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Abstract

Uncertainty in the structure and parameters of networks is ubiquitous across computational biology. In constraint-
based reconstruction and analysis of metabolic networks, this uncertainty is present both during the reconstruction of
networks and in simulations performed with them. Here, we present Medusa, a Python package for the generation
and analysis of ensembles of genome-scale metabolic network reconstructions. Medusa builds on the COBRApy pack-
age for constraint-based reconstruction and analysis by compressing a set of models into a compact ensemble object,
providing functions for the generation of ensembles using experimental data, and extending constraint-based analy-
ses to ensemble scale. We demonstrate how Medusa can be used to generate ensembles, perform ensemble sim-
ulations, and how machine learning can be used in conjunction with Medusa to guide the curation of genome-scale
metabolic network reconstructions. Medusa is available under the permissive MIT license from the Python Packaging Index
(https://pypi.org/) and from github (https://github.com/gregmedlock/Medusa/), and comprehensive documentation
is available at https://medusa.readthedocs.io/en/latest/.

Introduction

Hypothesis-driven computational models of biological
systems are being increasingly applied to guide exper-
imentation [1]. In hypothesis-driven modeling, in con-
trast to data-driven modeling [2], hypothesized biological
parts, functions, and interactions are mathematically for-
malized to allow in silico experimentation. These models
take many forms, ranging in complexity from a single lin-
ear equation relating two quantities to systems of nonlin-
ear differential equations describing dynamic systems.

Across all hypothesis-driven modeling frameworks,
the choice of model scope and parameter values may
strongly influence simulation results. For some types
of hypothesis-driven models in biology, approaches from
other fields have been applied to quantify the influence of
parameter values on simulation outcomes, such as sen-
sitivity analysis of dynamical models [3]. For network-
based models of biological systems such as metabolic
or signaling networks, the presence or absence of a net-
work component may be uncertain due to lack of charac-
terization or uncertainty in data itself. Traditional sensitiv-
ity analysis methods have recently been reformulated for
these systems to analyze sensitivity to topological varia-
tion, but these methods have not seen wide adoption [4].
While uncertainty in network structure poses analytic diffi-
culties, it also presents an actionable framework to accel-

erate biological discovery. Alternative network structures
can guide experimental design, allowing comparison of
simulation results for alternative networks to experimen-
tal data to identify the network structure most consistent
with biological behavior (i.e. model selection) [5]. This un-
certainty can also be used to prioritize experiments that
will maximally improve confidence in the simulations per-
formed with a model (i.e. uncertainty reduction) [6].

In studies of metabolism, genome-scale metabolic net-
work reconstructions (GENREs) have emerged as a use-
ful formalism for hypothesis-driven modeling [7]. In con-
junction with biological objective functions, such as max-
imization of growth rate, GENREs can be used to con-
struct genome-scale metabolic models (GEMs). In addi-
tion to topological uncertainty (e.g. presence/absence of
reactions in a network), simulations with GEMs generally
yield many alternative solutions. Even the simplest simu-
lations that can be performed with GEMs exhibit this be-
havior. This is the case for flux balance analysis (FBA), in
which a pseudo-steady state is assumed, and flux values
are found for all reactions in a GEM such that an objec-
tive function is optimized [8]. While a single global max-
imum value for the objective is guaranteed to be found,
flux through every other component of the network is only
constrained within a solution space, not to a single value.
As a result, even though performing FBA yields a single
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value for the flux through reactions in a network, there
are an infinite number of feasible flux values within the
range determined by the solution space for some reac-
tions. Techniques such as flux variability analysis and
flux sampling have been developed to explore the space
of alternative solutions in this scenario [9, 10].

A myriad of additional algorithms have been developed
for the analysis of GEMs for strain engineering, contex-
tualization of experimental data, and building cell- and
tissue-type specific GEMs [11–13]. In addition to opti-
mization problems that can be solved using linear pro-
gramming such as FBA, problems have been formulated
to take advantage of mixed integer linear programming
(MILP; see [14] for a review of optimization problems in
systems biology). MILP employs binary state variables
during optimization to solve problems that involve dis-
crete activation or inactivation of variables. MILP prob-
lems are particularly well-suited to network-based mod-
els, since they allow switch-like behavior that can include
or exclude network components (e.g. shutting reactions
off/on). MILP has been used widely for gap-filling of
GEMs, a process in which constraints or objectives are
set to recapitulate a known phenotype by adding bio-
chemical functions from a universal set of reactions [15].
In MILP problems used for gap-filling, the objective func-
tion is generally minimization of the number of modifica-
tions to a GEM that must be made to satisfy the con-
straints imposed (e.g. metabolite uptake or secretion,
production of biomass). One consequence of this formu-
lation is that alternative solutions, which contain unique
sets of reactions which need to be altered in the network
or added, are common for large networks that have a
large space of potential solutions to draw from (e.g. a
large universal set of reactions). These alternative op-
tima in MILP problems are increasingly being considered
and leveraged to understand redundancy in solutions and
whether or not portions of a solution may be spurious
[16–18].

