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Abstract
Motivation: A major challenge in molecular and cellular
biology is to map out the regulatory networks of cells. As
regulatory interactions can typically not be directly observed
experimentally, various computational methods have been
proposed to disentangling direct and indirect effects. Most
of these rely on assumptions that are rarely met or cannot
be adapted to a given context.
Results: We present a network inference method that is
based on a simple response logic with minimal presumptions.
It requires that we can experimentally observe whether or
not some of the system’s components respond to pertur-
bations of some other components, and then identifies the
directed networks that most accurately account for the ob-
served propagation of the signal. To cope with the in-
tractable number of possible networks, we developed a logic
programming approach that can infer networks of hundreds
of nodes, while being robust to noisy, heterogeneous or
missing data. This allows to directly integrate prior net-
work knowledge and additional constraints such as sparsity.
We systematically benchmark our method on KEGG path-
ways, and show that it outperforms existing approaches in
DREAM3 and DREAM4-challenges. Applied to a pertur-
bation data set on PI3K and MAPK pathways in isogenic
models of a colon cancer cell line, it generates plausible net-
work hypotheses that explain distinct sensitivities towards
EGFR inhibitors by different PI3K mutants.
Availability and Implementation: A Python/Answer
Set Programming implementation can be accessed at
github.com/GrossTor/response-logic.
Contact: nils.bluethgen@charite.de

1 Introduction
Complex molecular networks control virtually all as-
pects of cellular physiology as they transduce signals
and regulate the expression and activity of genes. Un-
derstanding those molecular networks requires an ap-
propriate simplification of the stupefying complexity
that we find in cells. A very successful and com-
mon abstraction in molecular cell biology is to de-
fine effective modules and map out their interactions
[22]. But even though new experimental techniques

can reveal and quantify countless cellular components
in ever increasing level of detail, they typically cannot
identify the relationships between them. This is why
for more than two decades various methods were de-
veloped to infer gene regulatory networks, signalling
pathways and genotype-phenotype maps [12]. These
methods vary widely in their notion of network (e.g.
directed vs. undirected, weighted vs. unweighted
links), their mathematical methodology (e.g. statisti-
cal measures vs. model-based parameter fits), or their
goals (e.g. interaction discovery vs. network property
characterization vs. perturbation response prediction)
[33, 26, 11, 18, 25, 4, 34]. Not surprisingly, differ-
ent methods produce radically different results on same
data sets [32, 31]. This makes for an intricate choice of
method and guarantees a certain degree of arbitrariness
in interpreting the inferred networks.

One major goal of network inference for signalling and
regulatory networks is to derive directed networks, that
is, to infer information about causal relations within the
studied system. This differs profoundly from the infer-
ence of undirected associations between node pairs, such
as by correlation, as it requires to trace the flow of in-
formation through the network. A popular approach
is to use time-series data, for which methods like con-
vergent cross mapping [40, 8] or Granger causality [19]
can distinguish correlation from causation, given suffi-
ciently dense samples. But most often, experimental
protocols or excessive expenditures preclude the obser-
vation of suitable temporal trajectories for many con-
texts in molecular biology. Thus, a complementary ap-
proach is to observe the system’s responses, for instance
the steady state response, to a set of localized perturba-
tions [7, 37, 43]. Depending on the specific system, these
perturbations could, for example, be gene knockouts or
kinase inhibitions. However, existing methods rely on
context-specific assumptions whose validity is hard or
impossible to assess in practice, which makes it very
difficult to interpret their results. Facing this challenge,
we asked whether we could derive a more generally ap-
plicable scheme for the inference of directed networks –
a method that is based on a principle which is accurate
enough for most contexts while also sufficiently simple
to allow for an intuitive understanding of how the net-
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Figure 1: The steps of the response logic approach. The re-
sponse logic and all additional prior network knowledge are for-
mulated as a logic program. It is first used to rectify the ex-
perimentally determined response pattern, and second, takes the
resulting (potentially incomplete) transitive closure as input to in-
fer either all individual conforming networks or the union thereof.

work structure was resolved. Furthermore, we noticed
that even though most network inference problems are
embedded within very well studied contexts, the vast
majority of reverse-engineering methods predicts net-
works de novo. Therefore, we additionally aimed for a
method that could readily incorporate prior knowledge
about presence or absence of certain links or about other
known network properties. This resulted in what we call
the response logic approach.

In the following, we describe the response logic ap-
proach in more detail and then benchmark it by (i) as-
sessing the performance using synthetic data derived
from KEGG pathways [24], and (ii) comparing its per-
formance to competing methods using the community-
wide inference challenges (DREAM) [38]. Finally, we
use the approach to study RAS/MAPK/PI3K signalling
in a colon cancer cell line, and predict differences in the
signalling network topology due to different PI3K mu-
tants, that manifests in differential sensitivity of a colon
cancer cell to various targeted drugs.

2 Method
We developed a method to infer directed network struc-
tures from perturbation data that we term response
logic (see Figure 1).

As an input, this method requires binary information
about which nodes in the network respond to which per-
turbation, together with a rank of confidence of each
data point. We refer to this set of experimental obser-
vations as the response pattern. Given this information,
the response logic approach infers networks that agree
to the following simple rule: A perturbation at a node
is propagated along all outgoing edges to the set of con-
nected nodes, and these responding nodes will in turn
propagate the signal and so forth. Consequently, a per-
turbation of a node causes a response at all nodes to
which it is connected by a path, and no response at
all others. The information about which node can be
reached from which other nodes is known as the net-
work’s transitive closure. Thus, the central assumption
of our response logic approach is that experimentally

observed responses are in agreement with the transitive
closure. This assumption then leads to the inverse prob-
lem of identifying the networks whose transitive closure
actually matches the response pattern.

The algorithm to infer these networks consists of
two main steps. Using a logic programming approach,
it first modifies the experimental response pattern to
match a transitive closure (rectification step) and then
infers either all individual networks that comply to the
given data or the union over all those conforming net-
works. We will describe the different steps in the fol-
lowing sections.

