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ABSTRACT

Recent advances in data acquiring technologies in biology have led to major challenges in mining relevant information from
large datasets. For example, single-cell RNA sequencing technologies are producing expression and sequence information
from tens of thousands of cells in every single experiment. A common task in analyzing biological data is to cluster samples or
features (e.g. genes) into groups sharing common characteristics. This is an NP-hard problem for which numerous heuristic
algorithms have been developed. However, in many cases, the clusters created by these algorithms do not reflect biological
reality. To overcome this, a Networks Based Clustering (NBC) approach was recently proposed, by which the samples or genes
in the dataset are first mapped to a network and then community detection (CD) algorithms are used to identify clusters of
nodes.
Here, we created an open and flexible python-based toolkit for NBC that enables easy and accessible network construction and
community detection. We then tested the applicability of NBC for identifying clusters of cells or genes from previously published
large-scale single-cell and bulk RNA-seq datasets.
We show that NBC can be used to accurately and efficiently analyze large-scale datasets of RNA sequencing experiments.

Introduction
Advances in high-throughput genomic technologies have revolutionized the way biological data is being acquired. Technologies
like DNA sequencing (DNA-seq), RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and
mass cytometry are becoming standard components of modern biological research. The majority of these datasets are publicly
available for further large-scale studies. Notable examples include the Genotype-Tissue Expression (GTEx) project1, the cancer
genome atlas (TCGA)2, and the 1000 genomes project3. Examples of utilizing these datasets include studying allele-specific
expression across tissues4, 5, characterizing functional variation in the human genome6, finding patterns of transcriptome
variations across individuals and tissues7, and characterizing the global mutational landscape of cancer8. Moreover, some of
these genomic technologies have recently been adapted to work at the single-cell level9. While pioneering single-cell RNA
sequencing (scRNA-seq) studies were able to process relatively small numbers of cells (42 cells in10 and 18 cells in11), recent
single-cell RNA-seq studies taking advantage of automation and nanotechnology were able to produce expression and sequence
data from many thousands of individual cells (∼1,500 cells in12 and ∼40,000 cells in13). Hence, biology is facing significant
challenges in handling and analyzing large complex datasets14, 15.

Clustering analysis
One of the common methods used for making sense of large biological datasets is cluster analysis: the task of grouping
similar samples or features16. For example, clustering analysis has been used to identify subtypes of breast tumors17, 18 with
implications to treatment and prognosis. More recently, clustering analysis was used to identify and characterize cell types in
various tissues and tumors in the colon19, brain20, blood12, and lung21, with the overall aim of finding key stem and progenitor
cell populations involved in tissue development, repair, and tumorigenesis. Another application is to find sets of coordinately
regulated genes in order to find gene modules11, 22, 23. Such clusters of genes (or other features such as single-nucleotide
polymorphism (SNPs)24) can be further analyzed by gene set enrichment approaches to identify gene annotations25 (e.g. GO26,
KEGG27, and OMIM28) that are over-represented in a given cluster, and thus shed light on their biological functionalities29. Two
of the most common clustering methods used in biology are K-means clustering, which groups data-points into K prototypes
(where K is a predetermined number of clusters), and hierarchical clustering, which builds a hierarchy of clusters from all
data points30. Other methods for clustering include self-organizing map (SOM)31, spectral clustering32, and density based
methods33 (for a comprehensive review on clustering see30, 34, 35).
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Networks and community detection
Another way to model biological systems is through network science. Networks (also known as graphs) are structures composed
of nodes that are connected by edges, which may be weighted and/or directional. Networks have been used for modeling
interactions between components of complex systems such as users in social media platforms (Facebook36 and Twitter37) or
proteins38 and genes39 in a cell. Often, networks contain communities of nodes that are tightly interconnected with each other,
which is an indication of common features. For example, communities in social networks40 are composed, in most cases, of
people with common interests or goals that are interacting with each other. Likewise, proteins with related functionalities
interact with each other, and as a result form close-knit communities in protein-protein interactions (PPI) networks41. Similarly,
web pages with similar content in the World Wide Web42 usually have links to each other.