It has been shown that the order in which separate in-
stances of gap-filling are applied to the same network
(e.g. gap-filling for growth on individual carbon sources
iteratively) strongly influences which reactions are in-
cluded in the resulting network [19]. In this same study,
the alternative solutions generated during this process
were used to improve gene essentiality predictions us-
ing EnsembleFBA, a technique in which sets of alterna-
tive GEMs are used to perform FBA to determine gene
essentiality. Using the entire ensemble, performance can
be tuned by varying the voting threshold required to make
a specific prediction. This is analogous to the threshold-
based voting procedure used to construct receiver oper-
ating characteristic curves for ensemble-based machine
learning models such as random forest [20]. This ap-

Figure 1: Architecture of ensembles in Medusa. Ensemble
functionality is implemented in Medusa through the Ensemble

class. The Ensemble class exposes three attributes to the user:
features, members, and base model. Both features and mem

bers are container-like objects similar to genes, reactions, and
metabolites in COBRApy. Within each container, Medusa ob-
jects of class Feature and Member are stored. The base model

attribute points to a COBRApy Model. This base model con-
tains all of the features present in any member of the ensemble,
and is manipulated when generating an ensemble or performing
simulations.

proach is likely to be highly beneficial for studies of organ-
isms for which little biochemical data are available, which
typically have many gaps in their GENRE and thus have
many highly-variable alternative gap-filling solutions. Al-
though a nascent approach for studying GENREs, we
have built on these observations, and ensemble gener-
ation and analysis have been applied in several cases [6,
19, 21, 22].

Here, we present Medusa, a Python package for
the generation and analysis of ensembles of GENREs.
Medusa provides a framework for compactly represent-
ing ensembles of GENREs, avoiding the redundancy of
storing many separate models while still being flexible
enough to represent variation in any component within a
GENRE. Medusa manages ensemble storage and index-
ing during simulation, allowing users to interact with an
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entire ensemble in the same way they would interact with
an individual GENRE using any constraint-based recon-
struction and analysis (COBRA) method. Furthermore,
by standardizing the representation of ensembles and
their interface with existing COBRA methods, Medusa
enables the application of supervised and unsupervised
machine learning to gain insight into the influence of vary-
ing components within an ensemble of GENREs on the
predictions they make. The architecture and functionality
of Medusa were designed to make ensemble analyses
as accessible and usable as COBRA methods applied to
single networks.

Design and Implementation

Architecture overview and dependencies

Medusa is built on top of COBRApy, a Python-based
package in which many COBRA methods are imple-
mented [23]. Although a dependency-free approach in
which ensemble simulation methods are implemented
from the ground up could be more efficient, we chose to
extend COBRApy to greatly decrease the size and com-
plexity of the codebase and to reduce the domain-specific
knowledge required to use Medusa and understand the
source code (i.e. decrease the effort for existing CO-
BRApy users and contributors). As such, the architecture
of Medusa closely mimics COBRApy (Figure 1).

At the time of this writing, GENREs are represented
within COBRApy using a Model class. The Model class
manages the interface between COBRApy and numer-
ical solvers through optlang, a Python package for for-
mulating and solving optimization problems that extends
the symbolic mathematics package SymPy [24, 25].
GENREs are represented by a Model using additional
classes with biological analogs (Metabolite, Reaction,
and Gene). Objects belonging to each of these classes
are stored within container-like objects (metabolites, re
actions, and genes, respectively) that are each an at-
tribute of a Model. Each Metabolite, Reaction, and Gene

has attributes which might affect simulations performed
using the Model, such as the lower and upper bounds of
flux through each Reaction or the gene-protein-reaction
relationship for each Reaction, which link them to spe-
cific Genes.

In Medusa, ensemble functionality is introduced us-
ing three new classes. The first, Feature, describes a
GENRE component which has a parameter that varies
across an ensemble (e.g. a reaction that is reversible in
some ensemble members but irreversible in others). The
second, Member, describes individual GENREs within an
ensemble and their state for each Feature. The third
is the Ensemble class, which references all Features
and Members associated with an ensemble of GENREs,

as well as a COBRApy Model, referred to as the “base
model”. This base model holds all COBRApy objects
that might be associated with any Member in the Ensem

ble. Within an Ensemble, each Feature references the
component within the base model (Metabolite, Reac

tion, or Gene) for which it encodes alternative parame-
ter values, as well as the attribute within that component
that is modified (e.g. the upper bound of flux through
a reaction). When a simulation is to be performed us-
ing a particular GENRE within an Ensemble, Medusa
changes the state of the base model to represent the
proper state for the corresponding Member for every Fea

ture. Thus, the Ensemble can represent any number
of variants in GENRE structure throughout an ensemble
(e.g. reaction presence/absence, reversibility, alternative
gene-protein-reaction relationships) and can be used to
apply any methods implemented in COBRApy. Further-
more, this implementation has a memory footprint only
slightly larger than a single COBRApy Model, and facili-
tates queuing of simulations for parallel processing.

