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ABSTRACT 
Genomic regions that encode small RNA genes exhibit characteristic patterns in their            
sequence, secondary structure, and evolutionary conservation. Deep Learning algorithms are          
efficient at classifying examples based on such learned patterns. Here we present MuStARD             
( gitlab.com/RBP_Bioinformatics/mustard) a Deep Learning framework that can learn        
patterns associated with user-defined sets of genomic regions, and scan large genomic areas             
for novel regions exhibiting similar characteristics. We demonstrate that MuStARD can be            
trained on different classes of human small RNA loci (pre-miRNAs and snoRNAs) and             
outperform state of the art methods specifically designed for each specific class. Furthermore,             
we demonstrate the ability of MuStARD for inter-species identification of functional           
elements by predicting mouse small RNAs (pre-miRNAs and snoRNAs) using models           
trained on the human genome. MuStARD is easy to deploy and extend to a variety of                
genomic classification questions. 
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INTRODUCTION 
Since the human genome was first sequenced about two decades ago (Lander et al.              

2001) , our understanding of regulatory and non-coding elements in the human and other             
model organisms has been steadily increasing (ENCODE Project Consortium 2012) with the            
identification and cataloguing of a variety of coded molecule and regulatory region classes.             
Non-coding RNA Molecule families such as microRNA (miRNA), Small nucleolar RNA           
(snoRNA), Small nuclear RNA (snRNA), Piwi-interacting RNA (piRNA), Short hairpin          
RNA (shRNA), Small interfering RNA (siRNA), Long non-coding RNAs (lncRNA) and           
others, now populate the functional expression map of known genomes. Along with our             
deeper understanding of well-established organism genomes, the total number of sequenced           
genomes has been increasing hand in hand with fast pace. NCBI currently lists just over 7000                
eukaryotic sequenced genomes, of which almost 50 have fully assembled genomes, and            
approximately 1000 have some assembled chromosomes. 

The majority of these newly sequenced genomes cannot be experimentally annotated           
to the depth of gold-standard genomes such as human, mouse, or Drosophila. Computational             
methods are continuously being developed with the goal of predicting the location of small              
non-coding RNA loci in genomes. In silico methods utilizing sequence homology are often             
employed for the annotation of novel genomes, projecting functional regions of           
well-annotated species to homologous genomic regions of less annotated genomes. For           
example, covariant model approaches (Nawrocki 2014) identified 529 specific and          
highly-conserved small RNA families in small-scale genomes (Kalvari et al. 2018) . These            
529 miRNA family models represent an unknown portion of the 38,589 miRNA sequences             
(1,917 human) catalogued in miRBase, since each model can be comprised of molecules             
derived from several species. Despite the usefulness of evolutionary conservation as a            
feature, pure homology-based approaches will be, by definition, unable to annotate RNA            
families that do not have a close homologue in model species. For example, many human               
miRNAs have developed only recently in evolutionary history and can be found only in other               
primates (estimated 40% (Wang et al. 2011) ). Approaches purely based on homology would             
strongly limit the identification of small RNA for a newly sequenced species with no              
well-annotated close ‘relatives’.  

Beyond homology-based approaches, genomes can be ‘scanned’ for regions of known           
characteristics, such as a specific motif, or sequence, and their putative function annotated.             
For these approaches tools specifically trained on a class of small RNA molecules can be               
used. However, even for well-studied classes such as miRNAs, the accuracy of such             
programs makes scanning of large genomic regions unrealistic. Over 30 programs aiming at             
pre-microRNA identification have been developed, but none achieving accurate         
genome-wide prediction (Saçar Demirci, Baumbach, and Allmer 2017) . A large drawback of            
such methods is their dependence on expert-defined features and background sets. This            
process involves an arbitrary number of features that have been conceptualized on ad hoc              
bases, usually derived on empirical data that are interpreted based on personal experiences             
and assumptions. This ad hoc process of feature extraction frequently introduces biases that             
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might severely affect building robust models while at the same time does not offer the               
possibility to utilize and also unveil all underlying patterns. 