The problem of community detection (CD), which can be viewed as a network’s equivalent for clustering, is not rigorously
defined. As a consequence, there are numerous CD algorithms that solve this problem reasonably well using different
strategies43. An intuitive way to define communities in a network is to divide the nodes into groups that have many in-group
edges and few out-group edges. This can be achieved by maximizing the network modularity - a measure that quantifies edge
density within communities compared to edge sparseness between communities44, 45 (see Methods for formal definition).

Numerous community detection algorithms were developed during the last two decades43, 46. Newman defined a measure
for the modularity of a weighted network45. Clauset et al. developed a fast greedy algorithm to partition the nodes of the
network in a way that maximizes the modularity by hierarchical agglomeration of the nodes47. Reichardt et al. proposed an
approach based on statistical mechanics. Their algorithm models the network as a spin glass and aims to find the partition of
nodes with maximal modularity by finding the minimal energy state of the system48. Rosvall et al. and Yucel et al. proposed
methods to find the community structure by approximating the information flow in the network as a random walk49, 50. Jian et
al. developed SPICi - a fast clustering algorithm for large biological networks based on expanding clusters from local seeds51.

A popular community detection algorithm called the Louvain algorithm was proposed by Blondel et al.52 (see Methods
for details). The Louvain algorithm starts by defining each node as a separate community and then performs modularity
optimization by an iterative heuristic two-step process. In the first step, the algorithm goes over all nodes of the network and
checks, for each individual node, if the network modularity can be increased by removing it from its present community and
joining it to one of its neighboring communities. The process is repeated until no further increase in modularity can be achieved.
This approach is called the "local moving heuristic". In the second step, a new meta-network, whose nodes are the communities
identified by the first step, is constructed. The two steps are repeated until maximum modularity is attained. It was shown that
this algorithm can be improved further by modifying the "local moving heuristic". SLM, for example, attempts to split each
community into sub-communities prior to construction of the meta-network. In this way, communities can be split up and sets
of nodes can be moved from one community to another for improving the overall modularity score53.

Recently, several networks-based clustering algorithms were developed specifically for single-cell gene expression datasets
(see Table 1). Pe’er and colleagues developed PhenoGraph54. This method first builds a k-nearest neighbors (KNN) network
of cells, where each cell is connected to its K nearest cells in Euclidean space. In order to better resolve rare or non-convex
cell populations, the algorithm then constructs a second, shared nearest neighbors (SNN) network, in which the similarity
between every two nodes is determined by the number of neighboring nodes that are connected to both of them. Finally, the
Louvain community detection algorithm is used to find groups of cells with similar gene expression profiles. Applying their
method to mass cytometry data from 30,000 human bone marrow cells, they were able to cluster single-cell expression profiles
into different immune cell types. Su and Xu developed another algorithm called SNN-cliq55. This algorithm also constructs
a KNN network, and then constructs a SNN network in which the weight between every two nodes is determined not only
by the number of shared nearest neighbors, but also their distances to the two nodes. Communities then are detected using a
quasi-clique-based clustering algorithm. When applying their method to several single-cell transcriptomics datasets, they found
it to be more robust and precise than traditional clustering approaches.

In this manuscript, we introduce an accessible and flexible python-based toolkit for Networks Based Clustering (NBC)
for large-scale RNA-seq datasets in the form of an IPython notebook with a self-contained example (Supplementary File S1
online). This toolkit allows the user to follow and modify various aspects of the algorithms detailed above52–56, that is, to map a
given dataset into a KNN network, to visualize the network, and to perform community detection using a variety of similarity
measures and community detection algorithms of his choice. This flexibility is important since, from our experience, different
parameters and algorithms might work best for different datasets according to their specific characteristics. Using this toolkit,
we tested the performance of NBC on previously published large-scale single-cell and bulk RNA-seq datasets.

