

3.2. Discriminating 500,000 different stimuli

The results for using the EEG2Code approach for the
discrimination of 500,000 different stimuli patterns can
be seen in Table 3. While the EEG2Code method with
ridge regression was able to identify the correct stimu-
lus with an average accuracy of 54.9 %, the EEG2Code
deep learning approach achieved an average accuracy of
84.0 %. Notably, subject S01 achieved an accuracy of
100 % showing that for all trials, the correct stimulus
pattern was identified.
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Figure 4: Bit prediction accuracies and corresponding ITRs achieved
during an online experiment of subject S01. Shown is the distribution
of the average performance per run with the red line representing the
median. The data consists of 96 runs, with each running having 285
trials (bits). The ITRs were calculated using Eq. 2 with N = 2 and
T = 5/285 s.
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3.3. Online experiment

To demonstrate that the EEG2Code CNN model can
also be used in an online BCI, we performed an exper-
iment where we invited the best subject from the first
experiment to participate. Averaged over all runs, an
average bit prediction accuracy of 83.4 % was achieved
which corresponds to an average ITR of 1237 bit/min
using N = 2 and T = 5/285 s, taking into account that
285 trials are predicted in a 5 s run. The distribution of
the average performance per run are depicted in Fig. 4.
The results also shows that the prediction of the run with
the best performance had an accuracy of 92.6 % and an
ITR of 2122 bit/min.

4. Discussion

In this work, we have combined the EEG2Code
method with deep learning to show that this approach
can be used in two different kinds of BCI: a passive BCI
to predict properties of the visual stimulus the user is
viewing, or for controlling a BCI to select letters.

In an online experiment, we were able to show that
the approach is online capable and that a subject can
reach 1237 bit/min when using the method in a passive
BCI.

In an offline analysis, we compared the EEG2Code
method using a ridge regression against the EEG2Code
method with deep learning and could show an increase
in the classification accuracy from 64.6 % to 74.9 %
for the pattern prediction. With regard to the infor-
mation that can be extracted from the EEG, the ITR
could be improved by 202 % with deep learning (from
232 bit/min to 701 bit/min).

Compared to current state-of-the-art approaches, the
EEG2Code deep learning approach clearly outperforms
the previously fastest system by Chen et al. [6]. They
reported the previously highest ITR for a BCI, with an
average ITR of 267 bit/min and an online ITR of 319
bit/min for the best subject, which we could raise to
701 bit/min and 1237 bit/min, respectively.

4.1. Ceiling effect

When comparing the results of the passive BCI for
pattern prediction (701 bit/min) with the results for
BCI control (183 bit/min), we observe a ceiling ef-
fect. Although we are able to extract an average of
701 bit/min of information from the EEG, we can only
use 183 bit/min of this information for BCI control. The
discrepancy between extracted information and BCI
control becomes even larger when looking at single sub-
jects. The worst subject (S09) had an ITR of 364 bit/min

for the pattern prediction, which translates into an ITR
of 153 bit/min for BCI control. The best subject (S01)
had an ITR of 1262 bit/min for the pattern prediction,
which translates into an ITR of 200 bit/min. Comparing
those two subjects shows that an increase of 898 bit/min
for the pattern prediction translates into an increase of
only 47 bit/min for BCI control.

Due to the limited number of targets (N=32) and
trial duration given by the BCI communication system
(T=1.5; 1s trial + 0.5 pause), the ITR is limited to a
maximum of 200 bit/min. This limit can only be in-
creased by either reducing the trial duration or by in-
creasing the number of targets. For chasing higher ITRs
in the lab, the trial duration could be reduced to 1 s (0.5 s
trial + 0.5 s pause), which corresponds to a maximum
ITR of 300 bit/min, but with values below 1 s the system
becomes too fast to be realistically usable.

Increasing the number of targets is another way to in-
crease the ITR. The EEG2Code method has the unique
property that it allows a virtually unlimited amount of
targets (e.g. 2120 = 1.3 · 1036 targets with 2 s of vi-
sual stimulation). In this work, we simulated an on-
line BCI with N = 500, 000 targets and could show
that in this case, the performance of the EEG2Code
ridge regression model translates completely to BCI
control with 232.0 bit/min for the pattern prediction
and 232.9 bit/min for BCI control. But when using
deep learning, we again observe a ceiling effect with
701 bit/min for the pattern prediction translated into
370 bit/min for BCI control. While it is likely that the
ITR for BCI control would increase further when us-
ing more targets, it should be pointed out that this is
just a theoretical exercise, because communication sys-
tems with such a higher number of targets are prac-
tically unusable. Nevertheless, these simulations un-
derscore the power of the EEG2Code method as even
with such a large number of targets, high accuracies
were reached. In case of the best subject, we could dis-
criminate 500,000 different stimuli with an accuracy of
100 % based on 2 s of EEG data.

While there theoretically are ways to overcome the
ceiling effect, real BCI control is still limited by mini-
mum trial duration and a maximum number of targets
which are usable. While those limits may vary between
users, it is likely that 60 characters per minute is a limit
that cannot be surpassed significantly by non-invasive
BCI systems (or invasive VEP-based systems).