Here, we present a Machine Learning (ML) method that improves the accuracy of             
non-coding RNA prediction in known species, and demonstrate that the model trained on a              
user selceted species can be used to scan large genomic regions and identify cross-species              
functional elements of the same class. We have chosen to apply our method on two different                
classes of small RNAs: miRNA precursors (pre-miRNAs) and small nucleolar RNAs           
(snoRNAs). Precursor miRNAs are intermediate RNA molecules of miRNA biogenesis that           
form stable hairpin structures of approximately 60-100 nucleotides. The first novel miRNAs            
were identified by sequencing total RNA of their approximate length (Lagos-Quintana et al.             
2003; Lee and Ambros 2001; Lau et al. 2001) . Based on the characteristics of the first                
sequenced miRNAs, computational methods were introduced to accelerate the identification          
process. Current computational methods utilize some combination of manually produced          
features based on genomic sequence and conservation, as well as predictions of RNA folding.              
These features could include the free energy of folding, folding stem length, nucleotide             
content in the stem, occurrence of matching pairs and so on. In a recent thorough comparison                
of several highly cited programs, it was observed that no tool significantly outperforms all              
other tools on all tested data sets (Saçar Demirci, Baumbach, and Allmer 2017) . Additionally,              
none of the current tools can employ a ‘scanning’ mode for large genomic regions leading to                
accurate pre-miRNA loci identification. Currently, the latest miRBase release (Kozomara,          
Birgaoanu, and Griffiths-Jones 2018) , the main repository of known miRNA sequences gives            
access to 38,589 pre-miRNAs from 271 organisms with 1,917 being of human origin. 

The highly competitive field of pre-miRNA prediction can be juxtaposed with the            
relative scarcity of snoRNA prediction algorithms. Discovered shortly after the sequencing of            
the human genome (Kiss 2002) snoRNAs play an important role in the processing and              
modification, of other classes of RNAs. Over ten years ago, the human genome was scanned               
for snoRNAs using snoSeeker (Yang et al. 2006, 2010) that appears to not be available               
anymore, identifying approximately 300 snoRNA loci. Hundred more snoRNAs were later           
identified by small RNA sequencing of diverse species and filtering through a computational             
algorithm (Yang et al. 2010) . However, despite these initial attempts, high-throughput           
experimental methods have reached the conclusion that the human genome contains a large             
number of snoRNAs expressed in low levels (Kishore et al. 2013) . For the well-annotated              
human genome, the use of large experimental data from ENCODE allowed the further             
identification of snoRNAs, to almost double the number of known loci to ~1000 (Jorjani et al.                
2016) . Identification of snoRNAs in other species has proceeded in a slow pace and with               
severe setbacks (Makarova and Kramerov 2011) as resources previously available become           
obsolete and eventually seize to exist (Lestrade 2006; Xie et al. 2007) . The field of snoRNA                
prediction appears too small to warrant attention of large initiatives to implement complex             
machine learning architectures and manually curated features. Here, we will demonstrate that            
MuStARD can accurately predict snoRNA locations, proving that it will be a useful tool for               
the generalized identification and annotation of less studied classes of snoRNAs. As a             
demonstration of the predictive power and limitations of our method, we will demonstrate             
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predictions based on training in the entire known snoRNA set, and also predictions based on               
training in specific families of snoRNAs that exhibit more consistent secondary structures. 

Machine Learning describes the field of computer science that involves the           
development of mathematical models and their implementations with the purpose of enabling            
computers to learn concepts and patterns embedded in data. Neural Networks are a subfield              
of ML algorithms with a rich history starting decades ago (Fitch 1944) with attempts to               
approximate the process of learning in the brain by stacking interconnecting layers of             
artificial neurons. Deep Learning (DL) is a term that refers to recent breakthroughs in the               
field of Neural Networks including a collection of new methodologies that have            
outperformed well-established ML algorithms in various learning tasks (LeCun, Bengio, and           
Hinton 2015) . Deep Neural Networks offer significant flexibility and remarkable accuracy           
provided enough data, especially for complex learning tasks. A subset of Deep Neural             
Networks termed Convolutional Neural Networks (CNNs) are able to operate directly on raw             
data such as DNA/RNA sequences without the need of pre-processing and feature extraction.             
CNNs use convolutional layers to process the input prior to propagating the signal to the               
dense part of the network and in the process extract important features by themselves. Even               
though the power of Deep Learning only became obvious in the past five years, there are                
already dozens of published studies that applied a plethora of Deep Learning architectures in              
the various fields of Biology (Ching et al. 2018) . For example, epigenomic data were used to                
infer gene expression (Singh et al. 2016) , and ovarian cancer subtypes were defined from              
gene and microRNA expression as well as DNA methylation (Liang et al. 2015) . DeepBind              
(Alipanahi et al. 2015) was the first application of CNNs in transcription factor binding              
recognition tasks. DeepSEA (Zhou and Troyanskaya 2015) and DanQ (Quang and Xie 2016)             
are also CNN-based frameworks that were trained on a large multi-cell-type compendium of             
chromatin-profiling data, including DNase I sensitivity, TF and histone-mark ChIP-seq data.           
Basset (Altman et al. 2016) and DeepEnhancer (Xu Min et al. 2016) both used CNN-based               
architectures on chromatin accessibility data to predict enhancers. 