2.1 Rectifying the response pattern

The response logic approach interprets the measured
response pattern as a noisy, incomplete transitive clo-
sure. But because of misclassification, a response pat-
tern might not match any actual (incomplete) transitive
closure. Consider for example a three node network
in which all nodes are observed to respond to a per-
turbation at node one. This implies two paths, from
nodes one to two and nodes one to three. Therefore, if
a perturbation at node two causes a response at node
one, node three is expected to respond as well. But as-
sume that this response at node three was not observed
(misclassification). Then, there is no directed network
with a transitive closure that would match this response
pattern. We expect that such misclassification occurs
rather often when working with experimental data be-
cause of experimental noise or because the system under
consideration does not fully comply with the assump-
tions of the response logic. Thus, it is necessary to
identify the most relevant subset of the response pattern
that forms an (incomplete) transitive closure which can
then be used to infer networks.

Our rectification algorithm requires to rank the obser-
vations of the response pattern from most to least confi-
dent. Typically, such confidence levels are readily avail-
able since the response pattern is often derived from
a binarization of continuous experimental readouts, in
which case a confidence score could be the distance to
the binarization threshold, or a score of statistical sig-
nificance. The algorithm then iterates the elements of
the response pattern from high to low confidence, and
at each step, determines whether the so far collected el-
ements form a transitive closure and also conform with
additional constraints from prior knowledge. This is
done using a logic program (see below), which deter-
mines if there is any network that is compatible with
these elements of a transitive closure. If the new ele-
ment is compatible, it is added to the collection of con-
forming data and otherwise discarded. The more data
points enter the collection the more restrictions apply
to the remaining elements of the response pattern. As
high confidence observations are taken into account first
they are thus less likely to be discarded, ensuring that
we extract the most relevant subset of the response pat-
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Figure 2: Response logic inference of a toy network. A From top
to bottom: An example network of five nodes,where flashes indi-
cate which nodes were perturbed; the full transitive closure; the
response pattern that captures parts of the the network’s tran-
sitive closure, with missing or misclassified data and confidence
scores. B Three steps during data rectification: Data points are
added sequentially from high to low confidence (stars in top row),
and increasingly constrain the inferred network and the (rectified)
response pattern (red and blue fields in top row). Bottom row
shows the inferred network at that step during rectification.

tern that indeed forms an incomplete transitive closure
that is in line with additional heuristic constraints.

Figure 2 demonstrates this scheme for a toy network
of five nodes, of which we assume that four nodes were
perturbed (indicated as flashes in Figure 2A, top). The
resulting response pattern then consists of a five by four
matrix, and we assume that two data points are miss-
ing, and two elements of the response pattern do not
match the transitive closure (compare Figure 2A mid-
dle and bottom). In Figure 2B, we exemplify how the
response pattern is iteratively rectified. We assume that
we know that a link from node two to node three ex-
ists and that there is no link between node one to node
three (green stars). Given this prior knowledge, already
the first (highest confidence) data point (yellow star in
the leftmost panel), additionally implies that node three
also responds to a perturbation of node one. Any sub-
sequent data point that would be in conflict with this
information will be discarded. The middle panels of
Figure 2B show that the five most trusted data points
constrain five other elements of the rectified response
pattern. Amongst them are the two misclassified, as
well as the two missing data points. Therefore, in this
toy example, the high confidence data points automat-
ically correct these false or missing pieces of informa-
tion. The bottom panel of Figure 2B shows how adding
data points increasingly constrains the network struc-
ture. Once all data is considered, most of the links (but
not all, as discussed later on) are known to be either
present of absent from the network. Note, however,
that the rectification process does not require to com-
pute the shown union of conforming networks, but only
requires to determine if for any network at all, all con-

straints are satisfiable, which is computationally far less
expensive.

2.2 Finding conforming networks with
logic programming

Mapping the response pattern to its corresponding set
of conforming networks is a substantial computational
challenge, as there are 2N ·N possible directed networks
(with N being the number of nodes), making it infeasi-
ble to enumerate all networks even for small sizes. We
therefore solve the search problem with a logic program-
ming approach, which is a form of declarative program-
ming where the problem is represented via a set of logi-
cal rules. We chose to use the logic modelling language
Answer Set Programming (ASP) [3], as implemented in
the Potsdam Answer Set Solving Collection [17]. For
ASP solving, we apply the clingo [16] system.

ASPs generate-define-test pattern [30] allows for a
convenient encoding of the response logic, and the spe-
cific encoding is detailed in Supplementary Material S1.
In short, we generate the collection of answer sets, con-
sisting of all possible network structures, then define
auxiliary predicates, in our case the networks transitive
closure, and then test whether this transitive closure
agrees with the data and also whether the tested net-
work complies to all other heuristic constraints. Then
the ASP solver, clingo, allows to enumerate all conform-
ing networks. Note that computational effort needed to
identify a conforming network heavily depends on net-
work size and the provided heuristic constraints. But
overall, the logic programming approach infers networks
of up to 100 nodes within seconds, without any paral-
lelization.

The previously discussed data rectification sequen-
tially checks the satisfiability of every data point and
could therefore become a performance bottleneck for
large systems. However, because this process only re-
quires to decide whether any network at all is in agree-
ment with the latest data, instead of having to provide
the entire set of conforming networks, we can solve a
much simpler logic program. Its crucial performance
gain arises from avoiding to generate an answer set for
each possible network structure. The specific implemen-
tation is described in Supplementary Material S1.

2.3 Identifiability and heuristic con-
straints

While every directed network has a single transitive clo-
sure, a transitive closure can often be mapped to many
different networks, even more so if the transitive closure
is only partially known. Thus, we can usually not in-
fer a unique directed network from a rectified response
pattern alone. For example, any feedback loop creates
a strongly connected network component, that is, a set
of nodes for which any pair is connected by a path.
Therefore their response pattern is independent on how
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exactly they are connected to each other. Similarly, the
response pattern does not change with any additional
feed-forward loops that cuts short an existing path. To
resolve such structures we need to resort to additional
constraints that are derived from contextual knowledge
about the studied system. A crucial advantage of the
response logic approach is that it can easily integrate
various kinds of such constraints. Here, we want to ex-
emplify this and introduce those constraints that are
used in the applications shown further below.