Results
A workflow for Networks Based Clustering (NBC)
A typical Networks Based Clustering workflow can be divided into four steps (Fig 1). The given dataset, in the form of a matrix
of N samples (e.g. cells) by P features (e.g. genes), is first preprocessed by normalizing the samples to each other57, 58 and
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filtering less informative samples or features58, 59. This step is especially important in single-cell data since it is typically noisier
than bulk samples. Likewise, in meta-analysis, it is important to normalize samples obtained from different sources in order to
to mitigate bias due to batch effects60, 61. In our IPython notebook we took a dataset that was collected and pre-filtered by Patel
et al.62 and normalized each sample such that it will have zero mean and unit length (L2 normalization).

Next, a similarity measure is defined between the samples (or alternatively, features) and a KNN (K-nearest neighbors)
network is constructed as follows: First, each sample (or feature) is represented as a node. Then each node is linked to its K
nearest neighboring nodes. Constructing a KNN network using the naïve algorithm has a complexity of O(N2) which is slow
for large N. We therefore use the more efficient ball tree algorithm63, whose complexity scales as O(N log(N)) if supplied with
a true distance metric that satisfies the triangle inequality64. There are various such distance-like measures (each based on a
similarity measures) that can be used65 to construct the network, for example, the Euclidean distance, the Minkowski distance,
and the cosine distance. In our solved example we used the cosine similarity (see Methods). Note that the popular correlation
distance does not satisfy the triangle inequality64 and hence is not a true metric. Following network construction, a community
detection (CD) algorithm is performed, resulting in an assignment of each node (sample or feature) to a distinct community.

Once communities have been identified, each community can be characterized to infer its biological meaning. For example,
communities of cells may represent cell sub-populations in complex tissues or tumors and can be identified using previously
known markers66, 67. Similarly, the biological functionality of communities of genes (or of gene sets that are over-expressed in
specific cell communities) can be inferred using enrichment analysis at the gene and gene-set levels29, 68–72.

NBC accurately resolves seven cell types from a glioblastoma single-cell RNA-seq dataset
To test the performance of NBC, we analyzed single-cell RNA-seq datasets originally published by Patel et al.62, for which the
biological interpretation was known a-priori. These datasets were previously obtained from five glioblastoma patients and two
gliomasphere cell lines and were found to contain 7 biologically distinct cell types. A 2D representation of the data by PCA
and tSNE can be found in Supplementary File S1 online. We first calculated the distance between individual cells according to
the cosine similarity and then constructed a KNN network with K = 40 (for details see Methods). We applied the Louvain
algorithm52, detected communities of cells, and used the F −measure (the harmonic mean between precision and sensitivity)
to check the degree to which the inferred communities reproduce the known cell types from the original publication. We
found that NBC resolves the original seven cell types with high precision and sensitivity (Fig 2a and b, F −measure = 0.93).
Constructing the network with K = 10 resulted in a slightly lower F −measure (Fig 2c and d, F −measure = 0.81), mainly
due to the separation of one original cluster (indicated by light blue in C) into two inferred clusters (indicated by light blue
and orange in D). Evaluating the precision and sensitivity of NBC for a wide range of K’s shows that, for this dataset, NBC is
quite robust to the choice of K for values larger than K ≈ 18 (Fig 2e). Using the correlation similarity for constructing the
KNN network results in a similar performance in terms of the F −measure (Fig 2e). In this dataset, NBC outperformed other
common clustering methods (Table 2).

We performed a similar analysis on another single-cell RNA-seq dataset published by Klein et al.73 containing 2,717 mouse
embryonic stem cells collected from four consecutive developmental stages. We found that also for this dataset, NBC performs
well relative to other common clustering methods (Fig 3 and Table 2). However, here we found that, for sufficiently large K
(K > 50), correlation similarity had better performance than cosine similarity (F −measure = 0.90 for correlation similarity
and 0.81 for cosine similarity, in both cases using the Louvain algorithm, Fig 3e and Table 2).

