1	A rare variant on a common risk haplotype of <i>HFE</i> causes increased risk of
2	hereditary hemochromatosis
3	
4	Andrew M. Glazer, ¹ Lisa Bastarache, ² Lynn Hall, ¹ Laura Short, ¹ Tiffany Shields, ¹ Brett
5	M. Kroncke, ^{1,3} Joshua C. Denny, ^{1,2} and Dan M. Roden ^{1,2,3*}
6	
7	¹ Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University
8	Medical Center, Nashville, TN, USA
9	² Department of Biomedical Informatics, Vanderbilt University Medical Center,
10	Nashville, TN, USA
11	³ Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN,
12	USA
13	
14	
15	
16	*Correspondence should be addressed to Dan M. Roden, MD, Vanderbilt University
17	Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232. Email
18	dan.roden@vanderbilt.edu
19	
20	
21	

22 Abstract

23	Hereditary hemochromatosis (HH) is an autosomal recessive disorder of excess
24	iron absorption. The most common form, HH1, is caused by loss of function variants in
25	HFE. HFE encodes a cell surface protein that binds to the Transferrin Receptor (TfR1),
26	reducing TfR1's affinity for the transferrin/iron complex and thereby limiting cellular
27	iron uptake. Two common missense alleles for HH1 have been identified, HFE C282Y
28	and HFE H63D; H63D is considered to be a less penetrant allele. When we deployed
29	Phenotype Risk Scores (PheRS), a method that aggregates multiple symptoms together in
30	Electronic Health Records (EHRs), we identified HFE E168Q as a novel variant
31	associated with HH. E168Q is on the same haplotype as H63D, and in a crystal structure
32	HFE E168 lies at the interface of the HFE-TfR1 interaction and makes multiple salt
33	bridge connections with TfR1. In in vitro cell surface abundance experiments, the HFE
34	E168Q+H63D double mutation surprisingly increased cell surface abundance of HFE by
35	10-fold compared to wildtype. In coimmunoprecipitation experiments, however, HFE
36	C282Y, E168Q, and E168Q+H63D completely abolished the interaction between HFE
37	and TfR1, while H63D alone only partially reduced binding. These findings provide
38	mechanistic insight to validate the PheRS result that HFE E168Q is an HH1-associated
39	allele and lead to the reclassification of E168Q from a variant of uncertain significance to
40	a pathogenic variant, according to ACMG guidelines. HFE E168Q results in loss of HFE
41	function by disrupting the HFE-TfR1 interaction. In addition, some disease
42	manifestations attributed to H63D may reflect the functional effects of E168Q.
43	

45 Introduction

46	Hereditary hemochromatosis (HH) is a genetic disorder in which the body absorbs
47	excess iron. ¹ The excess iron can cause damage to the body's tissues, resulting in a
48	myriad of symptoms, sometimes culminating in liver failure, heart failure, or diabetes.
49	HH has been linked to variants in multiple genes, including autosomal recessively
50	inherited variants in HFE (Hemochromatosis Type 1, HH1 [MIM 235200]). Two classic
51	common risk alleles for HH1 in <i>HFE</i> are C282Y and H63D. ^{2,3} These missense variants
52	are common, with minor allele frequencies of 0-6% and 2-15% respectively, depending
53	on ancestry. ⁴ C282Y homozygotes are considered to have the highest risk for HH, with
54	C282Y heterozygotes, H63D homozygotes, and C282Y/H63D compound heterozygotes
55	at lower risk. ^{5,6}
56	HFE is a 343 amino acid single-pass transmembrane protein with a large
56 57	HFE is a 343 amino acid single-pass transmembrane protein with a large extracellular domain. The extracellular domain of HFE binds the extracellular domain of
57	extracellular domain. The extracellular domain of HFE binds the extracellular domain of
57 58	extracellular domain. The extracellular domain of HFE binds the extracellular domain of Transferrin Receptor 1 (TfR1), reducing the affinity of TfR1 for transferrin. When <i>HFE</i>
57 58 59	extracellular domain. The extracellular domain of HFE binds the extracellular domain of Transferrin Receptor 1 (TfR1), reducing the affinity of TfR1 for transferrin. When <i>HFE</i> is unable to bind TfR1 sufficiently, TfR1 has increased affinity for transferrin, resulting
57 58 59 60	extracellular domain. The extracellular domain of HFE binds the extracellular domain of Transferrin Receptor 1 (TfR1), reducing the affinity of TfR1 for transferrin. When <i>HFE</i> is unable to bind TfR1 sufficiently, TfR1 has increased affinity for transferrin, resulting in excess iron uptake into cells and hemochromatosis. C282Y eliminates a disulfide bond
57 58 59 60 61	extracellular domain. The extracellular domain of HFE binds the extracellular domain of Transferrin Receptor 1 (TfR1), reducing the affinity of TfR1 for transferrin. When <i>HFE</i> is unable to bind TfR1 sufficiently, TfR1 has increased affinity for transferrin, resulting in excess iron uptake into cells and hemochromatosis. C282Y eliminates a disulfide bond in the extracellular domain of HFE, causing misfolding of HFE and failure to traffic to
57 58 59 60 61 62	extracellular domain. The extracellular domain of HFE binds the extracellular domain of Transferrin Receptor 1 (TfR1), reducing the affinity of TfR1 for transferrin. When <i>HFE</i> is unable to bind TfR1 sufficiently, TfR1 has increased affinity for transferrin, resulting in excess iron uptake into cells and hemochromatosis. C282Y eliminates a disulfide bond in the extracellular domain of HFE, causing misfolding of HFE and failure to traffic to the cell surface. ³ H63D is thought to cause HH by having a smaller effect on reducing the
57 58 59 60 61 62 63	extracellular domain. The extracellular domain of HFE binds the extracellular domain of Transferrin Receptor 1 (TfR1), reducing the affinity of TfR1 for transferrin. When <i>HFE</i> is unable to bind TfR1 sufficiently, TfR1 has increased affinity for transferrin, resulting in excess iron uptake into cells and hemochromatosis. C282Y eliminates a disulfide bond in the extracellular domain of HFE, causing misfolding of HFE and failure to traffic to the cell surface. ³ H63D is thought to cause HH by having a smaller effect on reducing the affinity of TfR1 for transferrin. ² Several additional rare variants have been observed in