Rarely will we analyse networks that have never been
studied before and therefore one can use prior knowl-
edge to constrain networks, such as by requiring the
presence of well-established links in the network, or by
excluding links that are physically not feasible (such as
interactions between molecules that are not in the same
compartment). This information can directly be inte-
grated into the logic program by defining the presence or
absence of links as additional constraints. In addition,
the logic program can also accommodate more subtle
constraints, such as to enforce bounds on the numbers
of incoming and outgoing edges of (groups of) nodes,
see the implementation in Supplementary Material S1.
This allows, for example, to encode the information that
a module of nodes signals to other parts of the network
without having to explicitly state which of the module’s
nodes has the outward link. The same idea holds for a
module that is known to receive at least one input to
any subset of its components. Note that these types of
constraints directly limit the space of possible networks
and in turn that of the transitive closures. They will
thus influence how the response pattern can be recti-
fied and must be taken into consideration during the
process.

But even these additional constraint might not suffi-
ciently limit the number of conforming networks to con-
sider them individually. Alternatively, an extension of
the logic program, described in Supplementary Material
S1, allows to efficiently find the union of all answer sets.
This union reveals which links (or missing links) appear
in all solutions and those links where there is ambiguity.
Exposing the ambiguous parts of the network is partic-
ularly valuable because it can either guide the choice of
additional perturbation experiments or reveal effective
strategies on how to further filter the set of solutions.

One widely used strategy in this regard is to require
an overall sparse architecture [44]. We would thus want
to identify the conforming networks with the fewest
links. However, naively parsing all network solutions
will be infeasible when the set of solutions is large. To
overcome this problem we developed an algorithm that
sequentially removes as many ambiguous links as pos-
sible, without violating any constraint. To do so, af-
ter every link removal the pruned network is tested for
satisfiability. If it complies to the given constraints,
the link remains removed and the procedure continues.
Otherwise the link is considered necessary and the pro-
cedure continues without the removal of the link. This

leads to what will be referred to as the sparsified net-
work. Yet, such scheme is only reasonable if the order
by which links are removed, reflects to some extent a
knowledge about which links are more likely to be ab-
sent in the underlying network, and should therefore be
tested for removal first. However if such information is
not available, one can use yet another approach to filter
for sparse networks, termed the parsimony constraint.
This constraint asks whether a link from a conforming
network can be removed without it changing the net-
work’s transitive closure. If that is the case, the net-
work is considered non-sparse and is removed from the
solution set. The specific encoding is found in Supple-
mentary Material S1. While this procedure does not
generally single out a unique solution as before (multi-
ple networks can be parsimonious), it was nevertheless
observed to drastically reduce the solution space.

Taken together, a response pattern will typically be
compatible with a large number of network topologies,
but various types of prior network information can be
incorporated into the response logic approach to reveal
a finer network structure than what would have been
possible from the response pattern alone. At the same
time, the approach states explicitly whether or not the
presence or absence of a link can be inferred from the
given data and constraints.

2.4 Implementation and data acquisi-
tion

The response logic approach is implemented in Python
3.6 as a package available at github.com/GrossTor/
response-logic. Numerical computations, data han-
dling and plotting was done using the SciPy libraries
[23] and seaborn. Additional functions were taken from
the networkx package [21]. Clingo’s python API (ver-
sion 5.2.2) [16] is used to ground and solve the Answer
Set Programs.

The repository contains all Answer Set Programs,
which are accessed by the the main response.py mod-
ule. It includes the prepare ASP program-function to
set-up a logic program according to provided data and
additional constraints, the conform response pattern-
function that rectifies the response pattern, as well as
various functions to solve a logic program. Addition-
ally, a repository available at github.com/GrossTor/
response-logic-projects includes all scripts and
data that were used to obtain the results from the fol-
lowing sections.

The provided KEGG data [24] was retrieved via
the KEGG package within the biopython library. The
KEGG pathway maps database was parsed for human
pathways and the retrieved KGML-files were used to
build network representations based on their ”relation
elements”.

The data and evaluation scripts for the DREAM3
and DREAM4 challenge was retrieved with the of-
ficial DREAMTools python package [9]. Leader-
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Figure 3: The performance of the response logic approach on synthetic data generated from 270 human KEGG pathways [24]. N
denotes network size, εM quantifies the fraction of missing and εC the fraction of misclassified data points. A Data generation and
scoring scheme. B Each dot per color represents a different pathway, colors represent different parameters for misclassification (εC)
and missing data (εM ). C Precision and recall for three particular signalling pathways as a function of the fraction of misclassified or
missing data.

boards were taken from www.synapse.org/#!Synapse:
syn3049712/wiki/74631 and Figure 3 in [31].

The SW-48 perturbation data was generated using
a SW-48 cell line, and two derived clones with muta-
tions in PI3K. Cell lines were obtained from Horizon
Discovery. All lines were maintained in RPMI (Invit-
rogen) with 10% FBS (Invitrogen). Cell growth was
assessed using the Cell Titer 96 Aqueous One Solution
Cell Proliferation Assay (Promega). Cells were treated
with compound 24 hours after plating and grown for
72 hours. The cell growth was determined by correct-
ing for the cell count at time zero (time of treatment)
and plotting data as percent growth relative to vehi-
cle (DMSO) treated cells. Reverse Phase Protein Ar-
ray (RPPA): Cells were treated 24 hours after plat-
ing and incubated with inhibitor (GDC0973, GDC0068,
Erlotinib) or solvent control (DMSO) for 1 hour, and
then stimulated either with EGF, HGF, and IGF or
with control (BSA) for 30 min. Cells were lysed in T-
PER (Thermo), 300mM NaCl, cOmplete R© protease in-
hibitor (Roche), and Phosphotase Inhibitor Cocktails
2,3. RPPA measurements were carried out by Thera-
nostics Health.

3 Results

3.1 Performance assessment on KEGG
pathways

We first set out to systematically quantify how misclas-
sification and missing data in the experimentally de-
termined response pattern impacts the quality of the
predicted network structure. To this end, we inferred
network structures from synthetic data sets. As a rel-
evant and representative collection of test networks,
we extracted all 270 human gene regulation and sig-

nal transduction networks (maximally containing 100
nodes) from the KEGG pathway database [24]. For
each of these network structures we generated its tran-
sitive closure, which we considered as the immaculate
response pattern. Then, we repeatedly generated a ran-
dom confidence pattern, C, where each entry is drawn
from a uniform distribution between zero and one. To
evaluate the effect of missing data, we remove a frac-
tion εM of data points from the perfect response pat-
tern and to evaluate the effect of measurement error,
we also misclassify a fraction εC of the remaining data
points. Missing or misclassified data points were cho-
sen with a probability that was proportional to their
confidence score Cij . We then used the resulting re-
sponse and confidence patterns to infer the sparsified
network, as defined in the previous section, via the re-
sponse logic approach and, comparing it to the original
KEGG network, computed precision and recall as per-
formance scores, see Figure 3A.