Comparing NBC with other common clustering methods
We compared NBC with three widely used clustering algorithms: K-means, hierarchical clustering, and spectral clustering. As
a reference dataset, we used 3,174 human tissue-specific gene expression samples from the GTEx project1 that were collected
from 21 tissue types. Based on the number of tissue types in the original samples, the number of clusters was set to 21 for all
clustering algorithms (see Methods). A KNN network was constructed with K = 50 and the Louvain algorithm was applied to
infer sample communities. In order to compare the algorithms and test their robustness to different levels of "noise", a fraction
of the genes was randomly permuted by shuffling their sample labels (Fig 4a), thereby maintaining the original distribution
for each gene. This actually mimics different levels of non-informative features. We observed that for this data set, NBC
out-performs K-means, spectral, and hierarchical clustering in terms of the F-measure over a wide range of noise levels (Fig 4a).

We performed a similar comparison of the CPU time required to detect communities using a single-cell RNA-seq dataset
that was published by Macosko et al.13. We randomly chose subsets of varying sizes of samples (cells) and genes in order to
test the dependency of the running-time on the size of the dataset. We found that NBC falls in-between K-means, Hierarchical
clustering, and spectral clustering for a wide range of samples and genes (Fig 4b and c).

NBC can be used to resolve tissue-specific genes
NBC can also be used to detect communities of genes from large gene expression datasets. To demonstrate this, we analyzed a
dataset composed of 394 GTEx samples collected from three tissues: pancreas, liver, and spleen. First, a KNN network with
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K = 10 was constructed for the 394 samples. The resulting network contained three perfectly separated components, each
corresponding to one of the three tissue types (Fig 5b-d, F −measure = 1). We then constructed another KNN network for the
27,838 genes with K = 200. The Louvain community detection algorithm was applied and 11 gene communities were detected.

In order to explore the biological meaning of these 11 NBC-derived gene communities, we used three independently derived
tissue-specific "reference lists" of genes from the Human Protein Atlas74 that were found to be over-expressed in the pancreas,
liver, and spleen. We compared these three reference lists to the 11 NBC-derived communities and found that each reference
list was found predominantly in a single community (Fig 5a). In community #1, 200 of the 210 spleen-specific reference genes
were found, in community #2, 82 of the 87 pancreas-specific reference genes were found, and in community #3, 397 of the 403
liver-specific reference genes were found. On the contrary, a reference list of “House Keeping Genes” (HKG) was found to be
distributed relatively uniformly among the different communities.

Another helpful feature of NBC is that it can be used to visualize families of genes within the network of samples. To
demonstrate this, we measured the relative gene expression levels of genes from NBC-derived community no. 1 (enriched
for spleen related genes) in each node (=sample) of the network and used this information to determine the size of that
node (Fig 5b). It can be seen that the average expression level of NBC-derived community #1, that is enriched for spleen
specific genes, was indeed much higher in the spleen samples compared to pancreas and liver samples (Table 3, one side
t-test p-value=2×10−61). We observed similar results when we repeated this analysis for NBC-derived communities 2 and 3
(pancreas-enriched and liver-enriched, Fig 5c and d, Table 3).

Discussion
To date, genomic datasets typically contain hundreds of samples with thousands of features each. FACS datasets may contain
millions of samples with 10-30 features each. Improvements in single-cell processing techniques (e.g. droplet-based13 or
magnetic-beads based methods75) are further increasing the number of samples in single-cell RNA-seq data. Therefore, tools
for genomic data analysis need to perform efficiently on very large datasets. In this aspect, the major bottleneck of our toolkit is
the KNN network construction step for which we use the ball tree algorithm63. Although efficient, this algorithm does not
scale well with respect to memory usage and query time when the number of features increases. One possible solution is to use
methods for approximating KNN networks, which might be utilized for this step after careful exploration of the error they
introduce76, 77. Another possibility is to use parallel architectures to accelerate KNN network construction78.