Here we introduce MuStARD ( M achine-learning S ystem for A utomated RNA         
D iscovery), a flexible Deep Learning framework that can be applied to any biological             
problem that involves deconvolution of patterns embedded in DNA/RNA sequences. The           
framework’s flexibility stems from its modular design and minimum input requirements           
(Figure 1a). The majority of existing algorithms that perform classification tasks in various             
fields of biological research, pre-miRNA detection for example, rely on extraction of            
arbitrary features from raw input data. This process often requires significant expertise on the              
relevant field, it can cause increased computational overhead and most importantly it            
frequently introduces biases that can severely affect the training of robust models. MuStARD             
is a feature-agnostic DL framework that utilizes convolutional layers to scan the input data              
avoiding manual feature extraction. MuStARD is able to work on three types of input or any                
combination of those, raw DNA sequence, RNAfold (Lorenz et al. 2011) derived secondary             
structure and PhyloP (Pollard et al. 2010) basewise evolutionary conservation score of the             
corresponding sequence. 
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Figure 1. Overview of MuStARD modular architecture and iterative training pipeline. a)            
MuStARD is able to handle any combination of either raw DNA sequences, RNAfold derived              
secondary structure and basewise evolutionary conservation from PhyloP. DNA sequences          
and RNAfold output are one-hot encoded while PhyloP score is not pre-processed. Each             
feature category is forwarded to a separate ‘branch’ that consists of three convolutional             
layers. The computations from all branches are concatenated prior to being forwarded to the              
fully connected part of the network. b) The training pipeline of MuStARD consists of two               
steps. Initially, pre-miRNA sequences are randomly shuffled to exonic and intronic           
(protein-coding and lincRNA genes) regions of the genome to extract equal sized negative             
sequences with 1:4 positive to negative ratio. This process is repeated 50 times to facilitate               
the training of equal number of models. The performance of each model is assessed based on                
the test set and all false positives that are supported by at least 25 models are extracted. This                  
set of false positives is added to the negative pool of the best performing model to create an                  
enhanced training set. The enhanced set is finally used to train the final MuStARD model. 
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RESULTS 

Evaluation of Input Data Combinations on pre-miRNA prediction 

In order to evaluate the importance of the three input data branches on predictive              
value, we trained MuStARD models using all combinations of one, two and three inputs              
( s equence (S), conservation (C), and f olding/secondary structure (F)) using weighted classes.           
An additional model was trained for the combination of all three inputs without class weights               
by disabling the Keras class weights option (MuStARD-mirSFC-U). Each of these models            
underwent independent hyperparameter optimization for optimal batch size (Supplementary         
Table 1). 

We compared the performance of MuStARD on all combinations of input data for the              
pre-miRNA prediction dataset. As expected, scanning test sequences with various models           
shows that models including a higher number of meaningful input data branches perform             
better in retrieval of pre-miRNAs. The model trained on secondary structure and conservation             
was the best performing two-input model. This result aligns with the identification of             
pre-miRNA hairpins by the Microprocessor complex during the biogenesis of miRNAs           
primarily by characteristics of their secondary structure rather than sequence (Roden et al.             
2017) and the fact that pre-miRNAs have highly conserved regions corresponding to the             
mature miRNA sequences. Surprisingly, the non-balanced model (MuStARD-mirSFC-U)        
performs best out of all model combinations including the balanced three input model (All              
comparisons Suppl. Figure 1). Since MuStARD-mirSFC-U outperforms all other models in           
retrieval of pre-miRNAs, we will only report results for this model in the following              
evaluations. 

Evaluation of pre-miRNA prediction algorithms on chromosome 14 scanning 

While training MuStARD models, we left-out the entirety of chromosome 14 as a             
final benchmarking/validation set that could be fairly used to evaluate MuStARD’s           
performance against the current state of the art in pre-miRNA prediction algorithms. The             
question of accurate pre-miRNA prediction has been thoroughly researched since there are            
currently over 30 published pre-miRNA prediction algorithms indexed in the OMICtools           
(Henry et al. 2014) repository. The majority of these studies could not be coerced to run on                 
our benchmarking dataset (See Methods for details). We managed to run and evaluate five              
state of the art programs: HuntMi (Gudyś et al. 2013) , microPred (Batuwita and Palade              
2009) , miPred (Jiang et al. 2007) , miRBoost (Tran et al. 2015) and triplet-SVM (Xue et al.                
2005) . Of these five, only triplet-SVM, miPred and miRBoost provide probabilities as output             
scores allowing assessment of their performance on multiple score thresholds. HuntMi and            
microPred provide fixed output score/labels limiting their performance comparison on a fixed            
threshold (Supplementary Table 2). After evaluating all five algorithms on the validation set,             
we identified MiPred as the overall optimally performing state-of-the-art algorithm (Suppl.           
Fig.2), thus for the sake of brevity we will only report direct in depth comparison to MiPred. 
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Both MuStARD and MiPred report predictions with probability scores, and both           
programs would as default be used at a score threshold of 0.5. However, at that threshold,                
MiPred produces an inordinate amount of false positives (Suppl. Fig. 2). For fairness of              
comparison of program precision, we have set a threshold on Prediction Sensitivity at the              
point where each program predicts 50% of real pre-miRNAs (Figure 2a). MuStARD exhibits             
consistently higher Precision for any level of Sensitivity (Figure 2b,c) and at a strict threshold               
where 33% of real pre-miRNAs can be annotated it produces on average one False Positive               
prediction per 800,000 scanned nucleotides (Figure 3d) outperforming MiPred by an order of             
magnitude. 