4.2. Brain signal decoding vs. BCI communication
As Sutter has shown in 1992 [5] that an ALS pa-

tient can use a VEP-based BCI at home to write up
to 12 words (about 60 characters) per minute, cynical
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voices might argue that BCI research hasn’t made any
progress since then as there is still no system that al-
lows higher communication rates. While the limit for
VEP-based BCI communication seems to have already
been reached in 1992, the methods for decoding brain
signals have evolved since then.

Currently, in the BCI literature there is no distinction
being made between the performance for brain signal
decoding and BCI communication. This wasn’t nec-
essary because all information that could be extracted
from the EEG could be used for BCI control so that the
performance of a method from a decoding perspective
was equal to the performance of a method from the per-
spective of BCI control. However, this has changed due
to the ceiling effect that we observed in this work.

We therefore argue that BCI research should make
a clearer distinction between those two perspectives.
From the perspective of brain signal decoding, the aim
is to decode the signal as good as possible, which means
to extract as much information from signals as possible.
Therefore, the information transfer rate (ITR) is the per-
fect measure to evaluate a method in terms of its signal
decoding power. When evaluating a method in terms of
decoding power, it is also irrelevant if it is being used
for BCI control, in a passive BCI or for other purposes.

From a perspective of BCI communication, the ITR
is not a good measure for communication performance
[24] as it is a pure measure of information that does
not take into account how humans use a communication
systems (e.g. backspace to correct errors). For this rea-
son, metrics like the utility metric [24] or correct letters
per minute [23] are a more appropriate measure. Fur-
ther, and more importantly, when evaluating a BCI sys-
tem with regard to its communication performance, it
should be ensured that the system can be used in an end-
user scenario. From our perspective, end-user scenario
is not limited to the use by patients, but we refer to any
user. With the term end-user scenario we want to stress
the importance of a non-control state detection that de-
tects if a user wants to currently use the BCI or not. In an
end-user scenario, there are always time periods where
the user does not want to control the BCI either because
they are currently listening to another person, reading
a webpage or sitting in their wheelchair and enjoying
a beautiful sunset. Without a non-control state detec-
tion the BCI will output random garbage, click random
webpage-links, or drive the wheelchair off in random
directions, which is why a non-control state detection is
essential for end-user BCIs.

With regard to the work of Chen et al. [6] who pre-
sented a BCI to reach an average ITR of 267 bit/min,
we don’t see their system as end-user suitable as it does

not have a non-control state detection. Further, the user
only has 280 ms between letter selection and the start of
the next trial which is insufficient to react to errors and is
only usable by highly trained subjects. We thereby con-
sider the system by Chen et al. [6] as a pure technical
demonstration of a brain signal decoding approach.

In contrast, we have shown the EEG2Code method
to be usable in an asynchronous BCI with robust non-
control state detection [11] and achieve average com-
munication speeds of 35 correct letters per minute (util-
ity bitrate of 175 bit/min) and thereby consider the BCI
be the fastest end-user suitable system for non-invasive
BCI communication. For comparison, the previously
fastest non-invasive BCI system, that can be considered
end-user suitable, was presented by Suefusa et al. [27]
and reached an average ITR of 67.7 bit/min.

We encourage fellow researchers to make a clearer
distinction between signal decoding performance and
BCI control performance and to ensure that the BCI sys-
tem is viable in an end-user scenario when evaluating
BCI control performance. As we have demonstrated a
ceiling effect and that it becomes increasingly difficult
to improve BCI control performance by better signal de-
coding, other approaches for improving BCI communi-
cation, like language modelling or predictive spelling,
gain more importance and further demonstrate the need
to separate signal decoding performance from the per-
formance of BCI communication.

4.3. Conclusion

In this paper, we have presented a novel approach that
combines deep learning with the EEG2Code method to
predict properties of a visual stimulus from EEG sig-
nals. We could show that a subject can use this ap-
proach in an online BCI to reach an information transfer
rate (ITR) of 1237 bit/min, which makes the presented
BCI system the fastest system by far. In a simulated on-
line experiment with 500,000 targets we could further
show that the presented method allows to differentiate
500,000 different stimuli based on 2 s of EEG data with
an accuracy of 100 % for the best subject. As the pre-
sented method can extract more information from the
EEG than can be used for BCI control, we discussed a
ceiling effect that shows that more powerful methods for
brain signal decoding do not necessarily translate into
better BCI control and that it is important to differenti-
ate between the performance of a method for decoding
brain signals and its performance for BCI control.
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Data availability

All data used in this paper were made publicly avail-
able. The data can be found online separated for the syn-
chronous simulated online experiment [28], the asyn-
chronous simulated online experiment [29], and the on-
line BCI experiment [30].

Code availability

To demonstrate that our results can be reproduced, we
made a python script publicly available [30] that allows
to reproduce the results from the online passive BCI ex-
periment. The script predicts the stimulation patterns
for each run. The attached CNN model is the one used
online. When running the script to train a new CNN
model, the results may slightly differ due to random
properties of the method (e.g. dropout learning).
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(July 2018).

[19] Python, version 2.7, Python Software Foundation, Wilmington,
Delaware, 2010.

[20] F. Chollet, et al., Keras, keras.io (2015).
[21] S. Nagel, W. Dreher, W. Rosenstiel, M. Spüler, The effect of
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