A promising method to evaluate the risk of genetic variants is in environmentsthat have relatively unselected populations with available Electronic Health Record

68	(EHR) data and genotypic data. Recently, we have developed Phenotype Risk Scores
69	(PheRS) as a method to analyze syndromic phenotypes that have a range of phenotypic
70	effects and to link novel variants. The first deployment of PheRS in a biobank population
71	identified 18 associations between SNPs and syndromic diseases. ¹⁰ One of the
72	associations was between HFE E168Q (c.502G>C) and hemochromatosis risk score. Out
73	of the 40 heterozygous carriers of HFE E168Q, 8 had highly elevated PheRS's for HH,
74	and 4 had received a liver transplant. However, whether E168Q actually alters HFE
75	function remains unclear. Largely due to the lack of in vitro functional data about its
76	mechanism, E168Q is still classified as a variant of uncertain significance. ¹⁰
77	Here we investigate the function of HFE E168Q using in vitro functional assays.
78	We find that E168Q is located on the same haplotype as H63D, and that E168Q+H63D
79	has increased abundance at the cell surface. E168Q lies at the interface of the HFE-TfR1
80	interaction and completely disrupts that interaction, establishing a mechanism for
81	E168Q's association with hemochromatosis.
82	
83	Material and Methods
84	Haplotype analysis
85	52,573 adult (>18 years) individuals of European ancestry were included in the analysis.
86	These individuals were genotyped with the Multi-Ethnic Global Array (Illumina) or the
87	Infinium HumanExome BeadChip array (Illumina). Genotypes were determined for HFE
88	H63D (rs1799945) or HFE E168Q (rs146519482). Ancestry was determined from
89	STRUCTURE. ¹¹
90	

91 <u>Mutagenesis and Transfection</u>

92	pCB6-HFE-EGFP was a gift from Pamela Bjorkman (Addgene plasmid # 12104). This
93	plasmid was mutated with a Quikchange Lightning Multi-site kit (Agilent) to create
94	C282Y, H63D, E168Q, and E168Q+H63D mutant plasmids. Plasmids were transfected
95	into HeLa, HepG2, Chinese Hamster Ovary, or HEK293 cells using Fugene 6 (Promega)
96	following manufacturer's instructions and studied 48-72 hours post-transfection.
97	
98	Cell surface abundance assays
99	To stain cells for confocal and flow cytometry experiments, HeLa, HepG2, HEK293, or
100	CHO cells were stained with an anti-HFE antibody while still alive-thus, having an
101	intact cell membrane-to quantify HFE at the cell surface. Briefly, cells transfected with
102	wildtype or mutant HFE-GFP (see above) were trypsinized, resuspended in complete
103	media, washed in PBS+1%Bovine Serum Albumin, incubated with a polyclonal anti-
104	HFE antibody at 1:500 dilution (ThermoFisher PA5-37364), washed twice in PBS+BSA,
105	incubated with a Alexa Fluor 647-anti-rabbit secondary antibody at 1:500 (ThermoFisher
106	A-21245), and washed twice in PBS+BSA. For flow cytometry, cells were analyzed on a
107	BD LSR Fortessa instrument, using a 488 nm laser and 525/50 nm filter for GFP, and a
108	633 nm laser and 660/20 filter for Alexa Fluor 647. Single cells were identified from side
109	and forward scatter parameters, and GFP and Alexa Fluor 647 laser levels were set so
110	that untransfected cells had a median of 100 for each. Cells with a high level of GFP were
111	identified (cells with ~100-fold GFP levels relative to wildtype; $10^{1.8}$ to $10^{2.2}$ -fold
112	higher). The median Alexa Fluor 647 level of highly-GFP+ cells was calculated and
113	averaged across at least 3 replicate samples. Statistical analyses were performed in R.