 
Figure 2: Evaluation of MuStARD human predictions against state of the art prediction             
algorithm. a) Genome browser visualization of each algorithm’s performance on the           
scanning windows in a 15kb locus hosting three pre-miRNAs on the left-out chromosome 14.              
Both evaluated programs have been benchmarked at scores that give Sensitivity of 0.5 over              
the left-out chromosome. MuStARD correctly predicts 2/3 of the annotated pre-miRNAs,           
same as MiPred. MuStARD produces no False Positive predictions, compared with 11 of             
MiPred (marked with red x). b) Precision-Sensitivity curve of MuStARD and MiPred over             
scanned areas of the left-out chromosome 14. c) Precision of MuStARD and MiPred at loose               
(sensitivity 0.5) and strict (sensitivity 0.33) thresholds. d) Average length in thousands of             
base pairs for finding each False Positive prediction on the left-out chromosome. Showing             
MuStARD at Strict and Loose thresholds, and MiPred at Strict, Loose, and Full (score 0.5 -                
sensitivity ~1) thresholds, and Random prediction (threshold sensitivity 0.5). 

Evaluation of pre-miRNA prediction algorithms on labelled data 

The process of genome-wide scanning for pre-miRNAs requires windows of fixed           
size, a property that perfectly fits the input requirements of Deep Learning algorithms. In              
reality, the pre-miRNA dataset consists of positive and negative sequences of variable length.             
These sequences are extended to 100bp prior to MuStARD processing (see Methods for             
details). However, the majority of existing algorithms instead perform feature extraction and            
normalization to account for differences on sequence sizes. Using a benchmark dataset of             
fixed sized sequences should not introduce any biases to comparing the performance of             
MuStARD and existing algorithms. Nevertheless, we performed an additional comparison          
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based on benchmark sequences (chromosome 14) of the enhanced pre-miRNA dataset           
without reinforcement. Only for MuStARD, but not for existing algorithms, we applied the             
extension procedure of these sequences to 100bp. MuStARD models outperform every           
algorithm in terms of precision. MuStARD-mirSFC-U in particular exhibits unprecedented          
levels of precision even for score thresholds as low as 0.1 (Supplementary Figure 2 and               
Supplementary Table 3). 

Inter-species prediction 

Having established a substantial increase in precision for intra-species pre-miRNA          
prediction we evaluated our model on an inter-species prediction. Briefly, we used the best              
performing pre-miRNA identification model trained on human data, to scan swathes of the             
mouse genome (in total ~4Mbps) containing 1,227 annotated mouse pre-miRNAs. The           
inter-species prediction correctly identified pre-miRNAs with a small number of false           
positives (Figure 3a shows a browser snapshot of a pre-miRNA cluster locus). As expected,              
the precision of the inter-species prediction was lower than the intra-species validation set             
(Figure 3b), and even lower for pre-miRNAs that do not have a human homologue as they                
have lower levels of conservation which is one of our model’s input branches (Figure 3c).               
MuStARD exhibits exceptional levels of generalisation capacity (Supplementary Table 4)          
identifying correctly a large majority (94/129) of homologous pre-miRNAs and more than            
double (212) non-homologous pre-miRNAs.  