For each of the 270 KEGG networks the procedure
was repeated 50 times for different choices of εM and
εC , and the mean of the scores is shown in Figure 3B.
In the absence of misclassifications (εC = 0, blue and
orange dots in Figure 3B), prediction errors stem exclu-
sively from the previously discussed multitude of con-
forming network structures. Interestingly, for a vast
set of biological pathways the resulting inference errors
are rather mild, and highly accurate predictions can be
made independent of network size. However, once mis-
classifications are present, the predictivity is markedly
reduced. Interestingly, this effect increases with grow-
ing network size.

We next examined the dependency on missing data
and misclassification rates in more detail for the three
signalling pathways RAS, Wnt and TGF-beta. We
chose to scan the parameters from 0.0 to 0.5 and 0.0
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to 0.25 for εM and εC , respectively, as a complete loss
of information would either occur when all data was
missing, εM = 1, or half of the entries were misclassi-
fied, εC = 0.5 (εC = 1 would produce an inversion of the
response pattern). For all pathways, we found that re-
call is more affected by missing data than precision (see
Figure 3C). That is, with less data the predicted links
remain rather accurate but fewer of them are predicted.
We also confirmed our previous finding that misclassi-
fication reduces prediction scores much stronger than
missing data. Interestingly, even when half the data
was discarded, in many instances precision remained
still close to one. This suggests that discarding low-
confidence data points rather than risking to accept
many misclassified data points might be a good strategy
to improve predictions. We will re-examine this idea by
the end of the next section.

3.2 Response logic approach out-
performs competing methods in
DREAM challenges

The Dialogue for Reverse Engineering Assessments
and Methods (DREAM) [38] provides community-wide
reverse-engineering challenges that foster the develop-
ment of new systems biology models. Particularly, the
DREAM3 and DREAM4 in-silico challenges [31, 20]
assessed the performance of various gene network-
inference methods to which we can compare the re-
sponse logic approach. In these two challenges various
biologically plausible in silico gene networks of differ-
ent sizes were simulated under stochastic conditions to
emulate realistic transcription dynamics resulting from
knockdowns and knockouts of each single gene. Partic-
ipants were given the resulting time courses, the steady
states, and the wild type level of each gene and asked
to infer the directed network structure from them. A
ranked list of predicted gene pair interactions was then
compared against the gold standard from which the area
under the precision-recall and the area under the Re-
ceiver Operating Characteristic curve are computed, see
Supplementary Material Figures S1 and S2. Compar-
ing these to a null model provides p-values for each of

the given five networks per network size that then get
combined into a single overall score [39].

To infer the DREAM networks with the response
logic approach we generated response patterns from the
in silico knockout experiments of these challenges only
(not considering knockdown or time series data). These
were computed as follows. When Kij denotes the level
of gene i after knockout of gene j, and the wild type
levels are w, we defined the normalised global response
matrix, R, as

Rij = |Kij − wi|
si

,

with si being the standard deviation of the knockout
levels of gene i (row i of K). We then defined gene
i to be responding to a knockout of gene j if Rij > 1.
The entries of the associated confidence matrix were de-
fined as a normalized distance of knockout levels to this
threshold, see Supplementary Material S2. We then ap-
plied our response logic approach to these matrices to
infer sparsified networks, as defined earlier. The goal of
the DREAM challenge is to provide a list of gene pairs
that is ranked by their predicted likelihood to be inter-
acting. We generated it by first listing the predicted in-
teracting and then the non-interacting gene pairs, where
within each group, the pair list was ordered according
to the associated entries in the global response matrix
(interaction i → j was ranked higher than k → l if
Rij > Rkl). As comparison, we also created a ranked
list by simply ranking gene pairs in the order of the
global response matrix, without the grouping that was
introduced by the response logic logic, which we termed
“naive approach”.

These ranked lists were then scored using the official
DREAMTools package [9] (with a minor modification
for one network score at DREAM3 N=100, see Supple-
mentary Material S2). Figure 4 shows the results of our
method and that of the naive approach in comparison
to the ten best performing participants at each network
size and challenge. Except for the small networks with
N = 10, where the response logic approach ranks second
and third, it outperforms all 29 competitors participat-
ing in DREAM3 [31], as well all 29 competitors partici-
pating in DREAM4 [10]. Note that the best performers
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Figure 5: A Response pattern of the SW-48 cell line of selected phospho-proteins after perturbations affecting EGFR, PDGFR,
ERK1 and AKT. B Performance of response logic network inference under various (combinations of) heuristics, as explained in text,
compared to a random classifier (shaded colors). C Literature network (filled arrows) and final network prediction (finer arrows, only
links with consensus ratio ≥ 0.4 are shown).

for the small networks (N = 10) that scored higher than
the response logic [46, 28] also used the provided time
course data, which we did not use in our response logic
approach.

We also observed that the response logic always out-
performed the naive approach, confirming that non-
trivial additional knowledge is gained when applying
the response logic. Notably however, already the naive
approach scores comparatively well, which let the chal-
lenge’s organizers to conclude that ”sophisticated meth-
ods that would in theory be expected to perform better
than the naive approach described above, were more
strongly affected by inaccurate prior assumptions in
practice” [31]. This observation affirms our initial moti-
vation to design an approach with minimal assumptions
on the data.

Finally, the DREAM data also allowed us to test if
disregarding low-confidence data points, as suggested
by the KEGG pathway analysis, improves predictions.
Thus, considering the confidence matrix with scaled en-
tries between zero and one (Supplementary Material
S2), we removed data points with confidence scores be-
low a threshold and re-engineered the networks from
those smaller data sets. The resulting scores relative to
the original scores, which were obtained from the full
response patterns, are shown in Figure 4B. With the
exception of the N = 10 networks, these numerical ex-
periments confirmed that removing low-confidence data
effectively improved network inference. Peak perfor-
mance is reached when approximately five percent of
the data is discarded.

In summary, our benchmarks using the DREAM in-
silico challenges provide a strong indication that the re-
sponse logic approach is capable of reverse-engineering
biological networks. Its simplicity not only makes its re-
sults comprehensible but the DREAM challenge showed
that they are also more accurate than those of existing
methods.

