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Abstract

Humans routinely face novel environments in which they have to generalize in order to

act adaptively. However, doing so involves the non-trivial challenge of deciding which

aspects of a task domain to generalize. While it is sometimes appropriate to simply

re-use a learned behavior, often adaptive generalization entails recombining distinct

components of knowledge acquired across multiple contexts. Theoretical work has

suggested a computational trade-off in which it can be more or less useful to learn and

generalize aspects of task structure jointly or compositionally, depending on previous

task statistics, but it is unknown whether humans modulate their generalization

strategy accordingly. Here we develop a series of navigation tasks that separately

manipulate the statistics of goal values (“what to do”) and state transitions (“how to do

it”) across contexts and assess whether human subjects generalize these task

components separately or conjunctively. We find that human generalization is sensitive

to the statistics of the previously experienced task domain, favoring compositional or

conjunctive generalization when the task statistics are indicative of such structures, and

a mixture of the two when they are more ambiguous. These results support a normative

“meta-generalization” account and suggests that people not only generalize previous

task components but also generalize the statistical structure most likely to support

generalization.
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GENERALIZING TO GENERALIZE 3

Generalizing to generalize: humans flexibly switch between compositional and

conjunctive structures during reinforcement learning

It has long been proposed that rather than simply re-use past associations in a

novel scenario, humans can flexibly recombine components of prior knowledge to take

novel actions (James, 1890). For example, an adept musician can learn multiple

instruments by generalizing the motor skills needed to play across instruments, even as

they use those skills to different effect across the different instruments. Conversely, they

can transfer songs learned on one instrument to another even as the movements needed

to play a song on the piano, for example, are very different than that of a guitar. In

principle, the sequences of notes used to generate songs are distinct from the skills

needed to play an instrument: each is an independent component that can be combined

with others arbitrarily. This degree of compositionality is critical for flexible

goal-directed behavior but is often lacking in theoretical accounts of human and animal

generalization.

Previous models have considered how agents and animals can cluster “latent

states” across multiple contexts that share task statistics in both Pavlovian (Gershman,

Blei, & Niv, 2010) and instrumental learning settings (Collins & Frank, 2013, 2016).

These models assume each context acts as a pointer to a latent structure, and

generalizing task statistics requires inference over which structure the current context

belongs to. This form of Bayesian non-parametric clustering and generalization can be

approximately implemented in corticostriatal gating networks endowed with hierarchical

structure (Collins & Frank, 2013) and have been used to explain human generalization

behavior and neural correlates thereof in a number of reinforcement learning tasks

(Badre & Frank, 2012; Collins, 2017; Collins, Cavanagh, & Frank, 2014; Collins &

Frank, 2013, 2016; Schulz, Franklin, & Gershman, 2018; Tomov, Dorfman, & Gershman,

2018).

However, the form of clustering assumed in these models introduces normative

challenges that may prevent them from scaling to ecological problems. In these models,

task structures are either reused and otherwise learned from scratch, meaning
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GENERALIZING TO GENERALIZE 4

constituent knowledge within each task structure is inseparable. As a consequence,

when some observations rule out a given task structure, the agent can no longer

generalize any aspects of that structure, thereby preventing the sharing of partial

knowledge between contexts, requiring agents to relearn information they already have

access to. This all-or-none generalization would, for example, prevent a musician from

transferring a song learned on a piano to a guitar, given the differences in required

motor actions to produce the desired notes. This form of generalization is

representationally greedy, forcing an agent to relearn what it already knows. More

problematically, it also tends to be brittle in artificial agents, as policies and

policy-dependent representations are often not robust to new tasks (Kansky et al., 2017;

Lehnert, Tellex, & Littman, 2017).

Thus, given the normative challenges posed by generalizing structures as a whole,

a key desideratum for clustering models is that they support component-wise

generalization, i.e., that they can be compositional. In reinforcement learning problems,

information about movement through and environment (the “transition function”) and

information about rewards or goals (the “reward function”) are commonly framed as

two separate pieces of information about a task (Sutton & Barto, 1998). These two

pieces of information are a natural choice for components, as one may have multiple

goals (i.e., reward function) in the same environment (i.e., transition function) in

different situations or may share the same objectives in distinct environments.

Interestingly, this choice of task components reveals a statistical trade-off in

generalization that will drive an adaptive learner to vary its generalization strategy

across tasks (Franklin & Frank, 2018). Independently generalizing rewards and

transitions as task components adds a statistical bias to the generalization that is

adaptive when the relationship between the two components across contexts is weak,

noisy or difficult to discover. When there is a strong, discoverable relationship between

rewards and transitions across contexts, then it is adaptive to generalize them together,

as previous models have implicitly assumed (Collins & Frank, 2013, 2016). However, the

cost of choosing the suboptimal fixed generalization strategy can grow exponentially; a
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GENERALIZING TO GENERALIZE 5

normative agent can circumvent this cost by dynamically arbitrating between these

forms of independent and joint clustering as a function of the statistical evidence of

each across learning episodes (Franklin & Frank, 2018). This “meta-generalization”

strategy requires that the agent has access to both joint and compositional task

representations and best makes use of them depending on the environment.

It is not well understood how human learners generalize component knowledge in

reinforcement learning tasks. However, normative analysis offers testable predictions. If

humans learners decompose task structures into rewards and transitions and act

adaptively, then we would expect their generalization behavior to vary between a joint

and compositional strategy as the statistics of the task environment changes. In the

present work, we thus assessed whether human generalization behavior would depend

on the extent to which external task statistics are suggestive of independent vs. joint

generalization of task structures in three separate experiments that manipulated this

hierarchical task statistic.

We developed a novel series of navigation tasks that separately manipulate

goal-values (“where do you want to go?”; the reward function) from the actions needed

to move in the maze (“how can you get there?”; the transition function over states and

actions). Both pieces of information are required to solve the task (i.e., to reach the

reward). We manipulated the statistics of these two component-features across contexts

and tasks, such that the transition function was more or less informative about the

reward function. We then assessed the degree to which humans were able to generalize

these learned structures in novel contexts, and whether such generalization was

consistent with joint (i.e., entire structure) or independent clustering. To preview our

results, we find that subjects vary their generalization strategy with the encountered

task statistics, such that they generalize compositional task-components independently

when appropriate to do so and jointly when suggested by the task, consistent normative

theoretical predictions and a compositional representation of task structure.
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Results

Subjects completed a series of tasks in which they navigated a 6x6 grid-world on a

computer in an attempt to discover the reward in one of a set of labeled goal locations

across trials (Fig. 1). For simplicity, subjects learned a deterministic and uniquely

identifiable mapping between arbitrary keyboard presses and movements within the

grid-world, as opposed to a complete state-action-state transition function1. Similar to

the “finger sailing” task (A. Fermin, Yoshida, Ito, Yoshimoto, & Doya, 2010;

A. S. Fermin et al., 2016), this design allows us to study subjects’ ability to learn about

mappings (state transitions) separately from the goal-values (reward function).

Moreover, successful performance in the task requires flexible re-planning on each trial –

a form of model-based control (Simon & Daw, 2011): the subjects’ initial location and

that of the goal were varied from trial to trial, so as to equate the reward value of each

button press (i.e., stimulus-response bias). Critically, many of the contexts share the

same mapping and/or goal-values, and subjects can boost learning by leveraging this

structure (Franklin & Frank, 2018).

To formally assess alternate learning and generalization strategies in the human

navigation tasks, we adapted the computational models previously used to analyze the

statistical tradeoff between compositional and joint structure learning (Franklin &

Frank, 2018). These include a joint clustering agent, an independent clustering agent

and a meta-generalization agent that dynamically arbitrates between the two (Materials

and Methods). All three models are extensions of the joint clustering model proposed by

Collins and Frank (2013) to account for flexible re-use of learned structures across

contexts, and make equivalent predictions on the types of instrumental

stimulus-response tasks that have previously been investigated, wherein the reward

values were not manipulated separately from the transitions (Collins et al., 2014;

Collins & Frank, 2016). Each agent probabilistically assigning contexts into clusters

1 Prior simulations in Franklin and Frank (2018) suggest that learning this reduced action-movement

mapping in lieu of a full transition function does not influence the generalization tradeoffs discussed in

the current work.
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Figure 1 . Subjects controlled a circle agent in a grid world (left) and navigated to one

of three potential goals (colored squares labeled “A”, “B”, or “C”). Context was

signaled to the subject with a shared color for the agent and goals. In each context,

subjects learned the identity of the rewarded goal within the trial (top right) while also

learning a mapping between the keyboard responses and the cardinal movement within

the grid world (bottom right).

that share similar observation statistics via Bayesian inference, with the observation

statistics serving as the likelihood and the Chinese Restaurant Process (CRP; Aldous,

1985) as a context-popularity based prior2. This allows the agents to reuse previously

learned functions in novel contexts, and hence facilitating generalization. Moreover,

these agents generalize task structure based on context popularity as a consequence of

the CRP prior. In a new context, each agent will reuse task structure as a parametric

function of how popular that task structure is across previously encountered contexts.

However, the agents differ by whether they cluster reward and transition functions

as separate entities or jointly. The joint clustering agent clusters each context based on

the “joint” (conjunctive) statistics of learned state transitions and reward functions (Fig

2). Such an agent, when attempting to generalize learned structures to new contexts,

will use information it has gathered about the likely mappings to infer the likely goal

2 “Context-popularity” refers to the number of distinct contexts that are assigned to a single cluster,

meaning that a contexts that is experienced multiple times only contributes once to context-popularity.