 
Figure 3. Prediction of Mouse pre-miRNAs by Human trained model. a) Genome browser             
visualization of MuStARD performance on the scanning of a 35kb locus hosting 36             
pre-miRNAs. MuStARD correctly identifies 20/36 pre-miRNAs with 2 False Positives, out of            
which one falls on the first “exon” of a long non coding RNA Mirg annotated as “miRNA                 
containing lincRNA”. b) Precision-Sensitivity curve of Human trained MuStARD predictions          
on Mouse pre-miRNAs. Orange line shows the model prediction on Human for reference             
(same as Figure 2b). Solid blue line shows the prediction on all Mouse pre-miRNAs, and               
dashed blue line shows the prediction on Mouse pre-miRNAs without a direct human             
homologue. c) A visualization of the Mouse pre-miRNA evaluation set denoting the number of              
predicted and non-predicted, orthologous and non-orthologous pre-miRNAs. 
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snoRNA prediction 

Pre-microRNAs are a well defined and well studied class of small non-coding RNAs.             
Their characteristic secondary structure and conservation pattern made training MuStARD on           
that dataset a relatively easy task. Despite its performance, MuStARD was not specifically             
developed for pre-miRNA hairpin detection. Our intention is to provide a highly flexible             
computational framework that can be applied to the identification of a variety of biological              
patterns.  

To highlight the flexibility of MuStARD, and to understand how it would fare on a               
more diverse set of patterns, we applied the same training pipeline to train a model of human                 
snoRNA sequences. SnoRNAs are a class of small RNAs with widely varying structure,             
sequence, and conservation patterns. We experimentally trained a model on all snoRNAs as             
one class (Figure 4a - orange line) and also for two of the most populous sub-families of                 
snoRNAs, the H/ACA and C/D box families. For the two sub-families we were also able to                
benchmark against a state-of-the-art snoRNA prediction software developed specifically to          
identify each of these two categories against background (Figure 4b, Supplementary Table 5).             
Further, we tested the inter-species capabilities of the MuStARD model, by applying the             
human-trained snoRNA model to the mouse genome (Figure 4a - blue line).  
 

 
 

Figure 4. Prediction of snoRNA of CD-box and H/ACA-box subfamilies. a.           
Precision-sensitivity curves for snoRNA identification of both families. Orange line shows the            
performance of MuStARD human trained models on left-out human chromosome snoRNAs,           
blue line shows the performance of the same model on Mouse snoRNAs. b. Comparison of               
Sensitivity per subfamily against state of the art program snoReport (Precision set at 0.5). 
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DISCUSSION 
Here we have presented MuStARD, a flexible Deep Learning framework that can be             

used to identify small RNA genes by example, based on characteristics of their raw sequence,               
secondary structure and evolutionary conservation, without expertly curated features. We          
have demonstrated that MuStARD has higher precision over all other methods developed for             
one specific classification task, and have furthermore, for the first time, successfully            
attempted a genomic scan in the scale of several million nucleotides. Finally, we point out the                
potential of MuStARD to annotate classes cross-species (human to mouse) along with            
moderate evolutionary distances. 

An innovative aspect of our method involves the iterative selection of negative            
examples based on high scoring false positives. Machine Learning methods are only as good              
as their training set and features. While Deep Learning eliminates the need for expert curated               
features - some of the pre-miRNA prediction methods utilized up to 700 features (Saçar              
Demirci, Baumbach, and Allmer 2017) - the need for negative training sets that effectively              
capture most of the background variation is still needed. We initially prototyped our method              
with a small set of negatives, four for each real training example. We quickly realized that                
while our method could separate between these categories easily, it still produced a large              
amount of false positives in the more realistic scanning test. Training fifty models on fifty               
sets of negatives improved the performance, but we noticed that specific regions were             
identified as false positives by a large number of models, i.e. the false positives were not                
randomly distributed in the background. By enriching our background set with these false             
positives and retraining the best models in this iterative fashion, we achieved a great leap in                
performance. An important point for the iterative background enrichment step is that it is              
fully automated within our method. This allows the method to generalize more easily, since              
the best background mixture for each class of non-coding RNAs will not be known in               
advance. 

The evaluation of different input modes by itself gave us interesting insight in line              
with the scientific knowledge of pre-miRNAs. We managed a qualitative ranking of the             
contribution for each input branch to the final predictive model. Deeper interpretation of the              
model is beyond the scope of this paper, but is an exciting further field of research. One                 
interesting observation coming from our training, is that class weight balanced training seems             
to be inferior in accurately predicting pre-miRNAs compared to unbalanced training. Class            
weight balancing is used in training Deep Learning models so that the model does not attempt                
to learn the characteristics of a disproportionately populous class while ignoring sparser            
classes. However, in our more realistic scanning test, one positive example corresponds to at              
least one hundred negative examples. Our training data with a maximum ratio of             
approximately one positive example to fifty negatives, although heavily unbalanced is less            
unbalanced than the realistic testing data. Exploring the class balancing issue will be             
necessary for the further improvement of the field towards the ultimate goal of genome wide               
scan prediction. 
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Using a number of pre-miRNA prediction algorithms for region scanning was time            
consuming and arduous labor. To calculate hundreds of features on regions spanning less             
than one percent of the human genome, all other algorithms (with miRBoost being the sole               
exception) required to group the scanning region into smaller batches of 2000 sequences in              
order to parallelize the analysis into a computer cluster (MetaCentrum-CERIT). Even so, the             
computing time for each single batch was approximately 4 days. In contrast, our algorithms              
was able to scan the mouse benchmark dataset that includes several million base pairs in a                
few hours on one CPU. With GPU access enabled this process can be even faster. MuStARD                
has made the possibility of a full mammalian genome scan feasible on a high-end personal               
computer. However, even with our improved prediction accuracy, the number of false            
positives identified on a full genome scan would still be disproportionate to the true positives.               
We will continue exploring improvements and iterative training modification with the goal to             
achieve genome wide scan capabilities.  

