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Figure 6. microfluidic-induced sleep is regulated by satiety and multiple sensory circuits. (A) 

Detected sleep bouts for WT animals in several experimental conditions. Raster plots show 

detected sleep bouts during a 2 hr imaging period. “Baseline” indicates the standard experimental 

conditions: 500 μm chamber width, no food in the buffer, and a 22 °C temperature. “Starved” 

indicates animals that were starved prior to the assay. “+Food” indicates conditions in which E. 

coli OP50 was added into the buffer during recordings. “+Heat” indicates imaging conditions 

where the temperature was raised to 25 °C.  “+Compression” indicates that animals are partially 

immobilized in 50 μm-wide chambers. See micrographs under (D) for chamber geometries. In all 

cases, the sleep phenotype varies dramatically from the baseline. Only the 55 animals that 

displayed the most sleep are plotted for clarity. (B) Total WT sleep under varying satiety 

conditions. As satiety increases from “Starved” to “+Food,” animals exhibit less microfluidic-

induced sleep (from left to right on the plot the number of animals n = 55, 68, 67). (C) Total 

microfluidic-induced sleep under varying temperature conditions. Increasing temperature 

increases total microfluidic-induced sleep for WT animals. Thermosensory-defective mutants 

show the same microfluidic-induced sleep phenotype as WT at 18 °C, but significantly less sleep 

as 22 °C and 25 °C, indicating that thermosensory input can act to drive or suppress microfluidic-

induced sleep (from left to right on the plot the number of animals n = 37, 68, 71, 41, 67, 60) (D) 

Total sleep under different confinement conditions. Micrographs show chamber geometries. When 

WT animals are confined in smaller chambers, they only show an increase in total microfluidic-
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Supplementary Figure 6. DAF-16::GFP imaging shows that microfluidic-induced sleep partially 

correlates with C. elegans stress. (A) Fluorescent micrographs (with background subtracted) of 

DAF16::GFP animals confined to 500 μm-wide chambers during the +Heat condition. 

Microfluidic chambers are outlined. Left image (t = 0 min) shows diffuse DAF-16::GFP. Over the 

course of 2 hr, DAF-16 localizes to the nucleus (right image). (B) Puncta formation with respect 

to time for Baseline, +Food, +Heat, +Cool, and +Compression conditions (see Methods, Figure 

6). (C) Cumulative number of puncta during imaging. Individual data points represent individual 

animals. (Baseline n = 48, +Food n = 46, +Heat n = 38, +Cool n = 39, +Compression n = 71; **p 

< 0.01, ***p < 0.001, ns = not significant, Kruskal-Wallis with a post-hoc Dunn-Sidak test). 
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Supplementary Figure 7. Waste buildup, chamber volume, and stress from loading do not 

strongly influence microfluidic-induced sleep. (A) Image of animals confined in microfluidic 

chambers designed for constantly flowing buffer to stabilize O2 concentrations and remove the 

buildup of CO2 and other byproducts. Blue paths indicate the direction of flow for a single 

chamber. Flow rate was ~1 mL/hr. (B) Raster plots of detected sleep with and without flow using 

the geometry in (A). (C) We surprisingly observed more sleep with the buffer flow, indicating 

microfluidic-induced sleep is likely not driven by changing gas concentration levels biological 

byproducts (n = 24 for each condition). (D) Chamber designs for maintaining a constant animal 

compression while changing fluidic volume. Fluid is false-colored in pale blue. (E) Raster plots of 

detected sleep for each chamber type. (F) Animals in chambers of different volume do not show 

different amounts of sleep (n = 32 for each condition). (G) Schematic of chamber cross section 
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that have same width and length, but different chamber heights. (H) Raster plots of detected sleep. 

(I) Sleep in the 90um tall chambers is essentially abolished, demonstrating that the animal loading 

process and microfluidic environment alone do not drive sleep (n = 22). Sleep dramatically 

increases in the 55 um tall chambers (n = 50), again demonstrating that the mechanical 

environment regulates sleep strongly. (ns = not significant, **p < 0.01, unpaired two-sided t-test). 
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Supplementary Figure 8. Whole-brain imaging in paralyzed animals. Representative volumetric 

imaging data from four paralyzed animals during whole-brain imaging. The majority of the data 

resembles previous imaging work during wakefulness 32,33, wherein many neurons show correlated 

calcium dynamics. Putative sleep states (top two panels) are labeled but cannot be confirmed 

without behavioral readouts. These data demonstrate that microfluidic-induced sleep can be used 
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as a model behavior for understanding how brain-wide neural circuits drive spontaneous brain 

state transitions.  
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Supplementary Movie 1. microfluidic-induced sleep in a large microfluidic chamber. (Top) 

Animal activity calculated by subtracting consecutive frames (see Methods). (Bottom) Video (with 

background subtracted) of the animal swimming in large microfluidic chamber. The animal is 

initially in the active state, then spontaneously transitions in and out of quiescence. 

Supplementary Movie 2. microfluidic-induced sleep in a small microfluidic chamber. (Top) 

Animal activity trace calculated by subtracting consecutive frames (see Methods). (Bottom) Video 

(with background subtracted) of the animal partially immobilized in a small microfluidic chamber. 

The animal is initially in the active state, then spontaneously transitions in and out of quiescence. 

Supplementary Movie 3. microfluidic-induced sleep is reversible with strong blue light 

illumination. (Top) Animal activity trace. Blue bar indicates a 5 s light stimulation.  (Bottom) Video 

(with background subtracted) of an animal partially immobilized in a small microfluidic chamber. 

The animal is initially quiescent but wakes upon illumination. 

Supplementary Movie 4. microfluidic-induced sleep is reversible with strong mechanical 

stimulation. Two animals receive strong mechanical stimulation via a microfluidic push-down 

valve. The first animal is in the wake state, but behaviorally responds to stimulation. The second 

animal is in the sleep state and wakes upon stimulation. 

Supplementary Movie 5. Animals show a decreased response to weak mechanical stimuli during 

microfluidic-induced sleep. Two animals receive weak mechanical stimulation via a microfluidic 

push-down valve. The first animal is in the wake state, but still behaviorally responds to 

stimulation. The second animal is in the sleep state. Due to an increased arousal threshold, the 

animal does not respond. 

Supplementary Movie 6. Two representative examples of a brain and behavioral state transitions 

during microfluidic-induced sleep. Video shows single-plane, whole-brain epifluorescence of 

GCaMP6s imaging during a microfluidic-induced sleep transition. Top trace is animal behavioral 

activity. Middle trace shows the average ganglia fluorescence. Bottom trace shows the 

fluorescence of ten individual neurons. 
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