114	Student's two tailed t-tests were used for comparisons between groups. For confocal
115	microscopy, cells were stained as above, fixed with 4% paraformaldehyde, washed with
116	PBS+Hoechst, and imaged on an Olympus FV-1000 confocal microscope using identical
117	settings for each mutation.
118	
119	Co-Immunoprecipitation
120	HeLa cells were chosen for coimmunoprecipitation experiments because wildtype HFE
121	trafficked best to the cell surface in HeLa cells (Figure S1) and they had been previously
122	used for coimmunoprecipitation experiments.9 HeLa cells were cotransfected using
123	Fugene 6 with wildtype or mutant HFE-GFP plasmids (see above) and a Transferrin
124	Receptor 1 expression plasmid pcDNA3.2/DEST/hTfR-HA, a gift from Robin Shaw
125	(Addgene plasmid #69610). A Pierce Classic Magnetic IP/Co-IP Kit (ThermoFisher
126	#88804) was used to harvest and coimmunoprecipitate the cells, following
127	manufacturer's instructions. Cells were precipitated with a rabbit anti-GFP antibody
128	(AbCam #ab290), then Western blots were performed using the anti-GFP antibody
129	(1:2500) or a mouse anti-TfR1 antibody (ThermoFisher #13-6800, 1:500) or a secondary
130	anti-rabbit HRP (Promega #W4011) and anti-mouse HRP (Promega W-4021) antibody,
131	each at 1:10,000.
132	
100	

133 <u>Variant classification</u>

134 *HFE* E168Q was classified according to American College of Medical Genetics and

135 Genomics criteria,¹² which integrates multiple variables into a benign/likely

136 benign/uncertain significance/likely pathogenic/pathogenic classification. The University

137 of Maryland Genetic Variant Interpretation Tool was used to implement these criteria

- 138 (medschool.umaryland.edu/Genetic_Variant_Interpretation_Tool1.html).¹³
- 139
- 140 **Results**
- 141 *HFE* E168Q is a rare allele on the same haplotype as H63D

142	HFE E168Q was previously shown using PheRS to have an association with
143	hemochromatosis. ¹⁰ When we examined <i>HFE</i> genotypes of E168Q heterozygotes, we
144	observed that E168Q cosegregated with the common H63D allele (88/88 E168Q
145	heterozygotes had at least 1 H63D allele; Table 1). In individuals with European
146	ancestry, E168Q had a minor allele frequency of 0.00084 and H63D had a minor allele
147	frequency of 0.149. E168Q was exclusively present in individuals of European ancestry,
148	except for 1 individual whose ancestry was undetermined by STRUCTURE, and is likely
149	of mixed ancestry. 13 of the 88 E168Q heterozygotes (14.7%) were homozygous for
150	H63D, similar to the minor allele frequency of H63D, indicating that these individuals
151	were likely E168Q+H63D / H63D compound heterozygotes. Together, these data
152	indicate that E168Q is a rare variant that arose on the H63D allele of HFE .
153	
154	HFE E168Q+H63D has increased abundance at the cell surface
155	A common mechanism for loss of function of membrane proteins is a defect in

156 trafficking to the cell surface, often due to misfolding of the protein and subsequent

aggregation along the secretory pathway.¹⁴ Cell surface abundance can also be affected

158 by altered rates of internalization or degradation. We developed a dual flow cytometry

and confocal microscopy-based assay to assay the subcellular localization of a GFP-

160	tagged HFE protein. Testing of four cell lines (HeLa, HepG2, Chinese Hamster Ovary,
161	and HEK293) revealed that wildtype HFE trafficking efficiency varied widely between
162	cell lines, trafficking best in HeLa cells, followed by HepG2 cells (Figure S1). To test
163	whether mutant HFE proteins were present in different abundances at the cell surface, we
164	examined the cellular localization of GFP-tagged HFE wildtype protein and HFE mutants
165	H63D, E168Q, C282Y, and the E168Q+H63D double mutant (hereafter referred to as
166	E168Q+H63D) (Figure 1). C282Y showed a dramatic trafficking defect (5% of wildtype
167	level, p=3.2e-5, two-tailed T test). E168Q had a mild but significant increase in surface
168	abundance (136% of wildtype level, p=0.01). H63D surprisingly had a higher abundance
169	than wildtype (722% of wildtype level, p=0.02). E168Q+H63D also had a large increase
170	in surface abundance (970% of wildtype level, p=0.02). Similar relative surface
171	abundance results were observed in the HepG2 liver cell line, albeit with lower overall
172	levels of surface trafficking (Figures 1, S1). Therefore, in contrast to C282Y, H63D and
173	H63D+E168Q have increased cell surface abundances.
174	
175	HFE E168 is at the interface of the HFE-Transferrin Receptor interaction
176	We next examined the location of E168Q within the HFE protein. A crystal
177	structure of the HFE-TfR1 interaction has been solved, together with the HFE binding