3.3 Reverse engineering MAPK and
PI3K signalling in a colon cancer
cell line

After having benchmarked the response logic formal-
ism, we next aimed to use it to investigate signalling
networks in cancer cells. In a first step, we decided to
reverse engineer the Ras-mediated signalling network
including MAPK and PI3K/AKT signalling in SW-48
colon cancer cells. We performed multiple perturba-
tion experiments using either ligands or inhibitors that
targeted EGFR, PDFR, ERK and AKT, and measured
changes in phosphorylation using a reverse phase pro-
tein assay (RPPA) platform. Ten of the antibody-based
readouts passed a quality control and were relevant to
the considered pathways, see details in Supplementary
Material S3. Using replicate measurements of both un-
perturbed and perturbed conditions, we constructed the
response pattern as well as the according confidence
scores, which are shown in Figure 5A (see Supplemen-
tary Material S3 for details).

The RAS signalling network has been well studied,
which allowed us to compile a literature network shown
in Figure 5C that can be used as a gold standard to
measure prediction performance. We then applied our
response logic framework to the response pattern, and
evaluated predictions by means of the areas under the
ROC-, as well as precision-recall (PR) curves, as shown
in Figure 5B, see Supplementary Material S3 for details.
As it was computationally impossible to enumerate all
networks, we determined the union of all conforming
networks, as described earlier, and scored links based
on whether they are found in all, in some and in no
conforming networks. Doing so led to PR and ROC
curves that were only marginally better than random
(top row in Figure 5). The apparent challenge con-
cerning the network inference for this network is the
substantial disparity between ten readouts to only four
perturbations, making the reverse engineering problem
strongly underdetermined. A crucial benefit of the re-
sponse logic analysis is that it allows allow for the incor-
poration of various additional insights about the struc-
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ture of signalling networks to reduce the space of solu-
tions. We therefore next investigated how the inclusion
of generic and indirect network knowledge rendered the
analysis more meaningful. First, we enforced a hier-
archy in the network (heuristic I). Signalling networks
typically process signals received on the receptor level
through a chain of intermediate kinases, before they are
passed on to a set of targets. We therefore disallowed
any direct connections between the receptor and the
target level (according to the allocation shown in Fig-
ure 5C) (these ruled-out links were obviously not taken
into account for the scoring procedure, which explains
the different areas under the precision-recall curve for
the random classifier in Figure 5B). Furthermore, kinase
interactions are highly specific, resulting in sparse sig-
nalling networks. Therefore, we found it reasonable to
rid the network of redundant links and apply the parsi-
mony constraint, as defined earlier (heuristic II). Lastly,
we required that any node at receptor level must have
at least one outgoing link (heuristic III).

Adding these three heuristics, I – III in Figure 5B,
considerably improved the performance and reduced the
solution space to 666 conforming networks. This makes
it possible to enumerate them all and compute for each
possible link the fraction of how many times it was
present in all conforming networks (consensus ratio).
We reasoned that a higher consensus ratio also implies a
higher relevance, which we found confirmed when using
the consensus ratio, rather than the union of networks
to score the predictions (heuristic IV). From these re-
sults we conclude that the response logic is indeed a
valid assumption for the MAPK and PI3K pathway ac-
tivity in the SW-48 cell line and that rather apparent
additional information can effectively compensate for
the small number of perturbations.

3.4 Modelling the effects of PI3K muta-
tions in a colon cancer cell line

Having verified the validity of the response logic ap-
proach on the SW-48 cell data, we next used it to in-
vestigate how different mutations in the PI3K change
signalling. To investigate this, we used clones of SW-
48, in which two mutations that are commonly found in
tumours were integrated, namely PIK3CAH1047R and
PIK3CAE545K. We generated data using the same
scheme as before, by perturbing the cells with lig-
ands and inhibitors, and measuring the response using
RPPA. Considering that the MAPK and PI3K path-
ways are very well studied, we assumed that the litera-
ture network depicted in Figure 5 is valid for all three
cell lines, except for those links that could be affected
by the different PI3K mutations. Because PI3K is not
amongst the readouts, we model PI3K mutations to po-
tentially affect links from and to its next downstream
target, which is AKT. Furthermore, the literature net-
work does not include context-dependent feedbacks in
the MAPK pathway [29]. As we observed mutant-

dependent upregulation of EGFR as well as SHC upon
MEK inhibition, see Supplementary Material Figure S4,
we considered this option in the inference as well.

Therefore, to model the different mutant response
patterns Figure 6A, we used a heavily constrained re-
sponse logic approach in which the presence or absence
of network links is governed by the literature network,
expect for those links going in and out of AKT and those
links going into EGFR. Not only did these constraints
compensate for the few perturbations but also connect
differences in the data to plausible alterations of the
network. Furthermore, as the parsimony constraint has
proven beneficial in the response logic validation on the
parental cell line data, Figure 5, it is used as well (with
the constrained literature network, previous heuristics I
and III no longer apply, and IV is not relevant as shown
next).

This approach resulted in four, one, and two con-
forming networks for the parental, the E545K, and the
H1047R cell line, respectively. For the two ambiguous
cell lines, we decided to isolate the single, biologically
most plausible network hypothesis. In the case of the
parental cell line, the four conforming networks consist
of the combined options of whether or not SHC feeds
back to EGFR and whether EGFR signals directly to
AKT or via SHC. SHC has been found to be an adapter
protein that is recruited to the activated EGFR (but
does not activate it) and is essential for the receptor’s
signal relay [35]. We thus chose the parental network
hypothesis that excludes the SHC to EGFR and the
EGFR to AKT link. The two H1047R networks only
differed in whether a feedback to EGFR originates from
p90RSK or from ERK. Since the ERK to EGFR feed-
back is well described in the literature [29], we decided
for that option. With this, we could compare the mu-
tant specific network hypotheses, as shown in Figure 6B,
which led to two main observations. First, in contrast
to the parental cell line, the mutant cell lines do not
have a link from the EGFR receptor to the PI3K path-
way. And second, the H1047R cell line is the only one
bearing a feedback from ERK (or any node) to EGFR.