Given the increasing number of sequenced genomes becoming available, annotation is           
lagging. We have demonstrated that MuStARD can be efficiently trained on one species and              
then used to predict members of the same functional class in another. As a proof of concept                 
we trained models on human pre-miRNAs and snoRNAs and then identified their            
counterparts in mouse. These species are both well annotated, but have a considerable             
evolutionary distance. The pre-miRNAs we correctly identified on the mouse genome were            
enriched in evolutionary conserved pre-miRNAs in human (approximately 30% of our true            
positive predictions vs 10% of all mouse miRNAs). That said, the majority (70%) of our               
predicted pre-miRNAs are not homologous to human pre-miRNAs and would not be easily             
identified by a simple homology search. 

We chose pre-miRNAs as a first example because they have well established            
annotation, consistent secondary structure, conservation and other sequence characteristics.         
Our second use example was snoRNAs where most of these assumptions fail. The snoRNA              
class consists of several families that do not share common secondary structure, motif             
sequences, or conservation profiles. Conservation at large is much less pronounced in            
snoRNAs compared to pre-miRNAs. Additionally, the size distribution of snoRNAs (118.8bp           
mean, 59.1bp standard deviation) is much wider than miRNAs (81.9bp mean, 16.9bp            
standard deviation) making it harder for our method to accurately identify them. Despite             
these drawbacks, we manage to identify snoRNAs accurately within the human genome and             
in cross-species scan. In fact, surprisingly, our method seems to identify cross-species            
validation examples more accurately than left-out human examples. This could possibly be            
the direct result of having cross-species snoRNAs with conserved sequences to human            
snoRNAs in the training set. We have opted not to remove these snoRNAs from the               
cross-species comparison so as to estimate a precision/sensitivity rate closer to what a real              
scan would produce. 

We have developed MuStARD as an easy to deploy, versatile, and extensible method             
that can run with minimal user input. To make it modular and versatile we used a Keras                 
architecture that can be easily extended from more experienced users. Keras is widely             
accepted by the Deep Learning community and offers ease of use and several layers of               
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abstraction in terms of code sharing when compared to tensorflow or other lower end              
frameworks. Extending the architecture with more diverse branches is straightforward. We           
have already developed templates for reading sequence and secondary structure (one hot            
encoding) as well as conservation (scores). Adding different types of signal is as easy as               
downloading a relevant track from UCSC Genome Tracks and asking MuStARD to include it              
in the training. For basic users, the input has been kept minimal, requiring just a bed file of                  
regions in the functional class of interest, a sequence file of the genome, and a conservation                
track of the same size. Given these inputs, MuStARD preprocesses the regions of interest,              
extracts sequences, simulates folding, picks random genomic sequences for background,          
optimizes hyperparameters and so on until the final model is trained. 

MATERIALS AND METHODS 

Dataset collection and preprocessing 

Human (GRCh38) and mouse (GRCm38) genomes and corresponding gene         
annotations were downloaded from Ensembl v93 repository(Zerbino et al. 2018) . Human           
gene annotation was filtered to only include genes exhibiting a protein-coding or lincRNA             
biotype. The exons of protein-coding and lincRNA genes were combined to produce two             
disjoint data sets; parts of the genome that correspond to exons and loci that are represented                
by introns. Additionally, two separate collections were created by selecting regions marked            
with the snoRNA biotype. Human and mouse pre-miRNAs were downloaded from miRBase            
v22 (Kozomara, Birgaoanu, and Griffiths-Jones 2018) . Human pre-miRNAs were         
subsequently filtered based on the experimentally validated information provided in miRBase           
to keep only high-quality sequences for training. Basewise conservation scores, based on            
phyloP algorithm, of 99 and 59 vertebrate genomes with human and mouse respectively were              
downloaded from UCSC genome repository (Karolchik et al. 2004). 