178 partner B2M (Figure 2).¹⁵ That crystal structure revealed six residues of HFE that made

salt bridges with TfR1 (Table S1). Intriguingly, in the structure, one of these residues is

180 HFE E168, which is located at the HFE-TfR1 interface, and makes salt bridges with two

181 TfR1 residues (TfR1-R629 and TfR1-Q640). HFE E168Q is also predicted to make an

182 intramolecular salt bridge with HFE N108.

184	HFE E168Q disrupts the interaction between HFE and the Transferrin Receptor
185	Because of HFE E168's location and contacts with TfR1, we hypothesized that
186	the HFE E168Q variant disrupts the binding between HFE and TfR1. To test this, we
187	performed coimmunoprecipitation experiments, precipitating HFE-GFP using an anti-
188	GFP antibody and measuring coimmunoprecipitation of TfR1 (Figure 3). Wildtype HFE-
189	GFP coimmunoprecipitated TfR1, but C282Y, E168Q, and E168Q+H63D showed no
190	coimmunoprecipitation of TfR1. Across multiple replicates, C282Y had lower overall
191	intensity of anti-GFP staining in both input and immunoprecipitated samples, consistent
192	with a previously observed accelerated degradation rate of this variant. ³ H63D showed a
193	detectable but decreased coimmunoprecipitation of TfR1. Thus, E168Q and
194	E168Q+H63D had a more severe defect in binding TfR1 than H63D.
195	
195 196	Pathogenicity reclassification of HFE E168Q
	Pathogenicity reclassification of <i>HFE</i> E168Q We used American College of Medical Genetics and Genomics criteria to
196	
196 197	We used American College of Medical Genetics and Genomics criteria to
196 197 198	We used American College of Medical Genetics and Genomics criteria to determine the classification of <i>HFE</i> E168Q using data available before this study and
196 197 198 199	We used American College of Medical Genetics and Genomics criteria to determine the classification of <i>HFE</i> E168Q using data available before this study and after this study (Table 2). Despite the genetic association in a biobank population, <i>HFE</i>
196 197 198 199 200	We used American College of Medical Genetics and Genomics criteria to determine the classification of <i>HFE</i> E168Q using data available before this study and after this study (Table 2). Despite the genetic association in a biobank population, <i>HFE</i> E168Q before this study was still classified as a variant of uncertain significance based
196 197 198 199 200 201	We used American College of Medical Genetics and Genomics criteria to determine the classification of <i>HFE</i> E168Q using data available before this study and after this study (Table 2). Despite the genetic association in a biobank population, <i>HFE</i> E168Q before this study was still classified as a variant of uncertain significance based on criterion PS4 (variant prevalence in affected individuals is significantly increased
196 197 198 199 200 201 201	We used American College of Medical Genetics and Genomics criteria to determine the classification of <i>HFE</i> E168Q using data available before this study and after this study (Table 2). Despite the genetic association in a biobank population, <i>HFE</i> E168Q before this study was still classified as a variant of uncertain significance based on criterion PS4 (variant prevalence in affected individuals is significantly increased compared with the prevalence in controls). ¹⁰ Based on the updated <i>in vitro</i> functional data

206 Discussion

207 Phenotype Risk Scores for syndromic traits

208 *HFE* E168Q was identified as a novel HH1 allele with PheRS, a recently 209 developed method that combines multiple phenotypes into a weighted score, to study the 210 HH risk of different *HFE* variants. The PheRS for hemochromatosis includes 22 211 symptoms, such as liver cirrhosis, hepatic cancer, cardiac dysrhythmias, and type 2 212 diabetes. The *in vitro* work presented here validating E168Q as a loss of function allele 213 validates the use of PheRS as a powerful way to assess the disease risk of variants. As the 214 number of individuals in EHR datasets linked to genotyping grows, this approach will 215 gain in power to detect genetic associations. Given the size of contemporary biobanks 216 linking DNA variation to human phenotypes,¹⁶ this approach will likely prove fruitful for 217 rare but not ultrarare variants such as E168Q (minor allele frequency of 0.08% in 218 Europeans) that are still present in many individuals in large biobanks. However, for 219 some variants like *HFE* E168Q, statistical association in biobanks is not enough to 220 classify variants as pathogenic or likely pathogenic, and further *in vitro* functional 221 validation is required. The combination of statistical association by PheRS and in vitro 222 loss of function phenotype is enough to reclassify HFE E168Q as pathogenic. 223