Moreover, when the number of features P is larger than the number of samples N (P > N), network construction can be
made more efficiently by projecting the original matrix (embedded in RP) into a lower dimension space (RN) using PCA79. This
projection preserves the original Euclidean distances between the samples. Other possible projections into lower dimensions
are truncated SVD or approximated PCA methods80. However, these do not preserve the original Euclidean distances between
the samples80. The original matrix can also be projected into lower dimensions by non-linear transformations like tSNE81.
tSNE captures much of the local structure of the data and has been widely used for single-cell expression analysis21, 82.

Note that Network-based methods themselves can be used for dimensionality reduction. Isomap83, for instance, constructs a
KNN graph that is used to approximate the geodesic distance between data points. Then, a multi-dimensional scaling is applied,
based on the graph distances, to produce a low-dimensional mapping of the data that maintains the geodesic distances between
all points.

NBC has much in common with the widely used density-based clustering method DBSCAN33. Although both methods
explore the local structure of the data, NBC uses the K nearest neighbors, while DBSCAN defines clusters by their local
densities. However in NBC, as opposed to DBSCAN, no minimal distance is required to define two samples as neighbors. In
addition, DBSCAN does not produce the network explicitly, but rather just the connectivity component of each sample. This
is in contrast to NBC that provides an explicit representation of the underlying weighted network that can be analyzed with
different CD algorithms.

NBC requires the user to specify the following parameters: a similarity measure, a community detection algorithm, and the
number of nearest neighbors K. For the datasets that we checked we found that NBC is not very sensitive to the choice of K
given sufficiently large values (K > 18) (e.g. Fig 2e); however, we found that the choice of the community detection algorithm
and especially the similarity measure may significantly influence its performance (e.g. Fig 3e and Fig 4a). Hence, these
parameters should be chosen carefully when applying NBC to other data types. Similar to other machine learning approaches,
NBC parameters can be optimized using a labeled training dataset prior to application on unlabeled data.

We created an open and flexible python-based toolkit for Networks Based Clustering (NBC) that enables easy and accessible
KNN network construction followed by community detection for clustering large biological datasets, and used this toolkit to
test the performance of NBC on previously published single-cell and bulk RNA-seq datasets. We find that NBC can identify
communities of samples (e.g. cells) and genes, and that it performs better than other common clustering algorithms over a wide
range of parameters.
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In practice, given a new dataset, we recommend to carefully test different alternatives for network construction and
community detection since results may vary among different datasets according to their unique characteristics. We believe that
the open and flexible toolkit that we introduced here can assist in rapid testing of the many possibilities.

Methods
single-cell and "bulk" RNA sequencing datasets
We used Four datasets in this study:

I) Single-cell RNA-seq data from Patel et al.62 containing single-cell gene expression levels from five patients with
glioblastoma and two gliomasphere cell lines that were acquired using the SMART-SEQ protocol. We downloaded the
preprocessed data from GEO84. Altogether, this dataset contains 543 cells by 5,948 genes.

II) Single-cell RNA-seq data from Klein et al.73 containing single-cell gene expression levels from mouse embryonic
stem cells at different stages of differentiation that were acquired using the inDrop protocol. In that experiment, samples were
collected along the differentiation timeline by sequencing single cells at 0, 2, 4, 7 days after withdrawal of leukemia inhibitory
factor (LIF). We downloaded the preprocessed data from GEO85 and removed genes with zero expression levels, resulting in a
dataset of 8,669 cells by 24,049 genes. For the analysis presented in Fig 3, we first removed technical replicates and data from a
control cell line, resulting in a total number of 2,717 cells.