Medusa is developed partially with test-driven develop-
ment. Unit tests are implemented using the pytest pack-
age (https://docs.pytest.org/en/latest/) and are
run automatically with each modification to the Medusa
github repository via continuous integration with TravisCI
(Travis CI, GMBH, Berlin, Germany). Support is provided
for Python version 3.4 and later.

Results

Performing ensemble simulations

Currently, users can perform FBA, flux variability analysis
(FVA), single gene deletions, and single reaction dele-
tions using an ensemble in Medusa. In each case, the
simulations are performed with a single function, which
returns a collection of results, where each entry corre-
sponds to the simulation results for a single ensemble
member. Users have the option of performing simula-
tions using the entire ensemble, a specific set of Members,
or a random fraction of Members. For the currently imple-
mented analyses, the collection of results are returned
as a DataFrame from the pandas Python package, where
each column corresponds to the entry normally populat-
ing the results for a single network (e.g. a reaction ID for
FBA/FVA, a gene ID for single gene deletions), and each
row corresponds to an ensemble Member (except for FVA,
where two columns are required for each ensemble mem-
ber to describe the minimum and maximum). See Figure
2 for a schematic describing how the shape of data de-
scribing simulation results changes for each simulation
method.

Because the Ensemble object implemented in Medusa
maintains a COBRApy Model object, users can also per-
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Figure 2: Description and shape of simulation results for common COBRA methods as implemented in Medusa. Each
simulation method returns a distribution-equivalent to the single-model simulation result.

form any custom simulation they would like by 1) manip-
ulating the COBRApy Model to be suitable for their sim-
ulations (e.g. set custom constraints or objectives), 2)
setting the state of the model to represent an ensemble
member using Medusa functionality, 3) performing their
simulation, then 4) iterating through any other ensemble
members they would like and performing steps 2-3.

Comparing ensemble simulations

When performing simulations with an ensemble rather
than a single model, results shift from single values to
distributions. While this explicitly accounts for uncer-
tainty, it also requires that statistical approaches are ap-
plied to interpret differences in distributions. In the sim-
plest case, performing ensemble FBA to predict growth
rate on each of two different media conditions for a sin-
gle bacterial species generates two distributions of pre-
dicted growth rates (Figure 3A). A paired univariate test
(e.g. t-test or a non-parametric equivalent) can be used
to determine whether the predicted growth rate is equal
in these two conditions. This example is demonstrated
in full in the Medusa documentation at https://medusa.
readthedocs.io/en/latest/stats_compare.html.

Coupling ensemble modeling with machine learning

The availability of ensemble generation and simulation
methods in Medusa provides ample opportunity to ap-
ply machine learning to leverage variation in ensembles.
One application area that we have developed focuses
on guiding the curation of genome-scale metabolic net-
work reconstructions by attributing simulation uncertainty
to network components in the ensemble, then prioritiz-
ing curation of these components based on how much
they contribute to simulation uncertainty [6]. This ap-
proach can be broken down into four steps: 1) ensem-
ble generation, 2) ensemble simulations, 3) unsuper-
vised learning to summarize simulation uncertainty, and
4) supervised learning to associate uncertainty in net-
work structure with uncertainty in simulations. In addition
to our published work utilizing Medusa for this purpose,
we provide an example in the Medusa documentation
that applies this method to a single ensemble FBA sim-
ulation: https://medusa.readthedocs.io/en/latest/

machine_learning.html.

In this example, a previously generated ensemble is
loaded into Medusa, media conditions are set to allow up-
take of any metabolites with transporters in the ensemble,
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Figure 3: Comparison of ensemble flux balance analysis (FBA) simulations across different conditions (A) and before and
after ensemble-guided curation (B). A) Ensemble FBA performed on glucose or mannose minimal media using an ensemble
of 1000 GEMs for Staphylococcus aureus. This ensemble was generated in [6] by iteratively gapfilling a draft reconstruction to
enable biomass production in single-carbon source growth conditions supported with experimental data. Mean for the distribution for
either condition shown by vertical line of same color. Predicted flux through biomass is higher on mannose than glucose (Wilcoxon
signed-rank test, p < 1E-5). B) Ensemble FBA performed on complete medium (uptake of -1000 mmol/g*DW*hr allowed for all
metabolites) using an ensemble of 1000 GEMs for S. aureus. Mean for the distributions before and after curation shown by vertical
line of same color. Ensemble and machine-learning guided curation identified N-Formimino-L-glutamate iminohydrolase as a driver
of variation in simulated flux through biomass. Based on a literature search, this reaction was inactivated in all ensemble members
and ensemble FBA was performed again, resulting in the shift in the distribution shown. See documentation for full narrative-style
example: https://medusa.readthedocs.io/en/latest/machine_learning.html.