224 Mechanism of HFE E168Q

A main mechanism of transmembrane proteins having loss of function is misfolding and subsequent failure to traffic to the cell membrane. However, in this work, we surprisingly observed that HFE E168Q+H63D had increased abundance at the cell surface. Much of this surface abundance difference was due to H63D, although E168Q

229	alone had a mild but significant increase in surface abundance. We observed that HFE
230	E168 was at the interface of the HFE-TfR1 interaction and made multiple salt bridge
231	contacts with TfR1, suggesting that E168Q would disrupt the salt bridge contacts with
232	TfR1. Indeed, coimmunoprecipitation experiments showed a complete loss of binding of
233	E168Q and E168Q+H63D. Although it is difficult to predict the exact configuration of
234	the mutant glutamine in the crystal structure, the glutamine likely completely disrupts the
235	interaction between HFE-168 and TfR1-R629 and likely alters the contacts with TfR1-
236	Q640. Two main alpha helices make contact with TfR1, termed $\alpha 1$ and $\alpha 2$. ¹⁵ HFE E168
237	is located in $\alpha 2$. Previous work showed that mutation to alanine of two residues in $\alpha 1$,
238	V100 and W103 (called V78 and W81 in the original paper), also abrogated the binding
239	between HFE and TfR1. ¹⁷ Therefore, we propose a model in which <i>HFE</i> E168Q is unable
240	to bind TfR1 and TfR1 therefore has an increased affinity for transferrin, causing iron
241	overload and HH1.

242

243 Improved prediction of HH risk

Our results suggest a template for improved prediction of HH risk. Our results 244 245 further suggest that genotyping for H63D and C282Y alone might not be sufficient to 246 determine HH1 risk. H63D is considered to be a low/variable penetrance HH1 allele,^{5,6} 247 and E168Q presence may underlie some of the HH1 risk previously attributed to H63D alone and explain some of its variable penetrance.¹⁸ Other rare HFE variants in $\alpha 1$ and $\alpha 2$ 248 249 or making salt bridge connections with TfR1 may also disrupt TfR1 binding and lead to 250 hemochromatosis. Integrated phenotyping methods like PheRS show promise to identify 251 risk variants and may also identify patients with underrecognized disease. However,

- further functional studies are often necessary to validate these variants; 9/18 variants in
- 253 the initial PheRS paper were classified as variants of uncertain significance despite their
- statistical association with disease.¹⁰ *In vitro* functional studies such as the surface
- abundance and coimmunoprecipitation studies in this paper can validate the genetic
- results and result in reclassification of variants as benign or pathogenic. We anticipate
- that these methods will be more broadly applied to other variants, genes, and diseases to
- better predict disease risk.

259 Supplemental Data Description

- 260
- 261 The Supplemental Data contains 1 figure and 1 table.
- 262
- 263 Figure S1. HFE traffics robustly to the cell membrane in HeLa cells
- Table S1. Residues of HFE forming salt bridges with TfR1
- 265

267 **Declaration of Interests**

268 The authors declare no competing interests.

270 Acknowledgements

- 271 This work was supported by grants R01-LM010685 from the National Library of
- 272 Medicine and P50-GM115305 from the National Institute for General Medical Sciences
- and a grant from the Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation. BioVU
- 274 received and continues to receive support through the National Center for Research
- 275 Resources (UL1-RR024975), which is now the National Center for Advancing
- 276 Translational Sciences (UL1-TR000445). A.M.G. was supported by F32 HL137385 and
- 277 T32 HG008341. B.M.K. was supported by K99 HL135442.

279 Figure Legends

280

281 Figure 1: HFE E168Q+H63D has enhanced surface abundance

- HeLa or HepG2 cells were transfected with HFE-GFP and stained while alive for HFE at
- the cell surface (Alexa Fluor 647). A) Representative confocal microscopic images of
- HeLa cells (blue=Hoechst nuclear stain, green=GFP, red=Alexa Fluor 647). B)
- 285 Representative flow cytometry plots of surface HFE staining in HeLa cells. Red box
- indicates transfected cells (GFP+ 100-fold higher than untransfected cells). X and Y-axis
- scales are in log₁₀ units. C-D) Quantification of flow cytometry data of cell surface
- staining in HeLa (C) or HepG2 (D) cells (mean + SEM). Values are normalized to the
- 289 mean wildtype level. *p<0.05, **p<0.005, two-tailed T test. C) n=5-6 replicate
- samples/mutation. D) n=3 replicate samples/mutation.
- 291