MuStARD training module architecture 

The aim of MuStARD is to provide a highly flexible, feature-agnostic computational            
framework that can be applied in a plethora of Biological problems providing state-of-the-art             
performance while at the same time having minimal input requirements. To this end,             
MuStARD has been specifically designed to follow a modular architecture where each            
module carries out different functionalities that can be run and assessed independently and/or             
in parallel ( Figure 1). The framework is implemented using python for the deep learning              
aspect, R for the majority of meta-analyses and plotting, and perl for general purpose file               
filtering, formatting and module connectivity. Users only need to provide bed formatted files             
as input and the appropriate genome assembly files as well as the wiggle formatted PhyloP               
evolutionary conservation score files derived from UCSC repository. 

The training module of MuStARD is composed of a convolutional architecture based            
on tensorflow and the Keras functional API. More advanced users can directly add or remove               
parts of the architecture according to the problem at hand. For the purposes of this study, the                 
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chosen architecture consists of 3 convolutional branches that can be dynamically added,            
removed and combined in multiple ways according to the properties of the corresponding             
use-case. These branches depict distinct ‘agents’ that are able to independently model            
different input modes such as raw DNA sequence, RNA secondary structure and evolutionary             
conservation. Subsequently, the outputs of the convolutional branches are flattened,          
concatenated and forwarded to the dense part of the architecture that produces the final              
prediction scores. In every layer output, dropout and batch normalization regularization           
techniques are applied to improve the generalisation capacity of the network. 

Regardless of the chosen network architecture, hyperparameters are known to be           
notoriously hard to optimize and depending on the complexity of the input, small changes in               
the hyperparameter selection can greatly affect the results. The training module has been             
designed to incorporate a grid-search type of approach for finding the optimal combination of              
hyperparameters. We have chosen to apply grid-search over 4 hyperparameters, the ones that             
based on our experience are able to greatly affect the results; batch size, learning rate, dropout                
rate and number of filters in the convolutional layers. Users can freely remove or add               
hyperparameters into the grid-search process and most importantly adjust the network           
architecture according to their needs. Each model trained over a different combination of             
hyperparameters is saved in a separate directory alongside train/validation accuracy/loss plots           
and a detailed log of the performance in each epoch. This allows users to find the exact                 
combination of hyperparameters that produces the optimal training. 

Unless stated otherwise, in all use-cases presented in this study, each convolutional            
branch consists of 3 convolutional layers. The first convolutional layer in the raw DNA              
sequence processing branch uses a filter size of 16 nucleotides with stride 1 and no padding,                
the second layer uses a filter size of 12 and the third layer a filter size of 8. The first                    
convolutional layer in the RNAfold processing branch uses a filter size of 30 nucleotides with               
stride 1 and no padding, the second layer uses a filter size of 20 and the third layer a filter                    
size of 10. The first convolutional layer in the evolutionary conservation processing branch             
uses a filter size of 20 nucleotides with stride 1 and no padding, the second layer uses a filter                   
size of 15 and the third layer a filter size of 10. The outputs of the convolutional branches are                   
flattened and concatenated before being forwarded to the dense part of the network that              
includes 3 layers of 100, 75 and 50 nodes respectively. All layers use leaky ReLu activation                
except the final prediction layer that uses the softmax function. The chosen optimizer is SGD               
with Nesterov momentum set at 0.9. All models were trained over 600 epochs after enabling               
early stopping with patience set at 40 and delta at 0 with a learning rate of 10-4. 

MuStARD prediction module 

The prediction module of MuStARD framework has been explicitly designed to           
facilitate both long region scanning and static assessment of specific loci. In the case of long                
region scanning, users are able to select the appropriate parameters such as the window size               
(it should match with the training window size), sliding step and the model that will be used                 
for scoring each window. The framework includes standalone code for generating bedGraph            
tracks that can facilitate the visualization of results in any genome browser as well as code for                 
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creating ‘hotspots’ of positive predictions and for evaluating the results based on custom             
tracks and/or annotations. In the case of static assessment of specific loci, the prediction              
module provides a bed formatted file that included the score of each region in the 5th column. 