and ensemble FBA is performed. Then, a random forest
regressor is used to predict the simulated values for flux
through biomass (e.g. the values generated with ensem-
ble FBA) for each ensemble member using the Medusa
states for the same ensemble member as input. Exam-
ining the most predictive feature in the random forest re-
gressor, we perform a literature search and find that the
feature is likely not present for the bacterial species un-
der study (i.e. the species does not have the ability to
catalyze the reaction described by the feature). Based on
this examination, we disable the feature (which is a reac-
tion in this case), perform ensemble FBA again, and find
that this curation step has reduced the average predicted
flux through biomass (Figure 3B). Although we use this
approach to guide curation, we also envision the same
process having great utility for attributing simulation un-
certainty more generically, such as with simulations per-
formed using an ensemble generated using ‘omics inte-
gration methods [11].

Generating ensembles from phenotypic data

Medusa implements a previously-developed algorithm for
gapfilling GENREs using growth phenotyping data [6, 19].
The algorithm takes a GENRE with an objective function
and a dataset of binary growth/no-growth calls on defined
media conditions as input. The objective function is then

set as a constraint with bounds such that any feasible flux
distribution must enable activity within the bounds (e.g. at
least some amount of flux through biomass production or
a demand reaction). A new objective function is set to
minimize the sum of fluxes through reactions in the reac-
tion database, and the problem is solved to identify reac-
tions taking part in this minimal flux activity. To generate
a single gapfilled ensemble member, the draft GENRE is
iteratively gapfilled on each positive growth media condi-
tion. Variation is introduced by randomizing the order in
which media conditions are used for gapfilling. See Fig-
ure 4A-B for a schematic summarizing this approach.

This gapfilling process is implemented in Medusa
through a single function, and a full example of
preparing a model and all data necessary for this
process are provided in the Medusa documenta-
tion at https://medusa.readthedocs.io/en/latest/

creating_ensemble.html. Although Medusa imple-
ments the previously published version of this approach,
it also allows users to randomly subsample a fraction of
conditions to generate more variation in the resulting gap-
filled GENREs.

Availability and Future Directions

Stable releases of Medusa are available through
the Python package index (PyPI, https://pypi.org/)
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Figure 4: Iterative gapfilling strategy used to generate ensembles implemented in Medusa. A) Given a list of conditions in
which an organism satisfied some objective (e.g. secretion of a specific metabolite, growth) and a draft GENRE for the organism,
gapfilling is performed sequentially on each condition. After each gapfill step on a single condition, reactions in the gapfill solution are
added to the GENRE before starting gapfilling on the next condition. In this schematic, all conditions are used, but Medusa also allows
users to randomly subsample a fraction of conditions to generate more variation in the resulting gapfilled GENREs. Here, gapfilling
is performed to enable growth in the presence of each individual metabolite (indicated by a green arrow for a single condition during
each gapfill step). B) Medusa iteratively performs gapfilling as shown in panel A, then shuffles the order of conditions to introduce
variation in the gapfill solution. After a user-defined number of cycles through the process shown in panel A, Medusa generates an
ensemble containing all unique GENREs that resulted from gapfilling.

as well as github (https://github.com/gregmedlock/
Medusa/). Documentation is available through Readthe-
docs at https://medusa.readthedocs.io. Current de-
velopment efforts are focused on parallelization and inte-
grating Medusa with other Python-based tools in the CO-
BRA community.

Currently, the only high-level function available to users
of Medusa to share ensembles generates a serialized
version of the Ensemble object using the pickle package
(the standard Python library package for serializing ob-
jects). Alternatively, users can save the base model for
any Ensemble as a Systems Biology Markup Language
(SBML, [26]) file using COBRApy, then choose the for-
matting option of their liking to save Feature and Mem

ber information for the Ensemble. In SBML, there is
not currently a standardized way to represent ensembles
as required in Medusa. We plan on extending the Flux
Balance Constraints package, an extension to SBML in-
tended for constraint-based models, to enable standard-
ized sharing of Medusa ensembles. Until then, we recom-
mend users include both an SBML file for the base model
of each Ensemble and the serialized pickle at time of pub-
lication.
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