This is distinct from a frequency model, which counts each repeated context multiple times.
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values, but as such, it cannot reuse one independently of the other. This is equivalent to

generalizing complete policies as indivisible structures. In contrast, the independent

clustering agent clusters transitions and rewards separately by probabilistically

assigning each context into two context-clusters, each associated with either a reward or

transition function. Such an agent can make inferences about likely goal values that are

not tied to any specific mapping, but as such, it cannot improve performance when the

two functions are informative about each other. As neither fixed strategy is optimal

across unknown task domains, the meta-generalization agent dynamically arbitrates

between joint and independent clustering based on the expected value of each3, given

the experienced task statistics in the environment.

In reinforcement learning problems, information about the transition structure is

typically available prior to information about the reward value, and consequently, the

three agents differ largely in their generalization of reward functions (Franklin & Frank,

2018). While both agents generalize goal values as a function of their popularity across

contexts, the joint clustering agent considers this popularity only for the subset of

contexts that share the same mapping (in the musician example, this is like inferring

what song to play based on its popularity conditioned on the set of instruments that

share the same motor mappings). In contrast, the independent clustering agent

generalizes goals by pooling across all contexts regardless of mappings. Thus, we can

distinguish these model predictions by looking at goal generalization to see whether it

varies as a function of mapping. Because the meta-generalization agent arbitrates

between these two strategies probabilistically, it predicts a dynamically weighted blend

of the two across time.

We exploit this logic in the following grid-world tasks: in each task, subjects learn

to navigate to reach a goal in a set of training contexts with varying overlap in

mappings and rewards and are then probed for generalization in an unprompted set of

novel contexts. Subjects are not told that it is possible to generalize (as it turns out in

3 The expected value of each strategy is approximately equivalent to the Bayesian model evidence for

the strategy.
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Figure 2 . Schematic depiction of computational agent. The meta-generalization agent

arbitrates between independent clustering and joint clustering according to a learned

weight w. In both clustering strategies, contexts (colored squares) are grouped into

clusters based on the statistics of their associated goal (G), and transition (T)

functions. Independent clustering clusters each context twice, once each for goal-value

and transition functions, whereas joint clustering assigns each context into a single

cluster. Planning derives a behavioral policy from the learned contingencies. Adapted

from (Franklin & Frank, 2018)

our designs, it is always advantageous to generalize mappings, but disadvantageous to

generalize rewards in all but one of the experimental conditions). Critically, the degree

to which mappings were informative of goal values was manipulated across experiments,

allowing us to test whether subjects are sensitive to this structure. Across these three

experiments, joint and independent clustering each predict a fixed and identifiable

strategy, thus allowing us to differentiate between the two on each task qualitatively.

The meta-generalization agent, which predicts that subjects adaptively change their

generalization strategy to exploit the statistics of the task, varies in its behavior across

the three tasks.
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To preview the results, we find that subject generalization strategy changes with

the task domain and is inconsistent with any single fixed generalization strategy. These

results suggest that people rely on multiple strategies to generalize and adapt their

behavior to be consistent with the statistics of their environment.

Experiment 1: Joint Structure

In the first experiment, subjects navigated grid-worlds in which there was a

consistent relationship between the goal locations and the mappings, such that a given

mapping was always paired with a given goal during training (Fig 3, Table S1). This

relationship is suggestive of joint structure, and we hence tested whether subjects would

later generalize this structure to novel contexts. Prior to an unsignalled generalization

probe, subjects completed 32 trials across 3 training contexts, each of which was

associated with one of two mappings and one of two potential goals. Subjects were

instructed on the relationship between contexts, mappings, and goals during a

pre-training instruction but were not told how the relationships generalize between

contexts. Subjects received a binary reward (linked to financial payment) for selecting

the correct goal and no reward for choosing the other goal. Two of the training contexts

shared the same transitions and were paired with the same high popularity goal, while

the third context was paired with the remaining goal and mapping. Thus, there was a

one-to-one relationship between transitions and goals during training. To control for

potential stimulus-response biases, the number of trials within each context was

balanced such that each mapping and each correct goal was presented in the same

number of trials (i.e., the context associated with the low popularity goal/mapping was

presented twice as frequently as the other two contexts; Collins & Frank, 2016). In a

subsequent test phase, subjects saw three novel contexts in which the joint statistics of

the training contexts were either repeated (repeat condition) or switched (switch

condition) in a between-subjects manipulation. However, the more popular goal in

training (goal “A”) remained the more popular goal in testing, regardless of condition.
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Figure 3 . Experiment 1: Joint structure. Left: Task Design: During training, subjects

saw three contexts (depicted here as circles) in which a given transition function

(mappings, indicated by red/blue hands) was always paired with the same reward

function (goals A or B), suggestive of joint structure. In the test phase, subjects saw

three novel contexts in which the relationship between transitions and goals was either

repeated (i.e., each goal was paired with the same mapping as seen during training) or

switched (goal B associated with the mapping that was previously paired with goal A).

The switch vs. repeat manipulation was conducted between-subjects. Right: Goal

accuracy of models (light grey) and human subjects (dark grey) in the training and test

contexts. Chance performance denoted with dotted line.

Computational modeling. To confirm the intuition that this task design is

indicative of joint structure, we compared the simulated behavior of six computational

models on the task, including three generalization agents and three non-generalizing

control agents (see Materials and Methods). The generalization models were the Joint

clustering, Independent clustering and Meta-generalization agents described above

(Franklin & Frank, 2018). The non-generalizing control agents were a “Flat” agent that

assigns each context to a new cluster, a Q-learning agent parameterized with a learning

rate and an uncertainty-based exploration agent that explores goals based on the upper

confidence bound (UCB) of their reward distributions. The key difference between the
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generalizing and non-generalizing agents is that the generalizing agents pool

information across contexts, whereas the non-generalizing agents do not. Each model

was simulated with sampled parameters on 2500 random instantiations of the tasks, and

these simulations were sub-sampled to create 200 batches matched to the sample size of

human subjects. This allows us to identify a pattern of results that discriminate the

predictions of the models across their range of plausible parameter values, marginalizing

over the parameters with an analogous logic to a Bayes factor (Ly, Verhagen, &

Wagenmakers, 2016) and Bayesian model evidence (Rasmussen & Ghahramani, 2001).

This form of simulation naturally penalizes for complexity as models that are too

expressive will generate a wide range of possible datasets (Rasmussen & Ghahramani,

2001).

Each of the six models successfully learned the task, achieving greater than chance

accuracy in both the training and test contexts (Fig 3; p<0.005 for all models). In this

task, joint clustering earned the highest reward overall, and because it earned more

reward than the flat agent (the top non-generalizing agent) in both the training

(accuracy difference M = 0.02%, p < 0.005) and test (accuracy difference M = 0.02%,

p < 0.005), we can conclude that it is adaptive to generalize rewards and transitions

jointly in this task.

We confirmed that the independent and joint clustering agents are differentially

sensitive to the test context manipulation. In particular, the joint clustering agent

predicts better performance in the repeat condition (in which the goals are paired with

the same mappings as during training, even in novel contexts) than in the switch

condition (M=0.194, 95% highest posterior density interval (HPD) = [0.163, 0.230]),

whereas the independent agent predicts no such effects (M=0.002, 95% HPD = [-0.023,

0.026]). Conversely, the independent agent predicts faster learning when the most

popular goal is rewarded in either test context (Fig 4; M=0.183, 95% HPD = [0.154,

0.211]), whereas this effect is marginal in the joint agent (M=0.023, 95% HPD = [0.000,

0.056]). (Note that joint clustering can be sensitive to goal popularity for a given

mapping; see experiment 2). In addition, the meta-generalization agent, which infers
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Figure 4 . Generalization performance, Experiment 1. A: Qualitative model predictions

expressed as difference in goal accuracy between the Repeat and Switch test conditions

(Rep.) and the difference between test contexts with different correct goals (Goal). B:

Human subject data. Regression weights for the between-subjects comparison of goal

accuracy in the two test conditions (Rep.) and the within-subjects comparison of test

contexts with different correct goals (Goal). C: Histogram of simulated effect sizes in

the two comparisons of interest for each of the 6 evaluated models across a range of

parameters. Error bars denote standard deviation.

which structure is most likely during the training phase, is more similar to the joint

agent (effect of test condition: M=0.174, 95% HPD = [0.129, 0.217]) but, like the

independent agent, also shows a (much smaller) effect of the rewarded goal (M=0.05,

95% HPD = [0.006, 0.087]). Finally, we confirmed that none of the flat agent, the

Q-Learner, nor the upper confidence bound agents were sensitive to these manipulations

and showed no differences between the test contexts (Fig 4 A, C).

Human Behavior. The behavior of 129 subjects collected online via Amazon

Mechanical Turk was carried through to analysis, 49 of which were randomly assigned
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the switch condition. In both the training and test conditions, subjects were well above

chance in goal accuracy (Training: M=82.0%, one-sided t-test, t(128)=26.8, p < 10−53;

Test: M=80.8%; t(128)=21.9, p < 10−44). Across training, subject performance

improved as a function of time as measured by rewards received, reaction time and

navigation efficiency. Using Bayesian linear modeling, goal accuracy (rewards received)

was found to increase as a function of trials within a context (Fig S3 A; [βt]= 0.154,

95% HPD = [0.127, 0.182]) as was their speed (reciprocal reaction time) ( [βt] = 0.048:

95% HPD = [0.002, 0.098]). Navigation (in)efficiency, defined as the number of

responses taken in excess of the minimum path length between the start location of the

trial and the selected goal, also decreased as a function of trials within each context

( [βt] = −0.012, 95% HPD = [-0.015, -0.008]).

The primary measure of interest was goal accuracy in the test context, which

differentiates the predictions of joint and independent clustering models (see above).