We next aimed to explore if these different net-
work topologies might explain phenotypic differences
between these cell lines. We therefore evaluated the
drug-response of these cells for different targeted drugs,
as shown in Figure 6C. Some differences in drug re-
sponse can be understood directly from the mutations
that have been added to the cell lines: The PI3K and
AKT inhibitors seem to be slightly more effective in the
PI3K mutant cell lines, which is not surprising as these
cells have constitutively active PI3K signalling. Simi-
larly, inhibition of IGFR was more effective in the wild
type cells, as the mutant cells are more self-sufficient
in PI3K signalling and therefore potentially require less
IGFR activity. The drug responses to the EGFR in-
hibitor, and the MEK inhibitor are more complex and
can only be interpreted when considering the network
rewiring. The PI3KH1047 mutant cell line is rather re-
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Figure 6: A Response pattern for two PI3K-mutant cell lines derived from SW-48, carrying either the E545K or H1047R mutations
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sistant to the MEK inhibitor. This can be understood
by the presence of the negative feedback from ERK to
EGFR in this cell line, which is known to cause resis-
tance by re-activating ERK and amplifying AKT sig-
nalling upon MEK inhibition [27]. EGFR inhibition
effects the cell line with the E545K mutant less, and
the cell line with the H1047R mutant more strongly
compared to the parental cell line. Both mutants de-
couple the EGF-receptor to the AKT pathway, so one
would expect that they also show a less pronounced ef-
fect upon its inhibition. However, in the H1047R cell
line there is a strong ERK-EGFR feedback that gener-
ally reduces the MAPK pathway activity, and one can
speculate that additional EGFR inhibition can push the
MAPK pathway activity to sub-critical levels.

Taken together, the response logic modelling allows to
reconstruct networks from complex perturbation data
and provides network information that can be inter-
preted and linked to phenotypic behaviour. This ex-
ample demonstrates how this approach allows to inte-
grate noisy response data, prior network knowledge and
generic signalling constraints to identify hypothesis on
changes in networks due to mutations, that can subse-
quently be studied experimentally.

4 Discussion
We developed the response logic approach as a method
to infer directed networks from perturbation data. Its

central idea is to assume that a perturbation of a node is
propagated along the edges and thus causes a response
at all nodes to which there is a directed path, start-
ing from the perturbed node. This simple hypothesis
is integrated in a logic program that allows to iden-
tify the networks whose transitive closure most closely
matches that of the experimental data. The power of
logic programming, and more generally declarative pro-
gramming, has enabled its use in a wide range of topics
in computational biology [14, 47, 42, 5, 6, 2]. In our ap-
proach, logic programming provides a way to efficiently
scan the vast search space of all directed networks and
to easily express and incorporate additional information
and prior knowledge about the network.

Many reverse-engineering methods involve tunable
parameters, which can drastically affect the results.
However, it is often far from obvious how these parame-
ters should be set in a specific context. In contrast, our
response logic approach is parameter free and strictly in-
fers the networks that follow from the provided response
pattern and any additional constraints provided.

At first glance, it might seem wasteful to reduce the
data to a binary information of responding versus non-
responding, when many experimental techniques allow
to quantify the magnitude of response of the observed
components. However, data binarization renders in-
ference more general and robust, and in many set-
tings, technical issues such as measurement error, het-
erogeneous data sources, or various normalization steps,
make the interpretation of magnitudes difficult.
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The idea to map an experimentally observable re-
sponse pattern onto a transitive closure has been pro-
posed before. It was hypothesised that the sparsest di-
rected acyclic graph whose transitive closure matches
the observed response pattern describes the direct regu-
latory interactions in gene networks [43]. Such a graph
is also known as the transitive reduction and can be
computed efficiently [1]. This approach was heuristicly
expanded to also allow for some cycles, and to refine
the inferred network by incorporating double mutant
perturbations and information about up- and downreg-
ulation [41]. Yet, this procedure has several shortcom-
ings: It cannot incorporate existing domain knowledge,
it cannot handle missing data points, but simply con-
siders an unknown or uncertain response behaviour as
non-responding, and it only finds a single, most parsi-
monious, network, which might not necessarily repre-
sent the underlying structure.

This last point is a strategy to compensate for the fact
that network inference is an inherently underdetermined
problem, because the number of independent measure-
ments generally falls short on the number of possible
interactions [12]. The response logic approach explic-
itly addresses this problem as it considers the entire
ensemble of conforming networks rather than to single
out a particular one, based on some fixed and poten-
tially inaccurate assumption. It thereby reveals which
parts of the network can not be inferred from the in-
formation provided so far. This important insight can
then be used to either guide additional experiments or
to systematically reduce the solution space by adding
constraints that are most warranted in the given con-
text. We consider this a crucial advantage over existing
approaches, whose inferred networks can generally not
be intuitively traced back to the data and thus tend to
disguise if and how the inferred network is justified by
the data.

But while the response logic is based on a simple and
intuitive concept, such simplicity comes at a price. As
with any other assumption, it might not actually be
representative of the studied system. Major problems
might occur due to robustness, or saturation effects, all
of which disrupt the presumed flow of signal but are an
essential part of various biological systems [15]. Also,
from a boolean perspective the response logic treats
nodes exclusively as OR gates, whereas certain systems
require a more involved logic [36]. Another important
shortcoming for many questions is that it does not as-
sign any weights nor signs to the inferred links. Yet, the
inferred network can serve as an input for methods that
are devised to quantify link strengths on a given input
network [13].

On the other hand, the response logic’s simplicity
makes it suitable for various different fields of research.
Because it is based on a formalization of an intuitive
network behaviour, it can infer ecological, infection, or
even social or transportation networks. Such generality
would even permit to use the response logic to ask the

inverse question: Given a certain network structure and
the observed perturbation responses, can I infer where
a perturbation hit the network? This question could be
particularly interesting in the analysis of man-made net-
works, for which the structure is typically known, but
not the location of the perturbation. The inverted logic
program would then identify where an electric connec-
tion malfunctioned, an intruder attacked, or a disease
originated from. All these possibilities show that the
simplicity of the response logic does not limit its appli-
cability.
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S1 Supplement
S1.1 Encoding the response logic in

ASP
The response logic is formulated in the framework of
Answer Set Programming. We use the syntax of the
input language gringo. A straightforward introduction
is provided in section 4 of [42]. The following facts and
clauses constitute the logic program.