III) “Bulk” RNA sequencing datasets from the Genotype-Tissue Expression (GTEx) database1. We downloaded the data
from the GTEx website86 version 6. This dataset includes 8,555 samples taken from 30 tissue types (according to the SMTS
variable) of 570 individuals. Gene names were translated from Ensemble gene ID into HGNC symbols using the BioMart
Bioconductor package87. In cases where we found multiple matches of the Ensemble gene ID’s corresponding to a single
HGNC symbol, the Ensemble gene ID with maximum average intensity across all samples was chosen. To compare different
clustering methods (Fig 4a) we chose only samples originating from a single tissue type. Moreover, we omitted tissues having
multiple detailed tissue types (according to the SMTSD variable) even if they had a single tissue type (indicated by the SMTS
variable). Likewise, genes with zero expression were omitted, resulting in a dataset of 3,174 samples by 33,183 genes from 21
tissue types.

IV) Single-cell RNA-seq data from Macosko et al.13 containing single-cell gene expression levels from a P14 mouse retina
that were acquired using the Drop-Seq protocol. We downloaded the preprocessed data from GEO88 and removed genes with
zero expression, resulting in a dataset of 49,300 cells by 24,071 genes. This dataset was used to compare the performance, in
terms of CPU time, of NBC, K-means, and hierarchical clustering as shown in Fig 4b-c.

KNN network construction and visualization
A KNN network with cosine similarity was constructed using the scikit-learn package89 for machine learning in Python.
Since the cosine distance was not directly available in the scikit-learn BallTree() function, we used a two-step implementation
as follows: First, each sample was mean-centered and standardized such that it will have zero mean and unit length (L2
normalization). Next, the ball tree algorithm63 was applied with Euclidean distance to find the K nearest neighbors of each
sample and construct a KNN network. Then, the Euclidean distances between the nodes (=samples) were transformed to cosine
similarities that were used as the edges weights for community detection.

We calculated the cosine similarity from the Euclidean distance as follows. The cosine similarity between two vectors A
and B is defined as:

simcos(A,B)≡ 1− θ(A,B)
π

,

where θ(A,B) is the angle between A and B. If A and B are also of unit length (L2 normalized) then this angle is related to the
Euclidean distance Deuc(A,B) according to:

θ(A,B) = cos−1[1− Deuc(A,B)2

2
]

or: Deuc(A,B) =
√

2−2cosθ(A,B).
Network layouts for visualization were created by the fruchterman-reingold algorithm90 as implemented in the igraph

Python and R packages91. For correlation similarity we calculated the full spearman correlation matrix ρ(A,B) between any
two vectors A and B using the corr function in R.

Community detection algorithms
In this manuscript we generally used the Louvain52 algorithm for community detection as implemented by the igraph Python
and R packages for network analysis91, apart from Fig 3 in which we used the fast greedy47 algorithm.
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The Louvain method partitions the nodes of the network into communities c1,c2,c3, . . . , such that network modularity
score

Q =
1

2m ∑
i, j

[
Ai j −

ki · k j

2m

]
δ (ci,c j),

is maximized. In the above formula, Ai j is the edge weight between nodes i and j, ki is the degree of node i (that is, the sum of
the weights of all the links emanating from node i), m is the overall sum of weights, m = 1

2 ∑i j Ai j, and δ (ci,c j) is the Kronecker
delta function. The network modularity score is actually the difference between the number of links connecting nodes within
the same community and the expected number of links in a network with randomly shuffled links.

Briefly, the algorithm starts by assigning a separate community to each node. Then, the algorithm iterates between two
steps: In the first step, the modularity is maximized by repeatedly iterating over all nodes in the network. For each node, we
evaluate the gain in modularity that will take place by removing it from its present community and assigning it to one of its
neighboring communities. If the overall modularity can be improved, the community of the node is reassigned accordingly.
This process is repeated until a local maximum is reached. In the second step, the algorithm constructs a meta-network in which
the nodes are communities from the first step and the edges are the edges between the communities. At this point, the first step
is repeated on the nodes of the new meta-network in order to check if they can be merged into even larger communities. The
algorithm stops when there is no more improvement in the modularity score.