Goal accuracy was assessed with hierarchical Bayesian logistic regression that included

test condition (switch vs. repeat) as a between-subjects measure and correct goal as a

within-subjects measure (see Materials and Methods). In addition, the number of trials

experienced within the same context and whether a trial of the same context was

sequentially repeated were included as nuisance regressors. Both nuisance regressors

significantly predicted test accuracy (times in context: [βt] = 0.34, 95% HPD=[0.223,

0.470]; sequential repeats: [βrep] = 1.623, 95% HPD=[1.002, 2.214]). Consistent with

the predictions of joint clustering and the meta-generalization agent, subjects were more

accurate in the repeat condition than in the switch condition (Fig 3, [βswitch] = 0.41,

95%HPD = [0.16, 0.67], p1-tail < 0.0005). Accuracy did not vary as a function of the

rewarded goal in the test contexts ( [βgoal] = 0.005, 95% HPD = [-0.14, 0.15]). This

pattern of behavior is consistent with the predictions of the joint and meta agents and

is inconsistent with the predictions with the independent agent or any non-generalizing

agent, suggesting that subjects generalized the task components jointly.
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Experiment 2: Independent Structure

While experiment 1 provided evidence for generalization in the task and transfer

of component structure jointly, this experiment alone does not suggest subjects would

always generalize components jointly in all domains. In experiment 1, there is a strong

relationship between mappings and goals in the statistics of the training environment,

which normatively favors joint clustering. Nonetheless, the meta-generalization agent

(which combines independent and joint clustering and infers which is more likely) also

predicted behavior that was similar to the joint agent. The behavior of the meta agent

varies with the statistics of the task domain and thus can often produce similar

behavior to a single, fixed strategy within a single experiment. Thus, to differentiate a

meta-generalization strategy from a single fixed strategy, it is necessary to examine

generalization across multiple tasks.

In experiment 2, we wished to test whether subjects would show evidence for

independent, compositional, generalization when suggested to by the task environment.

Because the meta agent is sensitive to the conditional relationship between goals and

mappings, we provided subjects with an environment where this relationship was very

weak. Rather than the one-to-one relationship present in experiment 1, the same goal

could be re-used with different mappings, and the same mapping could be re-used with

different goals, with some goals more popular than others (Fig 5 A; Table S2). Subjects

completed 112 trials in seven training contexts prior to an unsignaled generalization test

with four novel contexts. Each training context was associated with one of two

mappings and one binary, deterministically rewarded goal location out of four possible

locations.

Note that, as before, independent clustering predicts that subjects learn about the

statistics of goals and mappings independent of the other, and as such, they would learn

about the popularity of goals across contexts regardless of mapping. For example, goal

A is the most popular goal overall (marginalizing over mappings) but is equally popular

as other goals within the contexts paired with the low popularity mapping (Fig 5 B).

Thus, independent and joint clustering make qualitatively different predictions about
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which goals will be searched first in a novel context as a function of the associated

mapping. As such, subjects were given four novel contexts in an unsignaled test phase

chosen to differentiate joint and independent clustering by crossing the overall goal

popularity with the conditional goal popularity (conditioned on the mapping; Fig 5 A,

B; Table S2). If subjects learn independent structure, then they should more rapidly

learn for novel contexts associated with the more popular goal A (i.e., test context 1)

even if it is paired with the low popularity mapping, whereas joint clustering predicts

no such advantage.

This same logic sets up within-subject performance comparisons between pairs of

test contexts. Here, we focus on performance conditioned on a single mapping as these

are the most relevant comparisons. Thus, we compare goal-accuracy in test context 1 to

2 and test context 3 to 4. In the first comparison, test contexts 1 and 2 have the same

conditional goal popularity but different overall popularity. In the second comparison,

test contexts 3 and 4 have the same overall popularity but different conditional

popularity. Thus, an agent that generalizes based on the overall popularity will show a

difference between test contexts 1 and 2 but not between contexts 3 and 4, whereas an

agent that generalizes based on the conditional popularity will show the opposite result.

Computational Modeling. We sought to test whether this task design was

indicative of independent rather than joint structure. Each of the six computational

models was simulated on the task to generate predictions in these contexts (see

Materials and Methods). All of the models successfully learned the task, with

above-chance accuracy in both the training and test contexts (Fig 5 C; all p’s<0.005).

Importantly, because of the nature of the test contexts chosen to differentiate the

models, none of the generalizing agents achieved greater reward than the

non-generalizing flat model that learns anew for each context (all p’s < 10−5 in favor of

the flat model over clustering agents in both training and test), suggesting the task

design did not encourage subjects to generalize, even though other situations reveal

substantial and compounding advantages for these generalization models (Franklin &

Frank, 2018). Thus, we can interpret any evidence for generalization in this task as
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Figure 5 . Experiment 2: Independent structure. A: Subjects saw seven contexts

(circles) during training, each paired with one of two mappings (red: high popularity,

blue: low popularity) and one of four goals (A, B, C or D). Two of the high popularity

goals were paired with multiple mappings, suggestive of independent structure.

Subjects learned to navigate in an additional four novel test contexts following training

(grey circles). B: Goal popularity in the training environment as a function of mapping

(as tracked by a joint agent, left) and collapsed across all contexts (as tracked by an

independent agent, right). C: Goal accuracy of models (light grey) and human subjects

(dark grey) in the training and test contexts. Chance performance denoted with dotted

line.
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spontaneous as the task environment does not incentive generalization (Collins &

Frank, 2013).

The key manipulations of interest are expressed as a difference score in the goal

accuracy between test contexts 1 and 2, and the difference between test contexts 3 and

4. As previously noted, test context 1 is associated with goal “A”, which is the most

popular goal overall. Because test context 2 is associated with goal “B”, which has

lower overall popularity, independent clustering predicts higher average reward in test

context 1 relative to test context 2 (Fig 6; M=0.165, 95% HPD = [0.104, 0.237]). Joint

clustering predicts no difference between these two conditions (M=-0.001, 95% HPD =

[-0.051, 0.052]) because goals “A” and “B” have the same popularity conditioned on the

mapping. Conversely, independent clustering predicts no difference between test

contexts 3 and 4 because the associated goals have the same overall popularity

(M=-0.003, 95% HPD = [-0.056, 0.048]), whereas joint clustering predicts a negative

difference due to the different conditional popularity (M=-0.125, 95% HPD = [-0.186,

0.058]).

As the meta-generalization agent probabilistically weighs these two strategies

according to their evidence, and because the training environment does not rule out

some joint structure altogether (i.e., some goals are experienced multiple times with one

mapping), it shows both effects (1 vs. 2: M=0.070, 95% HPD = [0.015, 0.126]; 3 vs. 4:

M=-0.071, 95% HPD = [-0.141, -0.0146]). Importantly, none of the three

non-generalizing agents predict a difference between these two contexts, suggesting that

any difference in these metrics can be interpreted as a measure of generalization.

For completeness, we also compared goal-accuracy between the two mappings

(i.e., test context 1 and 2 vs. test context 3 and 4), affording three orthogonal contrasts

for the regression model. All three generalization agents earned more reward in the low

popularity mapping (test contexts 1 and 2) then in the high popularity mapping (test

contexts 3 and 4; independent: M=0.256, 95% HPD = [0.208, 0.300], joint: M=0.161,

95% HPD = [0.118, 0.207], meta: M=0.234, 95% HPD = [0.189, 0.278]). Both

conditioned on the mapping and overall, the goals associated with test contexts 1 and 2
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Figure 6 . Generalization performance, Experiment 2. A: Qualitative model predictions

expressed as the difference scores Context 1 - Context 2 and Context 3 - Context 4. B:

Human subject data. Regression weights for the two within-subjects comparisons. C:

Histogram of simulated effect sizes in the two comparisons of interest for each of the 6

evaluated models across a range of parameters. Error bars denote standard deviation.

were more popular than those associated with test contexts 3 and 4. As expected, none

of the flat agents showed a difference between these contexts.

Beyond average reward per context, the generalizing agents are further

differentiated by the goals selected in the first trial of a new context (Fig. 6 A, B).

Independent clustering predicts that goals will be chosen in these trials with the most

popular goal selected most frequently, regardless of the associated mapping. In contrast,

both joint clustering and meta-generalization predict the goal selection in these trials

will be influenced by the mapping. This leads to the qualitative prediction that in the

first trial of test contexts 1 and 2, independent clustering and the meta agent predict

subjects will select goal A more often than either goal B or C, while joint clustering

does not make this prediction. All the non-generalizing agents explore the first goal in a
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Figure 7 . Goal selection in the first trial of novel test contexts in Experiment 2,

separated by associated mapping transitions (blue and red). A, B Number of times each

goal was selected by the independent, joint and meta computational agents in test

contexts 1 & 2 (A), which shared the low-popularity transition (mapping) function, and

in test contexts 3 & 4 (B), which shared the high-popularity transition function. C, D

Like the independent agent, subjects chose goal A more frequently than the other goals

across both contexts. Error bars denote standard deviation.

novel context uniformly, regardless of mapping. This occurs because, without

information from previous contexts, there is no reason to prefer one goal over another.

Human Behavior. We analyzed the behavior of 114 subjects in experiment 3.

As in the previous experiments, subjects were well above chance performance (25%)

when selecting goals in both the training and the test contexts (Fig 5 C; Training:

M=75.1%, one-sided t-test, t(113)=37.2, p < 10−64; Test: M=54.7%; t(113)=14.2,

p < 10−26). Overall performance was further assessed with goal accuracy, reciprocal

reaction time and navigation efficiency, all of which improved as a function of the
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number of trials within the training contexts. The number of trials per context was

found to predict accuracy (Fig S3 A; [βt]=0.115, 95% HPD = [0.108, 0.121]),

reciprocal reaction time ( [βt] = 0.016: 95% HPD = [0.014, 0.017]) and navigation

efficiency ( [βt] = −0.006, 95% HPD = [-0.007, -0.005], indicating subject performance

improved over the course of training.