At the beginning, the program needs to state the
facts, i.e. the number of nodes in the network as
constant n, the set of perturbations as functions
pert(I,OUT), where variable I names a specific pertur-
bation and variable OUT indicates the node(s) targeted
by the perturbation (could be multiple), as well as the
rectified response pattern as functions response(I,N)
and -response(I,N) (classical negation), where vari-
able I names a specific perturbation and variable N in-
dicates the node(s) responding or not responding to the
perturbation, respectively.

The program then follows the generate-define-test
pattern, as below. The function tc(I,IN) represents
the transitive closure of the answer set network.

%%%Generate%%%
node(0..n-1).
{edge(OUT,IN)} :- node(IN), node(OUT).

%%%Define%%%
tc(I,IN) :- edge(OUT,IN), pert(I,OUT).
tc(I,IN) :- edge(OUT,IN), tc(I,OUT).

%%%Test%%%
:- not tc(I,N), response(I,N).
:- tc(I,N), -response(I,N).

The last two lines are the integrity constraints that dis-
card any answer set whose transitive closure is in dis-
agreement with the rectified response pattern. ASPs
distinction between classical (”-”) and default (”not”)
negation allows to only test the integrity for the known
entries of the response pattern and to ignore the test
for any entries that are not known.

For large networks the search space of the above pro-
gram becomes very large with negative effects on perfor-
mance. This is especially problematic during the rec-
tification of the response pattern because in principle
every entry of the response pattern must be tested for
consistency. We implemented two strategies to speed
up the process. First, at each step of the iteration, we
check if the previous transitive closure is in agreement
with the new data point. If so, we know that there
is a conforming network and can accept the data point
without an explicit test. Second, if there is no additional
constraint (see below) stating the absence of a network
edge, we can significantly simplify the logic program. In
that case, if the logic program is satisfiable at all, the
network with directly links from perturbed node to all
its responding nodes, i.e. a network with star topology,

constitutes a conforming network. As the rectification
process only needs to determine satisfiability, a much
more simple logic program avoids generating all possi-
ble networks but only tests the star network (which we
do not need to state explicitly):

response(I,N) :- response(J,N), pert(J,M),
J!=I, response(I,M).

response(I,OUT) :- pert(I,IN), edge(IN,OUT).
response(I,N) :- response(J,N), pert(J,M),

J!=I, pert(I,M).

The idea of this encoding is to define all additional
responses that are implied by the star network from the
given response pattern (line 1): if node N responds to
a perturbation of node M (it is reachable from M) then
node N will also respond to any other perturbation for
which it is known that it causes a response at node
M. This defines the minimal set of responding nodes
consistent with the response logic. Any constraints on
the absence of edges would imply (longer) non-direct
paths that could potentially imply more nodes to
respond to certain perturbations. This program does
not even need to explicitly state an integrity constraint
because an observed non-response given as classical
negation -response(I,N), already rules out that
response(I,N) is contained in the (single) answer set.
Furthermore, line 2 adds responses that are implied
by edges that are known to exist and the last line is
needed in the case where multiple perturbations hit
the same node, but a perturbed node itself does not
respond.

As discussed at length, we might wish to incorporate
additional, external domain knowledge into the logic
program. The most direct way of doing so is to simply
state the knowledge about presence or absence of e.g.
the link from node 2 to node 3 as a fact:

edge(2,3).

or

-edge(2,3).

respectively.
To encode bounds on the number of links that enter

or leave one or a group of nodes is simple, due to ASPs
built-in #count aggregates. If, for example, we were
to maximally allow for 3 incoming edges to node 1 we
would add the following integrity constraint to the logic
program

:- #count {OUT : edge(OUT,1) } > 3.

Obviously, this statement could easily be adapted to
formulate a lower bound, or bounds for groups of nodes.

It is more complex to state the parsimony constraint
that filters out any network for which the removal of
any link does not change the transitive closure. Es-
sentially, for a given network, we define a set of links,
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x edge(OUT,IN) that are subject to removal. Those are
all the edges that are part of the network but which are
not enforced by external knowledge. Then, the idea is to
define all networks with a link removed, determine their
transitive closure and compare it to that of the original
network. The final integrity constraint removes the an-
swer set if any of the reduced networks does not have a
reduced (that is, it has the same) transitive closure as
the original one.

r_edge(OUT,IN,NOUT,NIN):-(OUT,IN)!=(NOUT,NIN),
edge(OUT,IN), x_edge(NOUT,NIN).

r_tc(I,IN,NOUT,NIN):-r_edge(OUT,IN,NOUT,NIN),
pert(I,OUT).

r_tc(I,IN,NOUT,NIN):-r_edge(OUT,IN,NOUT,NIN),
r_tc(I,OUT,NOUT,NIN).

has_reduced_tc(NOUT,NIN):-not r_tc(I,IN,NOUT,
NIN),tc(I,IN), x_edge(NOUT,NIN).

:- not has_reduced_tc(NOUT,NIN),
candidate_edge(NOUT,NIN).

As this logic creates a significant amount of additional
variables, we observed that the parsimony constraint
will suffer performance issues when applied to more
than a few tens of nodes.

Finally, a crucial feature of the response logic ap-
proach is the ability to generate the union of all con-
forming networks, which points out the links than can or
cannot be uniquely determined. Typically, the number
of conforming networks is intractable which precludes to
simply enumerate all solutions and then compute their
union directly. Rather, we let a logic program find it di-
rectly. The union of all answer sets of an ASP program
is also termed brave consequences, hence the naming
conventions below. In a first step, we need to annotate
the presence or absence of an edge explicitly.

edge_brave(OUT,IN,1) :- edge(OUT,IN).
edge_brave(OUT,IN,0) :- not edge(OUT,IN),

node(OUT),node(IN).

Then, the idea is to repeatedly solve the logic program,
while iteratively building up the union of conforming
networks. That is, we record for each edge whether
the solutions generated so far, found it to be always
absent, always present or neither (sometimes present,
sometimes absent). To obtain the union over all answer
sets, the program is further constrained with every new
solve call to only permit networks that are not a subset
of the union that was recorded so far. This is encoded
by the following integrity constraint.

:- not edge_brave(OUT,IN,B) : node(OUT),
node(IN), B=0..1,
@is_in_union(OUT,IN,B) == 0.