292 Figure 2: HFE E168 is located at the interface of the HFE-TfR1 interaction

- A) Schematic of HFE/TfR1/B2M interactions at the cell surface. Orange/yellow rectangle
- indicates plasma membrane. B-D) Crystal structure of HFE-TfR1-B2M extracellular
- domains.¹⁵ HFE is colored in salmon, TfR1 in green, B2M in blue. Each protein is present
- twice in the complex, but only one instance is colored, and the other instance is shown in
- gray. B) Side view. C) Top view with zoom. Salt bridges between HFE E168 and HFE
- 298 N108, TfR1 R629, and TfR1 Q640 are shown with dotted lines.
- 299

300 Figure 3: HFE E168Q disrupts the interaction between HFE and the Transferrin

301 Receptor

- 302 Coimmunoprecipitation experiments. A) Input. B) HFE-GFP was immunoprecipitated
- 303 with an anti-GFP antibody. For A and B, Western blots using anti-GFP or anti-TfR1 are
- 304 shown. Similar results were observed across 3 replicate experiments.

305

307 Table 1: E168Q is a rare variant on the same haplotype as H63D

308

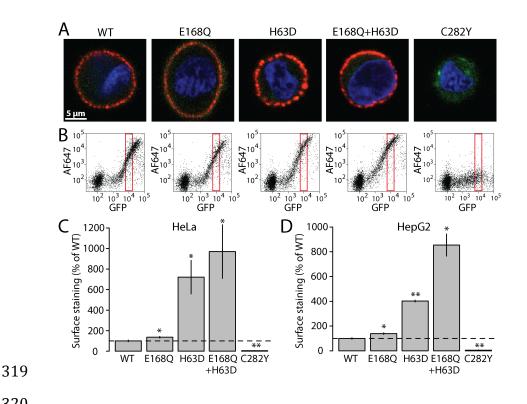
	H63D allele		
E168Q allele	HH	HD	DD
EE	38,084	13,256	1,145
EQ	0	75	13
QQ	0	0	0

309

310 Co-occurrence of *HFE* H63D and E168Q genotypes in 52,573 adult European-ancestry

311 individuals. The 168Q allele only appears in the presence of the 63D allele, indicating

that the 168Q allele is on the same haplotype as the 63D allele.


313

314

315

317 Figure 1: HFE E168Q+H63D has enhanced trafficking to the cell surface

318

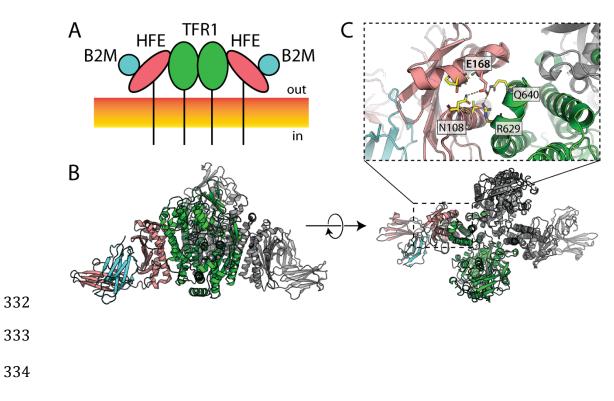
320

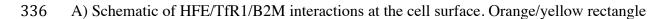
321 HeLa or HepG2 cells were transfected with HFE-GFP and stained while alive for HFE at

322 the cell surface (Alexa Fluor 647). A) Representative confocal microscopic images of

323 HeLa cells (blue=Hoechst nuclear stain, green=GFP, red=Alexa Fluor 647). B)

324 Representative flow cytometry plots of surface HFE staining in HeLa cells. Red box

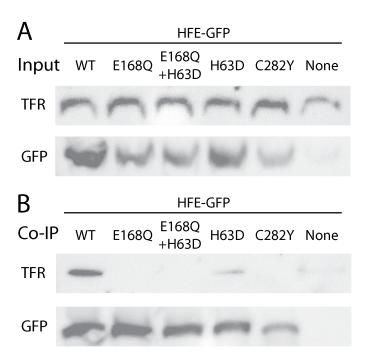

325 indicates transfected cells (GFP+ 100-fold higher than untransfected cells). X and Y-axis


326 scales are in log₁₀ units. C-D) Quantification of flow cytometry data of cell surface

- 327 staining in HeLa (C) or HepG2 (D) cells. Values are normalized to the mean wildtype
- 328 level. *p<0.05, **p<0.005, two-tailed T test. C) n=5-6 replicate samples/mutation. D)
- 329 n=3 replicate samples/mutation.