Analysis of the a priori test context contrasts was consistent with the predictions

of independent clustering and meta-generalization. These contrasts were assessed with a

hierarchical Bayesian logistic regression that included time with context, a

subject-specific bias term, and whether a trial of the same context sequentially followed

a correct trial as nuisance variables (see Materials and Methods). Test accuracy was

predicted by both nuisance factors and increased with the number of times a context

was seen ( [βt] = 0.48, 95% HPD=[0.423, 0.553]) and when a trial of the same context

was repeated sequentially ( [βrep] = 0.923, 95% HPD=[0.685, 0.164]).

Of the two contrasts of interest, the difference between contexts 1 and 2 was

statistically significant, (Fig 6 D; [β1>2] = 0.139, 95% HPD=[0.012, 0.27],

p1-tail = 0.014). Importantly, a positive value of this contrast was predicted by the

independent clustering and meta-generalization agents, and no other model. The second

contrast of interest, the difference between test contexts 3 and 4 was not significantly

different from zero. ( [β1>2] = 0.045, 95% HPD = [-0.069, 0.174]). A negative value of

this value was predictive by joint clustering and meta-generalization and no other

model. For completeness, we also examined the contrast between the two mappings

(i.e., test contexts 1 and 2 vs. 3 and 4), an effect which was predicted to be positive by

all three generalizing strategies. We did not find evidence of this effect in our subject

pool ( [β1&2>3&4] = 0.060, 95% HPD = [-0.031, 0.144], p1-tail = 0.098).

Follow-up analyses suggested these effects were driven by positive transfer in test

context 1. Accuracy was higher in test context 1 than 3 and 4 (context 1 vs. 3 & 4:

[β1>2 + β1+2>3+4] = 0.198, 95% HPD = [0.045, 0.268]) but there was no difference

between accuracy in test context 2 than in 3 and 4 (context 2 vs. 3 & 4:

[β1+2>3+4 − β1>2] = −0.080, 95% HPD = [-0.235, 0.077]). Thus, accuracy in test
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context 1, which was associated with the most popular goal overall, was higher than in

the other three contexts whereas we did not find a difference between the remaining test

contexts. These results are consistent with the generalization of the most popular goal

overall (goal A) but not the parametric effects predicted by the models.

Subjects’ goal selection in the first trial of a test context was also consistent with

independent clustering and meta-generalization but not joint clustering. Goal choice

was analyzed at a group level with two binomial models (Materials & Methods).

Consistent with the predictions of independent clustering and meta-generalization,

across all trials the choice-probability of goal A was above chance ( [θA] = 0.309, 95%

HPD=[0.268, 0.353]) and higher than the average choice probability of goals B and C

( [θA − 1
2(θB + θC)] = 0.085, 95% HPD=[0.034, 0.135]). Furthermore, this was true

regardless of the associated mapping. Choice probability for goal A was greater than

the average goal probability for goals B and C in contexts 1 and 2 (Fig 6C;

[θA − 1
2(θB + θC)] = 0.083, 95% HPD=[0.009, 0.150]) and in test contexts 3 and 4

(Fig 6D; [θA − 1
2(θB + θC)] = 0.087, 95% HPD=[0.017, 0.157]).

Thus, we find evidence that subjects generalized the goal with the highest overall

context popularity, regardless of the mapping presented in the context. We did not find

evidence that goal generalization was parametrically proportional to context-popularity

(e.g., preference for goal B over goal C or D), a prediction of the three generalization

models as a consequence of the CRP prior.

Experiment 3: Ambiguous structure

Experiments 1 and 2 showed that subjects generalization learning in novel

contexts was more similar to a joint agent when the statistics of the training

environment supported joint structure (experiment 1) and more like an independent

agent when the statistics supported independent structure (experiment 2). In

experiment 3, we provided subjects with a task environment with a more ambiguous

relationship between mappings and goals in order to probe whether subjects would

show evidence of both joint and independent clustering within the same task. This
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mixture of joint and independent clustering is a key prediction of the

meta-generalization agent, which is able to consider both forms of structure and to

make inferences in novel environments that are influenced by the prior training

statistics. Indeed, across both previous experiments, subjects behave more similarly to

the meta-generalization agent than either joint or independent clustering alone, but we

have not yet provided evidence for meta-generalization within a single task.

Thus, in the final experiment, we presented subjects with an environment with a

more ambiguous relationship between goal-values and state-transitions across contexts

(Fig 8). In this case, the joint vs. independent structure statistics were more

ambiguous: goal A was the most popular and paired with different mappings

(consistent with independent structure), whereas goals B and C were always paired with

a single mapping (consistent with joint structure). Furthermore, goal A was the most

popular goal overall but was equally popular to goal C conditional on experiencing the

lower-popular mapping. As in the prior experiment, this design differentiates the

predictions of independent and joint clustering, as the former is sensitive to the overall

goal popularity whereas the latter is sensitive to the popularity conditioned on the

associated transition function. Subjects completed 120 training trials across five

contexts prior to completing 30 trials in four novel test contexts chosen to probe

generalization (Fig 8A; Table S3).

This task has a more ambiguous relationship between mappings and goals than

either experiment 1 or experiment 2. This is most clear in the mutual information

between mappings and goals within the training contexts, which we normalize here by

overall goal entropy for the purpose of cross-experiment comparison (see Materials and

Methods). When normalized mutual information (NMI) is 1, there is a perfect

correspondence between mappings and goals and when NMI is 0, there is no

relationship. When we evaluate the training sets of each of the experiments, we see a

correspondence between NMI and generalization strategy. In experiment 1, where we

found evidence for joint clustering, the relationship between mappings and goals is

strongest (NMI = 1.0). In experiment 2, where we found evidence for independent
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Figure 8 . Experiment 3: Ambiguous structure. A: Subjects saw five contexts (circles)

during training, each paired with one of two mappings (red: high popularity, blue: low

popularity) and one of three goals (A, B, or C). The most popular goal A was paired

with multiple mappings, but the other goals B and C were paired with a single mapping

each, making the structure more ambiguous. Subjects learned to navigate in an

additional four novel test contexts following training (grey circles). B: Goal popularity

in the training environment as a function of mapping (as tracked by the joint agent,

left) and collapsed across all contexts (as tracked by the independent agent, right). C:

Goal accuracy of models (light grey) and human subjects (dark grey) in the training

and test contexts. Chance performance denoted with dotted line. Error bars denote

standard deviation.
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clustering, the relationship was the weakest (NMI ≈ 0.16). In experiment 3 the

relationship between mappings and goals is somewhere between the other two

experiments (NMI≈ 0.3). As updating within the meta-generalization agent is sensitive

to the correspondence between mappings and goals (Franklin & Frank, 2018), we would

thus expect more of a blend of joint and independent clustering in experiment 3.

As in experiment 2, there was no incentive to generalize, as confirmed by

simulations showing that none of the three generalizing agents accumulated greater

total reward than the non-generalizing flat agent during either the training or test

contexts (Fig 8; all p’s<.005 in favor of the flat model). We thus again designed the

task such that it was possible to discriminate between predictions of different types of

generalization models without incentivizing generalization. Two comparisons, the

contrast between test context 1 and 4 and the contrast between contexts 2 and 3,

differentiate the predictions of joint and independent clustering. Test contexts 1 and 4

shared the low-popularity mapping and were paired with goals A and C, respectively.

Goal A was the highest popularity goal overall but was equally popular as goal C when

conditioned on the low-popularity mapping. Thus, the independent agent performs

better in test context 1 compared to test context 4 (Fig 9 A; M=0.265, 95%

HPD=[0.228, 0.296]), whereas the joint agent shows no such advantage (M=0.12, 95%

HPD = [-0.023, 0.047]). Conversely, consider the contrast between test contexts 2 and

3, both of which were paired with the high-popularity mapping, but were associated

with goals B and C, respectively. These two goals shared the same overall popularity

but differed in popularity conditional on the high popularity mapping. As such, the

joint clustering agent performs better in test context 2 than 3 (M=0.148, 95% HPD =

[0.112, 0.195])), while independent clustering shows no difference (M=-0.005, 95% HPD

= [-0.037, 0.025]). Critically, the meta-generalization agent showed patterns consistent

with both independent clustering (test context 1 > 4: M=0.142, 95% HPD = [0.098,

0.184]) and joint clustering (test context 2 > 3; M=0.058, 95% HPD = [0.023, 0.088]).

For the purpose of completion, we also compare goal accuracy between the two

mappings (contexts 1 and 4 vs. 2 and 3), providing the third orthogonal contrast for
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the regression model; all three models predicted a positive value for this difference

(independent: M=0.137, 95% HPD = [0.117, 0.158]; joint: M=0.131, 95% HPD =

[0.103, 0.158]; meta: M=0.129, 95% HPD = [0.103, 0.160]). As in the prior two

experiments, neither the flat agent, the Q-learning agent nor the upper confidence

bound exploration agent showed any difference in these contrasts, confirming these

metrics as measures of generalization.

Figure 9 . Generalization performance in experiment 3. A: Qualitative model

predictions expressed as the difference scores Context 1 - Context 4 and Context 2 -

Context 3. B: Human subject data. Regression weights for the two within-subjects

comparisons. C: Histogram of simulated effect sizes in the two comparisons of interest

for each of the 6 evaluated models. Error bars denote standard deviation.