The @is in union(OUT,IN,B) construct is a function
called by the solver that will return 1 if the presence or
absence (B is 1 or 0, respectively) of edge OUT to IN is
already recorded in the union and 0 otherwise. Thus,

every solve call adds new elements to the union until
there are no more conforming networks that show the
presence or absence of a link, beyond what is already
represented in the union. This is when the program is
no longer satisfiable and the repeated solve calls stop.

S1.2 Additional information about the
inference of DREAM in-silico net-
works

The rectification of the response pattern requires confi-
dence scores, C. Those are defined as a normalized dis-
tance of each entry of the global response matrix R to 1,
which was chosen as the response threshold. The nor-
malization is chosen such that confidence levels range
from zero, for Rij = 1, to one, for Rij taking either
the maximal Rmax or minimal Rmin value of all entries.
Formally,

Cij =
{
|Rij − 1|/|Rmax − 1| for Rij − 1 > 0
|Rij − 1|/|Rmin − 1| for Rij − 1 < 0.

Both DREAM3 and DREAM4 provided five network
challenges per network size. The precision-recall curve
and the ROC curve for each network prediction are
shown in Figure S1 and Figure S2.

The official DREAMTools package [9] was used to
compute the final prediction scores that are shown in
main text Figure 4A. The scoring is based on p-values
for the ROC and precision-recall area under the curves
(AUC) that are computed from probability distribu-
tions of random network predictions. In the case of
the DREAM3, N=100, Yeast3 network the precision-
recall AUC of the response logic prediction is larger
than that of any of the provided random network predic-
tions. Therefore the determined p-value becomes zero
and the overall network score becomes infinity. To ob-
tain a more reasonable score we decided to modify the
p-value computation in that case. We identified the
largest AUC for which the random probability distribu-
tion shows a nonzero probability and simply defined an
extended distribution whose probability decreases lin-
early from this point to zero probability at AUC=1 and
computed the p-value based on this approximated dis-
tribution. This only concerned one of the five scored
networks in the DREAM3, N=100 prediction and the
resulting overall score, 139.7, is shown in main text Fig-
ure 4A, third panel. Another strategy to cope with the
problem is to remove the network altogether and com-
pute the overall score (mean of geometric mean of p-
values) only from the remaining four networks. This
provides a lower bound for the overall score of 122.9,
which is still clearly better than the score of any of the
competitors and the naive approach.
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Figure S1: DREAM3 challenge 4: Precision Recall (blue) and ROC (red) curves for the response logic predictions of the five networks.
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Figure S2: DREAM4 challenge 2: Precision Recall (blue) and ROC (red) curves for the response logic predictions of the five networks.
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Figure S3: RPPA measurements on SW48 cell lines

S1.3 Additional information about the
analysis of the SW-48 cell line

A reverse phase protein array (RPPA) perturbation ex-
periment was carried out on the SW-48 parental, the
SW-48 E545K and SW-48 H1047R PI3K mutant cell
lines under full serum conditions. Antibodies were cho-
sen to cover the activity (phosphorylation) of a range of
kinases. Cells were perturbed by single small molecule
inhibitors, by single growth factors or by a combination
of one growth factor and one inhibitor. Measurements
were carried out in 8 technical replicates.

In a first step readouts were filtered as follows. First,
we removed all readouts whose signal remained within
the technical noise level throughout the treatments, as
this indicates a malfunctioning antibody. The readout
had to be a component or a target of the MAPK or the
PI3K pathway. To decrease redundancy, we removed
very closely related readouts. This included readouts of
functionally related phosphosites on the same kinase, or
kinases that showed near-identical qualitative behaviour
due to their proximity within the signalling pathway.
This left us with 10 different readouts. Concerning the
perturbations, we filtered out ineffective, or redundant
inhibitors and ligands. This resulted in the data set
depicted in Figure S3.

To use this data in the response logic framework we
need to convert it to a response pattern with according
confidence scores. First, we need to localize the targets
of the perturbations. As not all the direct targets of
each perturbation were part of the readouts, we replaced
those by the ones that were the closest downstream the
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Figure S4: Same data as in Figure S3, but filtered and regrouped
to highlight perturbation effects.

signalling chain. Concerning HGF stimulation, we ob-
served a strong response by the PDGF receptor. C-Met
not being amongst the readouts, we chose the target
accordingly. Lacking additional data, it is subject to
speculation whether this behaviour could be explained
e.g. by receptor co-activation [45] or impurities of the
used ligand. This resulted in the following allocations.

Perturbation Target
EGFRi EGFR
MEKi ERK
AKTi AKT
EGF EGFR
HGF PDGFRB
IGF AKT

This makes apparent that the perturbations only have
four different targets (PDGFRB, EGFR, ERK, AKT).

Next, we need to determine the response behaviour
with respect to perturbations of those four targets. In-
hibiting an unstimulated signalling pathway can lead to
saturation effects, when additional reduction of kinase
activity is not possible. Thus, to faithfully track the
inhibition response we decided to investigate inhibition
while cells are stimulated, that is to compare ligand +
inhibitor to only ligand. To ensure that such a stimu-
lation actually affects the inhibited pathways, we chose
EGF stimulation for the EGFR and MEK inhibitors
and IGF stimulation for the AKTi inhibitor. The stim-
ulation effects do not suffer from such saturation effects
and were thus compared to basal levels (DMSO+PBS)
directly. We compiled an overview of the resulting per-
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turbation comparisons in Figure S4.
To decide whether a perturbation caused a response,

we computed p values for each pair of perturbed-
unperturbed samples using an unpaired, two-sample
t-test. As the data replicates are technical in nature we
chose a conservative significance threshold of 0.01. To
compute confidence scores we used the same procedure
as for the DREAM data, subsection S1.2, that is,
the confidence scores represent a normalized distance
between the p-value and the p-value threshold. Recall,
that the six perturbations only have four different
targets. To remove redundancy in the response logic
sense, we decided to remove the two redundant data
points with lower confidence (per cell line and readout).
This resulted in the response patterns shown in main
text Figure 5A and 6A.

The computation of the area under ROC and
precision recall-curves in main text Figure 5A requires
to rank the predicted links. However, depending on
how the response logic approach is applied, some
links can end up with the same score. We there-
fore, computed the PR AUC and ROC AUC as
a mean over 100 AUC values that were generated
by randomly reshuffling groups of links with equal
score. Repeated computation of these PR AUC and
ROC AUC values only varied in the third decimal place.
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