Figure 2: HFE E168 is located at the interface of the HFE-TfR1 interaction

331


337 indicates plasma membrane. B-D) Crystal structure of HFE-TfR1-B2M extracellular

- domains.¹⁵ HFE is colored in salmon, TfR1 in green, B2M in blue. Each protein is present
- twice in the complex, but only one instance is colored, and the other instance is shown in
- 340 gray. B) Side view. C) Top view with zoom. Salt bridges between HFE E168 and HFE
- N108, TfR1 R629, and TfR1 Q640 are shown with dotted lines.
- 342

343 Figure 3: HFE E168Q disrupts the interaction between HFE and the Transferrin

344 **Receptor**

345

346

347

348 Coimmunoprecipitation experiments. A) Input. B) HFE-GFP was immunoprecipitated

349 with an anti-GFP antibody. For A and B, Western blots using anti-GFP or anti-TfR1 are

350 shown. Similar results were observed across 3 replicate experiments.

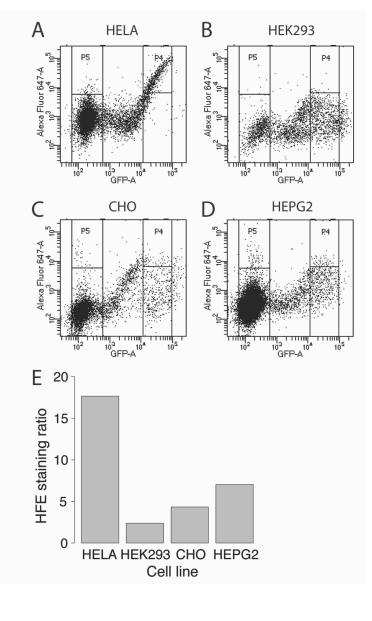
351

353 Table 2. Classification of HFE E168Q using ACMG guidelines

354

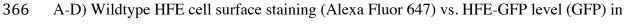
ACMG Criterion	Description	Before this study	After this study
PS3	Well-established in vitro or in vivo functional	No	Yes
	studies supportive of a damaging effect on		
	the gene or gene product		
PS4	Variant prevalence in affected individuals is	Yes	Yes
	significantly increased compared with the		
	prevalence in controls		
Classification		VUS	Pathogenic

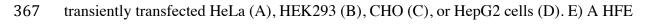
355


356 American College of Medical Genetics and Genomics (ACMG) classification

357 guidelines¹² were implemented using the online Genetic Variant Interpretation Tool.¹³

358 Because of the *in vitro* functional evidence in this study, the classification of E168Q


359 changed from Variant of Uncertain Significance (VUS) to Pathogenic.


Figure S1. HFE traffics robustly to the cell membrane in HeLa cells

368 staining ratio was calculated by taking the median Alexa Fluor 647 level in highly

369 expressing cells (P4) divided by the median Alexa Fluor 647 level in untransfected cells

370 (P5).

371 Table S1. Residues of HFE forming salt bridges with TfR1

372

HFE residue (contemporary numbering)	HFE residue (Bennett <i>et al.</i> numbering)	HFE location	Interacting TfR1 residue
Gln86	Gln64	α1 helix	Thr658
Glu107	Glu85	α 1 helix	Arg629
Asn108	Asn86	α 1 helix	Arg629
Glu168	Glu146	α 2 helix	Arg629, Gln640
Arg175	Arg153	$\alpha 2$ helix	Gln640
Gln178	Gln156	$\alpha 2$ helix	Asp648