In sum, the three models make qualitatively different predictions. The joint model

predicts a cost in test context 3; the independent model predicts an advantage in test

context 1, and, given the ambiguity of the statistical structure during training,

meta-generalization predicts a mixture of both effects (Fig 8, 9).
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Human Behavior. The behavior of 115 subjects was analyzed on the task. As

for prior experiments, subjects successfully learned the task and chose goals well above

chance in both the training and test contexts (Fig 8 C; Training: M=83.2%, one-sided

t-test, t(114)=53.3, p < 10−81; Test: M=65.8%; t(113)=20.9, p < 10−40). Goal accuracy,

reciprocal reaction time and navigation efficiency were assessed as a function of time

using Bayesian linear modeling (see above and Materials and Methods). The number of

trials per context was found to predict accuracy (Fig S2; [βt] = 0.109, 95% HPD =

[0.098, 0.012]), reciprocal reaction time ( [βt] = 0.008, 95% HPD = [0.0063, 0.0091])

and navigation efficiency ( [βt] = −0.003, 95% HPD = [-0.0043, -0.0027]), indicating

subject performance improved over the course of training.

Accuracy in the test contexts provided support for the meta-learning agent over

either the joint or independent clustering agent (Fig 9 B). Test context accuracy was

assessed with hierarchical Bayesian logistic regression where the a priori model

predictions were instantiated as contrasts between contexts (1 vs. 4 and 2 vs. 3), with

the number of trials per context, and whether a context was sequentially repeated were

included as nuisance regressors (Materials and Methods). Subjects’ accuracy increased

with the number of trials within each test context ( [βt] = 0.43; p1-tail < 0.0005, 95%

HPD = [0.36, 0.51]) and when a context was repeated on the next trial ( [βrep] = 0.75;

p1-tail < 0.0005, 95% HPD = [0.48, 1.01]). Critically, subjects were more accurate in test

context 1 than 4 ( [β1>4] = 0.232, 95% HPD = [0.104, 0.367], p1-tail < 0.0005) and were

more accurate in test context 2 than in 3 ( [β2>3] = 0.123, 95% HPD = [0.004, 0.258],

p1-tail < 0.0275). For completion, we also examined the difference in goal accuracy

between the two mappings (i.e., test contexts 1 and 2 vs. 3 and 4). Consistent with all

three generalization agents, subjects were also more accurate in contexts 1 and 4 than

in 2 and 3 ( [β1+4>2+3] = 0.102, 95% HPD = [0.009, 0.188], p1-tail < 0.0125).

As a follow-up analysis, we further examined positive and negative transfer in the

first trial of a test context (above or below chance performance on the first trial). Both

independent clustering and the meta-generalization agent predict positive transfer in

test context 1 and negative transfer in the other test contexts, given the overall
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popularity of goal A during training. Joint clustering does not predict positive transfer

in any context and predicts negative transfer in contexts 1, 2 and 3. Consistent with

independent clustering we found positive transfer in test context 1 (y ∼ Binom(θ);

Pr(θ1 > 1
3) = 0.963, 95% HPD=[0.325, 0.500]) but did not find evidence of positive or

negative transfer in the other test contexts (y ∼ Binom(θ); θ2: 95% HPD=[0.29, 0.46];

θ3: 95% HPD=[0.23, 0.40]; θ4: 95% HPD=[0.21, 0.38]).

Overall, these results are consistent with the predictions of meta-generalization

and are not fully captured by either the independent or joint clustering.

Discussion

In the current work, we evaluated human generalization against the predictions of

the three, dissociable generalization strategies proposed in Franklin and Frank (2018).

The independent clustering model assumes that subjects generalize in novel

environments based on the overall popularity of the previous goal and mappings

independently. The joint clustering model assumes that subjects re-visit goal locations

in proportion to how often they were paired with each mapping. Finally,

meta-generalization assumes that subjects learn the overall statistical relationship

between goals and mappings and then generalize based on the evidence for independent

or joint structure. Across the suite of tasks, we provided evidence that humans vary

their generalization strategy with the learned statistics of their environment in an

adaptive way. This suggests that humans leverage compositional representations when

generalizing in reinforcement learning tasks and adaptively respond to the statistical

challenges of generalization.

In the process of doing so, we also replicated prior work demonstrating that

human subjects exhibit positive transfer for previously learned task-sets

(stimulus-response-outcome relationships; Collins et al., 2014; Collins & Frank, 2013),

with increasing generalization performance for those rules that had been most popular

across training contexts (Collins & Frank, 2016). Even when popular contexts were

experienced fewer times, subjects tended to generalize the goals associated with popular
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contexts, suggesting context popularity-based generalization, rather than raw frequency.

Further, subjects generalized in experiments 2 and 3 even as it was disadvantageous,

replicating the prior finding suggesting that humans will generalize spontaneously even

if it requires paying a cost to do so (Collins, 2017; Collins & Frank, 2013).

However, prior empirical work assumed that task-sets are generalized as a whole,

and thus amount to joint clustering. The current set of studies was designed to disrupt

and manipulate the relationship between transition and reward functions. Consistent

with normative accounts (Franklin & Frank, 2018), subjects were able to generalize each

function independently of the other, particularly when the training environment was

suggestive of such independent structure. These results provide evidence for the

flexibility of human generalization, including the tendency to recombine component

pieces of knowledge that have not been experienced together, to new contexts. For

example, in experiments 2 and 3 subjects tended to generalize the most popular goal

overall, regardless of the mappings associated with it during training. This situation is

analogous to a musician that can transfer popular songs learned across multiple

instruments to another instrument even with very different physical actions needed.

However, when the task statistics implied joint structure, subjects were able to harness

that relationship to generalize accordingly, repeating goals that had been previously

paired with the same mapping over those that had been reached using a different

mapping function (experiment 1 and partially experiment 3). This situation is

analogous to exhibiting a preferential tendency to play a song on a new instrument that

has shared actions required to produce the desired effect.

Why do we expect these tasks to produces these generalization strategies? If

subjects are acting adaptively, then we would expect them to use the statistics of the

training set to inform the nature of their generalization strategy on the test set, thus

amounting to a form of meta-generalization. This meta-generalization is normatively

driven by the degree to which state transitions and rewards are mutually informative

and the pattern of human generalization behavior is similarly governed. In our three

experiments, we observe that subject behavior is most similar to joint clustering in
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Figure 10 . Comparison of Human behavior to model to model predictions. Angle

cosign between the vector of a priori model contrasts and human subject regression

coefficients is shown for independent clustering (blue) and joint clustering (orange)

across experiments 1 (joint structure), 2 (independent structure), and 3 (ambiguous

structure) ordered by degree of joint structure in the tasks. Positive values (max=1)

reflect similarity between model prediction and human behavior.

experiment 1, where the mutual information is high, and most similar to independent

clustering in experiment 3, where the mutual information is lowest (Fig 10). Thus, the

degree to which each fixed strategy accounts for human behavior depends on the task

statistics as meta-generalization predicts.

Mechanistically, learning about latent task-set structure is thought to involve the

same, albeit hierarchically nested, frontostriatal circuits that are responsible for simple

reward feedback-based learning (Collins et al., 2014; Collins & Frank, 2013, 2016). How

might this circuitry adapt to assume joint vs. independent clustering? One simple

mechanism to enforce compositional representations of goals and transitions would be

to embed them in independent systems. For example, learning motor mappings might

involve interactions among basal ganglia, cerebellum and/or motor areas of the cortex

(Doya, 1999; A. Fermin et al., 2010; A. S. Fermin et al., 2016), while learning

reward/goal values may involve interactions among prefrontal areas representing value
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and/or state (Bartra, McGuire, & Kable, 2013; Frank & Claus, 2006; Schuck, Cai,

Wilson, & Niv, 2016; Wilson, Takahashi, Schoenbaum, & Niv, 2014). Thus the ventral

striatal orbitofrontal circuit could learn goal or state values that can be reused

independently of the actions needed to reach them (Frank & Claus, 2006;

Padoa-Schioppa & Assad, 2006), thus potentially facilitating compositional

recombination.

In contrast, when higher-order rules or goal values are used to constrain physical

mappings, such joint structure can be learned in hierarchical rostrocaudal circuits that

embed multiple levels of abstraction (Badre & Frank, 2012; Collins & Frank, 2013;

Frank & Badre, 2012). The mechanisms by which the brain could infer which of these

structures (orthogonal/independent vs. hierarchical) should be used remain

underexplored. Nevertheless, previous modeling and empirical work has suggested that

reinforcement learning principles can be used to engage the level of rostrocaudal

hierarchy needed for a given task, and when such hierarchy is not present, reward

prediction errors are used to prevent gating of these circuits in favor of combinatorial

representations (Badre & Frank, 2012; Frank & Badre, 2012). Indeed, these studies

found that the degree of evidence of hierarchical structure using a Bayesian mixture of

experts, akin to our meta-generalization agent, was related to the development of

hierarchical gating policy in the neural network (Collins & Frank, 2013; Frank & Badre,

2012). More recent work has suggested this form of structure learning is neurally

dissociable from the associative learning and involves the rostrolateral prefrontal cortex

and angular gyrus (Tomov et al., 2018).

Limitations

In each of the experimental tasks, the mappings subjects learned to navigate the

mazes represent a minimal version of a transition structure needed to the predictions of

the model. This was done to be amenable to learning while still presenting a learning

challenge. Similarly, the planning problem itself, in terms of cardinal movements (but

not button responses) in the maze was simple. While prior simulations suggest that the
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type of goal-generalization effects we are primarily concerned with here is not affected

by this minimal version of a transition function (Franklin & Frank, 2018), we do not

know if this holds for human learners in more complex domains.