Statistical measures for comparing NBC and other common clustering algorithms
To compare the performance of NBC, hierarchical clustering, K-means, and spectral clustering, we used the F-measure, which
is the harmonic mean between the precision P and sensitivity (recall) R:

F ≡ 2
1
P + 1

R

= 2∗ P∗R
P+R

where P ≡ Precision ≡ T P
T P+FP , and R ≡ Recall ≡ T P

T P+FN (T P- true positive, FP- false positive, FN- false negative). To
calculate precision and sensitivity for each clustering algorithm, we also used the R package clusterCrit92 that compares the
labels from the original publication to the labels inferred by the algorithm.

Another requirement for evaluating and comparing the different clustering algorithms was to require all of them to find
the same number of clusters. Therefore, the number of required clusters was set to the number of distinct groups from the
original publication (7 clusters in Fig 2, 4 clusters in Fig 3, 21 clusters in Fig 4a, etc.). We used the stat package in R93 to
run hierarchical clustering and K-means clustering with default parameters (Euclidean distance), apart from the linkage in
hierarchical clustering which was set to average linkage. For spectral clustering we used the specc function from the kernlab R
package94 with default parameters. Generally, all parameters were chosen as default unless otherwise specified.

All computations were done on a standard PC with i7-4600 CPU with 2.10 GHz and 16 GB of RAM memory.

Tissue-specific reference genes lists from the Human Protein Atlas
Tissue-specific reference lists of genes were obtained from the Human Protein Atlas74 version 1495. Altogether, the house-
keeping genes (HKG) reference list is composed of 8,588 genes, and the liver-specific, pancreas-specific, and spleen-specific
reference genes lists are composed of 436, 234, and 95 genes respectively. Genes that do not appear in the dataset or genes that
appear in more than one tissue-specific list were removed, resulting 8331, 403, 210, and 87 genes in the HKG, liver-specific,
pancreas-specific, and spleen-specific reference genes lists respectively.
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Figure 1. A typical workflow for Networks Based Clustering (NBC). The raw data is first preprocessed to form a gene
expression matrix. From this matrix, a weighted KNN network is constructed, in which each node represents a sample (e.g a
single cell) or a feature (e.g. a gene). Then, a community detection algorithm is applied to partition the nodes into closely-knit
communities, which can be characterized using enrichment strategies. 11/16
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Figure 2. NBC accurately resolves seven cell types from a glioblastoma single-cell RNA-seq dataset. We applied NBC to
single-cell RNA-seq data published by Patel et al.62 containing single cells collected from five patients with glioblastoma and
two gliomasphere cell lines. A KNN network constructed using cosine similarity with K = 40 is shown in (a) and (b). A similar
KNN network with K = 10 is shown in (c) and (d). Nodes shown in (a) and (c) are color-coded according to cell types reported
by the original publication, while nodes in (b) and (d) are color-coded according to communities inferred by the Louvain
algorithm. (e) The F-measure, which is the harmonic mean of precision and recall, is plotted against K for networks
constructed with cosine (full circles) and correlation (empty triangles) similarities. Specific points corresponding to K = 10 and
K = 40 are highlighted in red.
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Figure 3. NBC resolves four differentiation stages in a single-cell RNA-seq dataset from mouse embryonic stem cells. We
applied NBC to single-cell RNA-seq data published by Klein et al.73 containing single mouse embryonic stem cells collected
from four consecutive developmental stages. A KNN network constructed using cosine similarity with K = 30 is shown in (a)
and (b). A similar KNN network with K = 5 is shown in (c) and (d). Nodes shown in (a) and (c) are color-coded according to
the differentiation stage reported by the original publication, while nodes in (b) and (d) are color-coded according to
communities inferred by the fast greedy algorithm. (e) The F-measure, which is the harmonic mean of precision and recall, is
plotted against K for networks constructed with cosine and correlation similarities and communities inferred by the fast greedy
and Louvain algorithms. Specific points corresponding to K = 5 and K = 30 are highlighted in red.
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Figure 4. Comparing NBC with other common clustering methods. (a) Shown is a comparison between NBC, K-means,
hierarchical clustering, and spectral clustering in terms of the F-measure as a function of the effective number of genes. We
effectively reduced the number of genes by randomly permuting the sample labels for a fraction of the genes. The inset shows
results for NBC and hierarchical clustering with correlation similarity. (b,c) Shown is a comparison of the CPU times required
by the five clustering methods, once as a function of the number of randomly chosen samples while keeping the number of
genes fixed to 24,071 (b), and once as a function of the number of randomly chosen genes while keeping the number of
samples fixed to 2,500 (c). Each point shown is an average of three iterations. Data used in (a) was downloaded from the GTEx
consortium1, and data used in (b) and (c) was taken from a single-cell RNA-seq dataset published by Macosko et al.13.
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Figure 5. NBC can be used to resolve tissue-specific genes. (a) NBC was applied to a mix of RNA-seq expression profiles
from "bulk" samples of the human liver, pancreas, and spleen, that were obtained from the GTEx project1. Eleven communities
of genes were detected by NBC using the Louvain algorithm. For each NBC-derived gene community, the relative fractions of
all genes, housekeeping genes (HKG), and three tissue-specific reference genes lists are shown. The tissue-specific reference
genes lists were downloaded from the Human Protein Atlas74. The NBC-derived gene communities are ordered according to
their relative sizes, which is represented by the fraction of total genes that belong to each community (light red bars). (b-d)
Shown is the network of samples, where in each panel the node size is proportional to the average log-transformed expression
of the genes from NBC-derived community #1 (spleen-enriched, panel b), NBC-derived community #2 (pancreas-enriched,
panel c), and NBC-derived community #3 (liver-enriched, panel d). The nodes are color-coded according to their respective
tissue type.
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Table 1. Examples of previously published methods for NBC.