373

Table adapted from Bennett *et al.* 2000.¹⁵

076		
376		Literature Cited
377 378	1.	Powell LW, Seckington RC, Deugnier Y. Haemochromatosis. <i>Lancet</i> .
370	1.	2016;388:706-716. PMID: WOS:000381268700031.
380	2.	Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Risch NJ, Bacon BR,
381	2.	Wolff RK. A novel MHC class I-like gene is mutated in patients with
382		hemochromatosis. <i>Blood</i> . 1996;88:2579-2579. PMID:
383		WOS:A1996VT98302579.
384	3.	Waheed A, Parkkila S, Zhou XY, Tomatsu S, Tsuchihashi Z, Feder JN,
385	0.	Schatzman RC, Britton RS, Bacon BR, Sly WS. Hereditary hemochromatosis:
386		Effects of C282Y and H63D mutations on association with beta(2)-
387		microglobulin, intracellular processing, and cell surface expression of the
388		HFE protein in COS-7 cells. <i>P Natl Acad Sci USA</i> . 1997;94:12384-12389.
389		PMID: WOS:A1997YF39300027.
390	4.	Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T,
391		O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum
392		DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E,
393		Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M,
394		Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine
395		AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V,
396		Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G,
397		Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D,
398		Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt
399		SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern
400		D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar
401 402		P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MagArthur DC, Exemp Aggregation C, Analysis of protoin goding genetic
402		MacArthur DG, Exome Aggregation C. Analysis of protein-coding genetic variation in 60,706 humans. <i>Nature</i> . 2016;536:285-291. PMID: 27535533.
403		PMCID: PMC5018207
405	5.	Allen KJ, Gurrin LC, Constantine CC, Osborne NJ, Delatycki MB, Nicoll AJ,
406	5.	McLaren CE, Bahlo M, Nisselle AE, Vulpe CD, Anderson GJ, Southey MC, Giles
407		GG, English DR, Hopper JL, Olynyk JK, Powell LW, Gertig DM. Iron-overload-
408		related disease in HFE hereditary hemochromatosis. <i>N Engl J Med</i> .
409		2008;358:221-230. PMID: 18199861.
410	6.	Beutler E, Felitti VJ, Koziol JA, Ho NJ, Gelbart T. Penetrance of 845G> A
411		(C282Y) HFE hereditary haemochromatosis mutation in the USA. Lancet.
412		2002;359:211-218. PMID: 11812557.
413	7.	Aguilar-Martinez P, Grandchamp B, Cunat S, Cadet E, Blanc F, Nourrit M,
414		Lassoued K, Schved JF, Rochette J. Iron overload in HFE C282Y heterozygotes
415		at first genetic testing: a strategy for identifying rare HFE variants.
416		Haematologica. 2011;96:507-514. PMID: 21228038. PMCID: PMC3069226
417	8.	Cezard C, Rabbind Singh A, Le Gac G, Gourlaouen I, Ferec C, Rochette J.
418		Phenotypic expression of a novel C282Y/R226G compound heterozygous
419		state in HFE hemochromatosis: molecular dynamics and biochemical studies.
420		Blood Cells Mol Dis. 2014;52:27-34. PMID: 23953397.

421 422	9.	Silva B, Martins R, Proenca D, Fleming R, Faustino P. The functional significance of E277K and V295A HFE mutations. <i>Br J Haematol</i> .
423 424 425	10.	2012;158:399-408. PMID: 22624560. Bastarache L, Hughey JJ, Hebbring S, Marlo J, Zhao WK, Ho WTT, Van Driest SL, McGregor TL, Mosley JD, Wells QS, Temple M, Ramirez AH, Carroll R,
426 427 428		Osterman T, Edwards T, Ruderfer D, Edwards DRV, Hamid R, Cogan J, Glazer A, Wei WQ, Feng QP, Brilliant M, Zhao ZZJ, Cox NJ, Roden DM, Denny JC.
428 429		Phenotype risk scores identify patients with unrecognized Mendelian disease patterns. <i>Science</i> . 2018;359:1233-+. PMID: WOS:000427504900035.
430	11.	Pritchard JK, Stephens M, Donnelly P. Inference of population structure using
431	11.	multilocus genotype data. <i>Genetics</i> . 2000;155:945-959. PMID:
432		WOS:000087475100039.
433	12.	Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde
434		M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA. Standards
435		and guidelines for the interpretation of sequence variants: a joint consensus
436		recommendation of the American College of Medical Genetics and Genomics
437		and the Association for Molecular Pathology. <i>Genet Med</i> . 2015;17:405-424.
438		PMID: 25741868. PMCID: PMC4544753
439	13.	Kleinberger J, Maloney KA, Pollin TI, Jeng LJ. An openly available online tool
440		for implementing the ACMG/AMP standards and guidelines for the
441		interpretation of sequence variants. <i>Genet Med</i> . 2016;18:1165. PMID:
442		26986878. PMCID: PMC5026899
443	14.	Schlebach JP, Sanders CR. The safety dance: biophysics of membrane protein
444 445		folding and misfolding in a cellular context. <i>Q Rev Biophys</i> . 2015;48:1-34.
445 446	15.	PMID: 25420508. PMCID: PMC4339315 Bennett MJ, Lebron JA, Bjorkman PJ. Crystal structure of the hereditary
440 447	15.	haemochromatosis protein HFE complexed with transferrin receptor. <i>Nature</i> .
448		2000;403:46-53. PMID: 10638746.
449	16.	Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A,
450	10.	Vukcevic D, Delaneau O, O'Connell J, Cortes A, Welsh S, Young A, Effingham M,
451		McVean G, Leslie S, Allen N, Donnelly P, Marchini J. The UK Biobank resource
452		with deep phenotyping and genomic data. <i>Nature</i> . 2018;562:203-209. PMID:
453		30305743.
454	17.	Lebron JA, Bjorkman PJ. The transferrin receptor binding site on HFE, the
455		class I MHC-related protein mutated in hereditary hemochromatosis. J Mol
456		<i>Biol</i> . 1999;289:1109-1118. PMID: WOS:000081196100033.
457	18.	Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants
458		create synthetic genome-wide associations. <i>PLoS Biol</i> . 2010;8:e1000294.
459		PMID: 20126254. PMCID: PMC2811148
460		