While we found consistent evidence for the most diagnostic qualitative patterns

predicted by the meta-generalization agent across three experiments, not all of the

predictions of the model were borne out. Our models of generalization, like previous

clustering models of generalization, rely on the CRP prior. When used in

context-popularity based clustering, the CRP predicts that contexts will be generalized

as a parametric function of their popularity. While previous data confirm that subjects

do have a strong bias to prefer more popular structures as a prior (Collins & Frank,

2016), that work did not assess whether such an effect was parametric (i.e., increasingly

stronger preferences for increasingly more popular structures). We find mixed evidence

for such a parametric effect in our data. In experiment 2, we found evidence that

subjects generalize only the most popular goal. In experiment 3, two of the three

significant test context contrasts relied on the distinction between the second and third

most popular goal in training (specifically, the contrast between contexts 2 and 3 and

the contrast between 1 and 4 vs. 2 and 3 involved these preferences). Assuming this

partial null effect does not simply reflect an absence of statistical power, there are

multiple potential explanations, the most simple of which is that experiment 2 was

more difficult than experiment 3 (as it had more training contexts and more goals to

choose from) and consequently, subjects had lower accuracy in experiment 2 than in

experiment 3 (Figure S4; experiment 2 vs. 3: difference score = -0.045, t=2.3, p<0.03).

Because subjects tend to extend less cognitive effort in more demanding tasks (Kool,

McGuire, Rosen, & Botvinick, 2010; Westbrook, Kester, & Braver, 2013), it is possible

that relied on a less cognitively demanding strategy.

The difference in task complexity (which extends to the first experiment as well)

resulted from experimental choices designed to increase the interpretability of the

experiments. Critically, the ability to resolve the predictions of joint and independent

clustering is related to the complexity of the space of reward and mapping functions, as
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the models make different predictions only in explored regions of this space. We

increased the space of contexts and goals in experiments 2 and 3 in order to

differentiate model predictions on a within-subjects basis. In addition, we balanced the

number of presentations of each context so that each goal would be correct the same

number of times. Otherwise, goals associated with higher popularity contexts would

have a higher expected value marginalized across contexts. These two choices interact

such that contexts were experienced less frequently in experiment 2 than experiment 3,

increasing the difficulty of the associative learning problem.

A further consequence of these choices is that working memory demands are not

equal across the tasks. This consequently offers an alternative explanation to the

meta-generalization agent: people may be arbitrating their generalization strategy

based on the complexity of the task-space as opposed to reward prediction. How

working memory would influence the arbitration strategy is not obvious, but intuitively,

we might expect people to favor joint structure to the extent that working memory

capacity supports it and then switch to independent structure as task complexity

increases. Joint structure is more representationally greedy than independent structure,

and such, we would expect it requires a higher memory load to learn the reward

contingencies. Subjects learn reward contingencies more slowly under higher memory

load (Collins & Frank, 2012) and we would expect working memory decay to affect joint

and independent structure unequally. Joint clustering will necessarily result in at least

as many context-clusters as independent clustering, meaning that the reward values of

independent clustering are updated more frequently, possibly leading to better

estimates of reward and thus, the meta-generalization agent may favor independent

clustering as task-complexity increases. While we have not considered resource

constraints in our model and they likely play an important role, it nevertheless remains

clear from our data that people arbitrate between a compositional and

non-compositional generalization strategy depending on task demands. Indeed, the

same issue as to capacity limitations also arises in related literature on model-based vs.

model-free contributions to learning (Otto, Gershman, Markman, & Daw, 2013), where
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highlighting this tradeoff across environments is nonetheless useful.

Finally, in this study, we presented model predictions and behavioral analyses at a

group level and do not make claims about individual subjects. This limitation is a

consequence of the task design: we probe generalization in a small number of test trials

chosen to differentiate the computational models qualitatively. There are only a few

(2-4) trials per subject per measure that distinguish the model predictions and most of

the trials in each experiment are used to teach the subjects the statistics of the task or

to balance the stimulus-action-outcome value of each goal and button-press. While we

could attempt to fit a process model to each subject to determine each subject’s

generalization strategy, the estimated strategy of each subject will be highly dependent

on a few trials and we are hesitant to rely upon this type of individual difference metric.

However, this is not a limitation of the grouped data because of its larger sample size.

The models make unique and identifiable qualitative predictions on these tasks and the

metrics of these predictions, the context contrasts, are orthogonal from each other and

not correlated with overall performance. As such, we believe it is strong to make

qualitative predictions about which conditions show better or worse performance

especially when the predicted patterns are orthogonal as here.

Materials and Methods

The code for our experimental design and all of our analyses and computational

model are available online in our GitHub repository:

https://github.com/nicktfranklin/GeneralizingToGeneralize

Subjects

We collected in subjects online using Amazon Mechanical Turk and psiTurk

(Gureckis et al., 2016). All participants were compensated for their participation and

gave informed consent as approved by the Human Research Protection Office of Brown

University under protocol 0901992629, “How prefrontal cortex augments reinforcement

learning.”
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Experiment 1. 198 subjects completed the task, of which two subjects were

excluded for reporting they took written notes during the experiment. Cluster analysis

was used to asses subjects for non-performance. A Gaussian mixture model was fit to

the two measures: trials following a correct trial of the same context and the overall

accuracy in all other training context trials (see SI Materials and Methods). On the

basis of this analysis, 67 subjects were excluded for non-performance.

Experiment 2. For experiment 2, we collected 153 subjects, five of which were

excluded for reporting they took written notes. Cluster analysis was used to assess

non-performance on the task. A Gaussian mixture model was fit to two measures: the

accuracy in trials following a correct trial of the same context and the binomial chance

probability in all other training context trials (see SI Materials and Methods). On this

basis, we excluded 33 subjects from further analysis, leaving a total of 114 subjects.

Experiment 3. 151 subjects completed experiment 3, two of which were

excluded for reporting they took written notes during the experiment. Using the same

measures and analysis as in experiment 1, we used cluster analysis to exclude 34 of the

remaining 149 subjects on the basis of their performance on these measures.

Task

In each of the three experiments, subject controlled agent in a 6x6 grid world

which they had to navigate into a labeled (‘A’, ‘B’, ‘C’, or ‘D’) goal location. In each

study, subjects had to learn both the value of the goals in each context as well as a

“mapping” between button responses (‘a’, ‘s’, ‘d’, ‘f’, ‘j’, ‘k’ , ‘l’, and ‘;’) and movement

in the grid worlds (North, South, East, West). Each trial was a new instance of a grid

world and associated with a color-cued context. To aide memory, contexts were

autocorrelated in time. This was done by splitting the training contexts by permuting

the order of the contexts under the constraints that the first half and second half of

training were equally balanced and subject to a hazard rate of 25% in the first half of

training that was lowered to 8% in the second half. The order of contexts was fully

randomized in each test phase. In each context, one goal provided a fixed deterministic
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reward while all other goals were unrewarded. Separately, each context was also

associated with one of two deterministic mappings. One mapping was always associated

with left-hand keys on a standard US keyboard (‘a’, ‘s’, ‘d’, ‘f’) and the other was

always associated with the right-hand keys (‘j’, ‘k’, ‘l’, ‘;’). These two mappings were

orthogonal for each hand, such that it was not possible to learn a mapping on one hand

and transfer that knowledge directly to the other hand. Organized from left to right

(i.e., ‘a’ to ‘f’ or ‘j’ to ‘;’), there were two possible mappings, either West, North, South,

East, or North, West, East South. Each mapping was assigned to each uniquely across

each hand, randomized across subjects, and each which mapping corresponded to the

high or low popularity mapping was also varied across subjects.

It is worth noting these mappings are substantially more simple than the

state-transition functions found in purely computational agents. This simplification was

done to aid learning and the degree to which humans learn the transition structure was

not an experimental question. As these mappings were deterministic and

non-overlapping, each was identifiable with a single button press. Prior theoretical work

(Franklin & Frank, 2018) compared these reduced mappings to full state-transition

functions and found that goal generalization was not affected by this simplification.

Subjects were required to learn both the identity of the correct goal and the

mappings through exploration. To counterbalance for low-level action-values, the

location of the goals and the starting point of the agent were randomized on each trial.

In addition, barriers were randomly placed in a subset of trials to encourage additional

planning. The relationship between keypresses and movements was permuted across

subjects, as was the visible label attached to each goal.

Subjects were instructed that each context was paired with a single mapping and

a single rewarded goal location and asked to use their left-hand and right-hand to

navigate. Subjects were instructed that the shared color of the agent and goal cued the

mapping and the value of the goals and that this relationship was constant across all

trials with the same color. As an additional memory cue in experiment 2, each trial was

labeled with a “room number” consistent with its context and all trials in a context
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within the experiment shared the same pattern of walls.

Computational Modeling

We used a version of the independent clustering, joint clustering and

meta-generalization agent models adapted from Franklin and Frank (2018) to generate

qualitative predictions for each of the three experiments. Simulations were run

generatively to inform the design of the experiments and make qualitative predictions.

To verify the statistical significance of these predictions, we estimated the posterior

distribution of the relevant comparisons via sampling. Specifically, we generated 2500

simulated samples of each model on each task and sub-sampled 200 batches of

simulations matched to the sample size in the human experiments (e.g. for experiment

2, we generated 200 batches of 115 simulations to match the 115 subjects collected).

Importantly, independent and joint clustering are matched in the number of free

parameters and can be directly compared. Accuracy, or binary rewards collected per

trial, are reported as opposed to total reward.

Each model was a reinforcement learning model that learned a mapping function

between keyboard responses and movements in the maze as well as a value function over

goals. Formally, we define a mapping function with a probability mass function φ(a, A),

where a defines a keyboard movement and A is a movement in the maze. As rewards in

the task are binary, the value function over goals can also be expressed as a probability

distribution over goals R(g) = Pr(g). For all three agents, mappings and goals are

estimated with maximum likelihood estimation. Agents were provided with fully

supervised information as to the attempted movement direction in the case the agent

attempted to move through a barrier, as this information was visually signaled to

human participants as well.