Name Reference Description
PhenoGraph Manuscript:54

Software:96
A KNN network is constructed using Euclidean distance.
Then, a SNN network is constructed by using the number
of shared neighbors between every two nodes as a new
similarity measure between them.
Communities are found using the Louvain algorithm.

SNN-Cliq Manuscript:55

Software:97
A KNN network is constructed using Euclidean distance
(or similar). Then, a SNN network is constructed using
the number of shared neighbors between every two nodes,
as well as their distances to the two nodes, as a new
similarity measure.
Communities are found using a heuristic approach to find
"quasi-cliques" and merge them.

Seurat Manuscript:56

Software:98
The algorithm constructs a KNN network and then a SNN
network.
Communities are found using the Louvain52 or the SLM53

algorithms.

Table 2. Comparison between NBC, K-means, hierarchical clustering, and spectral clustering in terms of the F-measure for
two single-cell RNAseq datasets. The F-measure, which is the harmonic mean between precision and sensitivity, measures the
degree to which the inferred communities reproduce the known cell types from the original publication.

Method Patel et al.62 dataset
(Fig 2)

Klein et al.73 dataset
(Fig 3)

NBC
(Cosine similarity, Louvain CD)

0.93 (K = 40) 0.81 (K = 30)

NBC
(Correlation similarity, Louvain CD)

0.94 (K = 40) 0.90 (K = 30)

K-means (Euclidean similarity) 0.76 0.84
Hierarchical clustering
(Euclidean similarity)

0.86 0.44

Hierarchical clustering
(Correlation similarity)

0.79 0.44

Spectral clustering 0.47 0.80

Table 3. Summary statistics for NBC-derived gene communities.

NBC-
derived
gene
commu-
nity
no.

Total number
of genes in
community

Annotation of
enriched
tissue-specific
"reference"
genes list (from
Human Protein
Atlas)

Enrichment -
number of genes
from
tissue-specific
"reference" list
(from the Human
Protein Atlas)
found in this
NBC-derived
community

p-value for
over-
expression in
corresponding
tissue-specific
samples (one
side t-test with
unequal
variance)

1 4940 Spleen 200 of 210 2×10−61

2 4284 Pancreas 82 of 87 2×10−250

3 4043 Liver 397 of 403 2×10−124
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