The mapping and reward function was constant and deterministic for all trials

within a context. The models differed in how they assumed these functions were

generalized across contexts. Joint clustering assumes that each context c belongs to a

cluster of contexts k that share a single mapping and reward function, φk and Rk.
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Generalization is then cast as the problem of inferring the correct assignment of c into k

via Bayesian inference:

Pr(c ∈ k|D) ∝ Pr(D|k) Pr(c ∈ k) (1)

where the likelihood function Pr(D|k) = 
D φk(A|a)Rk(g) is the product of the

observed probability of transitions and rewards on each trial for context cluster k. For

the likelihood function, we use the maximum likelihood estimate over all trials. The

prior is defined with a Chinese restaurant process (Aldous, 1985), defined

Pr(c ∈ k) =






Nk

N+α

α
N+α

(2)

where Nk is the number of contexts previously assigned to a cluster, N = 
k Nk is the

total number of contexts visited thus far and α is a concentration parameter that

governs the propensity for the process to assign a new context to a new cluster. For all

of the simulations here, α was drawn from a standard log-normal distribution, such that

log α ∼ N (−0.5, 1), to simulate individual differences generalization. During action

selection (discussed below) the maximum a posteriori (MAP) cluster assignment was

used to approximate the posterior.

While joint clustering assumes mappings and goals generalize together,

independent clustering loosens this assumption by assigning each context twice: once

for mappings and once for goals. As before, cluster assignments are made via Bayesian

inference (Eqn. 1) with the Chinese restaurant process prior (Eqn 2) but with a

different likelihood for mapping clusters and reward clusters. Mapping clusters use as

their likelihood the mapping function Pr(D|k) = 
D φk(A|a) whereas goal clusters use

the reward function over goals as their likelihood Pr(D|k) = 
D Rk(g). While this can

lead to a larger absolute number of clusters (with potentially two clusters per contexts

vs. one per context in the joint model), independent clustering is a simpler statistical

model as it does not represent co-occurrence statistics (Franklin & Frank, 2018).

In contrast to both joint and independent clustering, the meta-generalization

agent does not employ a fixed generalization strategy and instead dynamically arbitrates

between joint and independent clustering. This is done via sampling, where each
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strategy is sampled proportionally to how well it predicts reward in each novel context.

Formally, each model is sampled according to its weight, wm, which is defined as

wm ∝


n

t=1
Pr(rt|m)



Pr(m) (3)

where m is either independent or joint clustering and rt is the reward observed on trial

t. The prior over models, Pr(m), was chosen stochastically by sampling a uniform

between zero and one. These model weights are an approximation of the unnormalized

Bayesian model evidence and are consistent with a prediction error based arbitration

strategy (Franklin & Frank, 2018). Thus, the meta-generalization agent favors joint or

independent clustering to the degree to which it predicts unseen rewards.

Action selection was equivalent in all three models. Each agent had access to the

structure of each grid-world on each trial in the form of a transition function T (s, A, s′).

This transition function defined the probability of transitioning from location s to

location s′ having made the cardinal movement A. As movement in the grid-worlds was

deterministic, this probability was always either one or zero. This was done to mirror

human participants who have access to visual information indicating a spatial

relationship between states as well as the locations of goals and the presence of barriers.

We note that the spatial planning component of this task was intended to be simple for

human participants.

This transition function was used to solve an action-value function on each trial in

terms of cardinal movements,

Q(s, A|c) =


s′
T (s, A, s′) [Rk̂(s′) + Vk̂(s′)] (4)

where Rk̂(s′) is the reward function over states for the MAP cluster assignment k̂ and

where Vk̂ is the corresponding value function over states. Here, the reward function

Rk̂(s′) is expressed over locations in the grid-world instead of over goals. In the

behavioral task, goal locations are randomized to account for stimulus-response biases

and the location of each goal is provided to the agent as it is visually available to

subjects.
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The value function over states, which defines the discounted expected reward of

each state under the optimal policy, is defined by the Bellman equation,

Vk̂(s) = max
A




s′
T (s, A, s′) (Rk̂(s′) + γVk̂(s′))



(5)

where γ is a discount parameter set to γ = 0.8 for all agents. This system of equations

is solved using value iteration (Sutton & Barto, 1998).

On each trial, a cardinal movement is sampled from a softmax function over the

action-value function:

Pr(A|s, c) ∝ eβQ(s,A|c) (6)

where β, a free parameter, controls the propensity to choose the highest valued action.

The value of β was sampled for each simulation such that log β ∼ N (2.0, 0.5). The

learned mapping functions were then used to sample keyboard responses,

Pr(a|A) = φk̂(a|A) (7)

As a comparison to the generalization agents, three non-generalizing agents were

also simulated: a “Flat” agent, a Q-learning agent and an Upper Confidence Bound

(UCB) agent. The Flat agent is the most similar to the generalization agents, differing

only in its assignments of contexts into clusters. The Flat agent assigns each context

into a unique cluster, preventing the pooling of information between contexts.

Conveniently, this can be interpreted as the limiting case of all of the generalizing agents

with the concentration parameter α set to infinity and is thus otherwise the same.

The Q-learning agent further differed from the generalization agents in that the

value of each goal was learned with a prediction-error based learning rule, defined:

Rc(g) ← Rc(g) + η(r − Rc(g)) (8)

where r is the observed reward, and η ∈ [0, 1] is a learning rate. Like the Flat agent, the

Q-learning agent learned both the mapping and the goals statistics of each context

independently, so the reward function here is defined in terms of contexts and not

clusters. For each simulation, a single fixed learning rate was sampled from the

distribution logit−1(η) ∼ N (−1, 1), where logit−1(x) = 1/(1 + exp(−x)) is the inverse
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logit transform (thus the sampled value of the learning rate is bound between 0 and 1).

Aside from this learning rule, the Q-learning agent was otherwise equivalent to the Flat

agent.

Finally, the UCB agent incorporated estimates of uncertainty in the learned value

of goals used during planning. By this, we mean that the value of each goal in a context

was defined to be a function of the expected value of reward and the uncertainty of the

estimate,

Rc(g) = µc,g + ωσ2
c,g (9)

where µc,g and σ2
c,g are the mean and variance of the rewards for goal c in context c and

where ω is a free parameter that controls the degree of uncertain-guided exploration

(see Gershman, 2018, for a thorough discussion of uncertainty guided exploration). In

our simulations, ω was sampled from the distribution logit−1(ω) ∼ N (−1, 1). Other

than this estimate of reward, the UCB agent is equivalent to the Flat agent and

Q-learning agent.

To estimate the mean and variance of rewards for the UCB agent, we used a

time-varying normal approximation via a Kalman filter (Welch, Bishop, et al., 1995).

We define our Kalman filter with a series of update rules. The mean is updated

according to the rule

µc,g ← µc,g + G (r − µc,g) (10)

and the variance by

σ2
c,g ← (1 − G) × (σ2

c,g + ζ) (11)

where ζ is the diffusion noise that reflects the tendencies of reward to drift over time

and where G refers to the “Kalman gain” (learning rate), defined

G = µc,g + ζ

µc,g + ζ + 
(12)

where  is a form of irreducible noise. The values of ζ and  were sampled from the

distributions logit−1(ζ) ∼ N (−1, 1) and logit−1() ∼ N (−1, 1), respectively. This

estimate of mean and variance allows the estimate of reward to drift over time, with the

consequence that the model will tend to over-explore the tasks defined here.
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Statistical Analyses

Analysis of Computational models. As noted above, we simulated 200

batches of simulations for each model matched to the human subject sample size for

each condition in each experiment. This represents a distribution on which we can

directly calculate significance statistics and effect sizes. For each relevant comparison,

we report the mean value (M), and the 95% highest posterior density interval (HPD;

Kruschke, 2014) and, when appropriate, the one-tailed p-test (p1-tail) evaluated directly

on this distribution. Statistical significance was determined by whether the measured

effect included chance in its 95% HPD (chance was zero for the context contrasts).

Because we evaluate 200 samples, the minimum p-value we report is p1-tail<0.005 for a

single model. We do not report t-tests or other null-hypothesis significance tests on the

computational models.

Hierarchical Bayesian logistic regression. We analyzed test context

accuracy in each of the three experiments with hierarchical Bayesian logistic regression

(Gelman et al., 2014; Kruschke, 2014), with a hierarchical prior over individual

regression coefficients. All models were estimated using the No-U-turn sampler, a

variant of Hamiltonian MCMC (Hoffman & Gelman, 2011), implemented in the PyMC3

software library (Salvatier, Wiecki, & Fonnesbeck, 2016).

A priori model predictions were instantiated with and orthogonal set of contrasts

between test contexts. Experiment 1 contained both within-subjects and

between-subjects prediction and thus contained predictors for both. To control for

within context learning, the number of trials in a context (t), whether a context was

sequentially repeated (rep) were included as nuisance predictors. It was modeled with

the following logistic regression model:

logit(p) = βsS + βHH + βtt + βreprep (13)

where S ∈ {0, 1} is equal to 1 for the (between-subjects) “Switch” condition, where

“H”∈ {0, 1} is equal to 1 when the rewarded goal for the context is the high popularity

goal. A hierarchical prior β ∼ N (µβ, σβ) was used for all predictors with a vague
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normal µβ ∼ N (0, 100) and Cauchy hyper-prior σβ ∼ Half-Cauchy(0, 100) for the mean

and variance of each predictor, respectively.

The predictions of interest in experiments 2 and 3 were all within-subjects

measures. As both experiments had 4 test contexts, a maximum of three orthogonal

contrasts was possible. As before, the number of trials in a context, whether a context

was repeated were included as nuisance predictors. These were modeled as a linear

combination of terms in a logistic regression,

logit(p) =


c

βcc + βtt + βreprep (14)

where logit(x) = 1/(1 + exp(−x)), c is a contrast, t is the trial number within a context

and rep ∈ {0, 1} indicates whether a context has been sequentially repeated.

Hierarchical priors for the regression coefficients were defined in the same manner as

experiment 1.

We report the expectation (mean value) of the regression coefficients (denoted as

[β]). These were interpreted as group level effects and statistical significance was

determined by gauging whether 0 fell within the 95% highest posterior density interval

(HPD; Kruschke, 2014) or using a 1-tailed test, denoted as p1-tail, where appropriate.

An advantage of this Bayesian approach is that we are able to define novel contrast

with the same posterior sample through algebraic manipulation (i.e., addition or

subtraction) of our parameters. For additional insight, we report relevant contrast

created through this form of recombination.

Analysis of goal selection. In experiment 2, we analyzed the probability each

goal was chosen in the first trial of a novel context at a group level with two Bernoulli

models. For the first model, we collapsed the goal selection for all subjects across all

test contexts, and modeled the goal-choice probability with independent Bernoulli

distributions,

pg ∼ Bernoulli(θg) (15)

where g ∈ {A, B, C, D} is a goal. In a separate analysis, we modeled goal choice

probability as independent Bernoulli distributions, collapsing across all test contexts
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that shared a transition function. Thus, as test contexts 1 and 2 shared the same

transition function, θg was modeled separately for contexts 1 and 2 then 3 and 4.

Similarity Analysis. The qualitative predictions of the joint and independent

clustering models were compared to human behavior across each of the three

experiments. A vector of length two was created for each experiment for both human

and model data. For human data, this consisted of the regression coefficients of the

contrasts of interests and for the model data, this corresponded to the difference score

between test conditions. Angle cosine was calculated between samples of these two sets

of vectors as a metric of similarity, with a maximum similarity occurring when the angle

cosine equals 1 and a measure of 0 representing orthogonal predictions.
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Supporting information

Subject Exclusion Criteria

Our subject pool was recruited online using Amazon’s Mechanical Turk platform.

In order to control for the possibility some subjects were not engaged in the task and

instead rushed through it as quickly as possible, we used subject performance on the

training contexts to identify non-performance on the task. In experiments 2 and 3, we

used two measures of performance during training: (1) accuracy on trials in which the

preceding trial shared the same context and in which the subject responded correctly

and (2) the probability subject goal-selection accuracy was at chance in all other trials,

according to a binomial model. A Gaussian mixture model were fit to these two

measures, we allowed the number of clusters to range between one and three and

allowed for the and allowed for constraints over the covariance matrix to vary from

spherical, diagonal, tied or full. Bayesian information criterion (BIC) was used for

model selection, and the model with the lowest BIC was chosen. For both experiments

2 and 3, a model with 2 components and a diagonal constraint on the covariance matrix

had the lowest BIC (Figure S1)

The members of the largest cluster were carried forward for analysis and all other

subjects were used excluded. Follow up analyses found the excluded subjects were more

likely to choose the goal closest to the initial location in each trial in both experiment 2

(Fig S1F; t(65.8) = −6.4, p < 3 × 10−8) and experiment 3 (Fig S1B; t(42.8) = −7.1,

p < 9 × 10−9). In experiment 3, excluded subjects tended to rate the experiment as

more difficult (Fig S1C; t(47.6) = −4.3, p = 9 × 10−5) and spent significantly more time

viewing the instructions (Fig S1D; t(45.1) = 3.5, p = 0.0011). Neither of these two

effects were present in experiment 1 (Fig S1G, H; difficulty: t(53.3) = 0.76, p > 0.4,

viewing time: t(57.7) = 0.30, p > 0.7)

A similar clustering procedure was used to determine the subjects in experiment 1

that were carried through for further analysis but with loosened criteria as a large

number of subjects were found to be excluded using the criteria above. This was likely

due task differences as experiment three was substantially easier that the other two
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tasks. Accuracy in trials in which the context was sequentially repeated and in which

the previous trial was correct was again used as a dimension of the clustering analysis.

In lieu of the binomial probability that all other trials were at chance accuracy, the raw

accuracy in these trials was used. Chance accuracy in experiment 3 was 50%, and this

was found to be too strict of a criterion. Subjects excluded in were less likely to choose

the closest goal closest to the initial location of the agent (t(115, 5) = −1.99, p = 0.049)

but we saw no difference in the time spent viewing instructions

(t(150.6) = 0.82, p > 0.4, cohen’s d = 0.87) or in rated task difficulty

(t(106.5) = −0.29, p > 0.7)

Statistical analysis of training contexts

While performance in the training context was not directly of interest,

generalization depends on learning the statistics of the training environment. We

assessed three measures of learning as a function of time in the training contexts:

goal-choice accuracy, reciprocal reaction-time and navigation efficiency, where

navigation efficiency was defined as the number of steps taken in a trial minus the

minimum path length required to reach the chosen goal. Each measure was analyzed

using a hierarchical Bayesian general linear model:

f(x) = αsubj + βt ∗ t + βtt + βreprep (16)

where x is the measure of interest, f is the linking function, t is the number of trials

observed within a context, rep ∈ 0, 1 is an indicator function for whether the previous

trial was correct and shared the same context and αsubj is a subject specific bias term

(Kruschke, 2014). For accuracy, we used a logistic function as a linking function, for

reciprocal reaction time we use a linear linking function (Noorani & Carpenter, 2016),

and for navigation efficiency we use a Poisson linking function.

For the accuracy and reaction time analysis, we further assumed the hierarchical

priors αsubj ∼ N (µα, σα), βt ∼ N (0, 100) and βrep ∼ N (0, 100), with the weakly

informative hyper-prior µα ∼ N (0, 100), σα ∼ N (0, 100). For the navigation efficiency

analysis, we used the stronger priors of βt ∼ N (0, 10) and βrep ∼ N (0, 10) as priors,



GENERALIZING TO GENERALIZE 51

with the weakly informative hyper-prior µα ∼ N (0, 5), σα ∼ N (0, 5) as the less

informative priors failed to converge, likely due to the Poisson link function.

Non-zero values of βt were interpreted as learning across time while all other

predictors were considered nuisance parameters. The analysis of goal accuracy was also

used to compare experiments, with the hierarchical mean over subject intercepts, µα, as

a metric of group-level accuracy in the task.

Comparison between experiments

In this section, we examine the degree to which goals and mappings are related in

the training contexts. We formalize this with normalized mutual information (NMI),

which we define as

NMI = 1 − H(G|M)
H(G) (17)

where H(G|M) is the conditional entropy of the goals given the mapping and H(G) is

the marginal entropy of the goals. Both the conditional and marginal entropy are

defined in bits as

H(G) = −


g

pg log2 pg (18)

and

H(G|M) = − 1
Nm



g,m

pg|m log2 pg|m (19)

where pg is defined as the frequency goal g is the correct goal in the training context,

pg|m is the frequency goal g is the correct goal conditioned on mapping m and Nm is the

total number of mappings.

For example, in experiment 1, there are three training contexts, two of which have

“A” as the correct goal and one of which has “B.” Therefore,

H(G) = −


2
3 log2

2
3 + 1

3 log2
1
3


≈ 0.92bits. Because there is a perfect correspondence

between mappings and goals in experiment 1, H(G|M) = 0 and consequently, NMI=1.
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Context Goal Mapping n Trials

Train 1 A High Pop 8

Train 2 A High Pop 8

Train 3 B Low Pop 16

Repeat Test 1 A High Pop 4

Repeat Test 2 A High Pop 4

Repeat Test 3 B Low Pop 8

Switch Test 1 A Low Pop 4

Switch Test 2 A Low Pop 4

Switch Test 3 B High Pop 8

Table S1

Experiment 1: The number of trials within each context is balanced such that each goal

and each mapping is presented the same number of trials across both training and test.

Subjects saw either the "Repeat Test" context or the "Switch Test" contexts.
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Context Goal
Mapping

Popularity
n Trials

Train 1 A Low 20

Train 2 A High 10

Train 3 A High 10

Train 4 B Low 20

Train 5 B High 20

Train 6 C Low 40

Train 7 D High 40

Test 1 A Low 6

Test 2 B Low 6

Test 3 C High 6

Test 4 D High 6

Table S2

Experiment 2 task design. The number of trials within each context is balanced such that

each goal and each mapping is presented the same number of trials across both training

and test.
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Context Goal
Mapping

Popularity
n Trials

Train 1 A High 10

Train 2 A High 10

Train 3 A Low 20

Train 4 B High 40

Train 5 C Low 40

Test 1 A Low 10

Test 2 B High 10

Test 3 C High 5

Test 4 C Low 5

Table S3

Experiment 3 Task design. The number of trials within each context is balanced such

that each goal and each mapping is presented the same number of trials across both

training and test.
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Figure S1 . Cluster analysis of subjects training performance in experiments 1 (A-D) and

2 (E-H). A,E: Accuracy in repeated, correct trails vs. all other trials. B,F: Proportion

of time the closest goal was selected by inclusion status. C,G: Subject rated difficulty by

inclusion status. D,H: Time spend reading viewing instructions by inclusion status
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A B C

Figure S2 . Experiment 1, Training performance. Accuracy (A), median reaction time

(B) and the excess number of steps taken over the shortest path (C) shown as a

function of the number of trials within each training context
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A CB

Figure S3 . Experiment 2, Training performance. Accuracy (A), median reaction time

(B) and the excess number of steps taken over the shortest path (C) shown as a

function of the number of trials within each training context
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Figure S4 . Cross experiment training accuracy Left: Accuracy as a function of

the number of presentations in each context. Initial differences reflect a difference in

chance accuracy between experiments Right: Accuracy as a function of number of

presentations remaining (per context) within the training phase. Sharp drops in

accuracy reflect the fact that each context was not shown the same number of times.