Learning process of pre-miRNA and snoRNA detection MuStARD models 

As described in previous sections, the training ( Figure 1) of the pre-miRNA            
recognition model was based on experimentally verified human precursor sequences from           
miRBase. Only pre-miRNAs with size less than 100bp were used to form the positive set               
resulting in 579 sequences that were separated into the necessary training (484 hairpins             
corresponding to all chromosomes except 2, 3 and 14) and validation (51 hairpins             
corresponding to chromosomes 2 and 3) sets required by Deep Learning frameworks for the              
training process. 99 hairpins from chromosome 14 (no experimental validation evidence or            
size distinction) were completely left out from the training procedure and were utilized for              
testing the performance of pre-miRNA detection algorithms. The negative set was formulated            
with bedtools 2.27.0v(Quinlan and Hall 2010) ‘shuffle’ mode using the positive set on the              
exon/intron genomic segments described in previous section. For each positive instance 4            
equally sized negatives were randomly selected from protein- and non-coding exonic as well             
as intronic regions, 1 for every category. This process was repeated 50 times in total creating                
50 different training/validation sets that were used to train an equal amount of distinct              
preliminary models. Hyperparameters were fixed at 256 batch size, 0.2 dropout rate, 0.0001             
learning rate and 80/40/20 number of filters in the 3 convolutional layers of each branch and                
the class weight option in Keras was enabled. Based on this repetitive negative shuffling              
configuration we ensured that a reasonable balance between training time as well            
approximating sequence and evolutionary conservation variation in background or         
non-precursor genomic loci was maintained. One of our objectives was to optimize the             
genome scanning process. The majority of existing algorithms utilize positive sequences that            
are fixated around the center of pre-miRNAs. However, in genome scanning scenarios there             
will always be instances in which part or the whole hairpin sequence will not be located in                 
the center of the scanning window. This phenomenon might heavily affect the secondary             
structure of the RNA sequence corresponding to each window and therefore the            
generalisation capacity of the model. To overcome this problem, the MuStARD training            
module has been equipped with an optional ‘reinforcement’ feature that generates copies of             
the input instances with randomly placed positive or negative sequences within the 100nt             
sequence. For the purposes of this study, the number of reinforced instances for every input               
sequence during the pre-miRNA training process was 5. 

Ideally, if the combination of using intronic/exonic regions as a background sequence            
pool and the 1:4 positive to negative ratio was enough to fully capture the non-precursor               
sequence variation in the 3 input feature space (raw DNA sequence, secondary structure and              
basewise evolutionary conservation) then a near perfect performance in terms of both            
precision and sensitivity would be achieved in a scenario where all 50 preliminary models are               
used to scan the genome for predicting pre-miRNA sequences. To test this hypothesis all              
human pre-miRNAs were extended by +/- 5,000bp and the resulting regions were merged in              
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the case of strand specific overlaps. Both strands of the merged loci were scanned with all 50                 
preliminary models using a window of 100bp and a stride of 10bp. This resulted in a                
benchmark dataset of 33.2 million bp divided into 3.2 million overlapping 100bp windows.             
For each model, out of the 3.2 million windows only those exhibiting a score above 0.5 were                 
retained to form ‘hotspots’ of positively predicted regions after merging cases of strand             
specific overlaps. These regions were subsequently cross checked with the annotated           
pre-miRNAs to extract performance metrics in the 0.5-0.9 score range for every preliminary             
model. 

False positive predictions based on a 0.5 score threshold were kept only if they were               
supported by 25 out of 50 preliminary models and did not overlap with any negative instance                
used to train these models. The resulting 23,750 false positive loci were added to the negative                
dataset of the best performing preliminary model. These false positives represent regions of             
the genome that were not captured by the process of ‘shuffling’ positive instances to              
exonic/intronic loci and exhibit feature characteristics that are more similar to positive than             
negative instances. This process assisted in establishing an enhanced set of sequences that             
was used to train the final pre-miRNA detection model that was selected through performing              
a hyperparameter space grid-search over the batch size and the Keras option of training              
with/without class weights (Supplementary Table 1). The class weights option in Keras            
enables the equal contribution of all classes during the training of unbalanced datasets. The              
remaining hyperparameters were not changed. 

This process was repeated 6 times to train, with the Keras class weights option              
enabled, an equal number of distinct MuStARD pre-miRNA detection models composed of            
different input combinations; raw sequence with secondary structure and conservation          
(MuStARD-mirSFC model), raw sequence and conservation (MuStARD-mirSC), raw        
sequence and secondary structure (MuStARD-mirSF), secondary structure and conservation         
(MuStARD-mirFC), secondary structure only (MuStARD-mirF) and sequence only        
(MuStARD-mirS). For the combination of raw sequence, secondary structure and          
conservation, we have trained an additional model after disabling the class weights option in              
Keras (MuStARD-mirSFC-U model). For MuStARD-mirSFC model, the optimal (balance         
between precision and sensitivity) batch size was 1024, 256 for MuStARD-mirSFC-U, 1024            
for MuStARD-mirSC, 256 for MuStARD-mirSF and MuStARD-mirFC, 512 for         
MuStARD-mirF and MuStARD-mirS. The procedure for evaluating the performance of each           
model is described in the following section. 
For the purposes of the second use-case presented in this study, the same pipeline was used to                 
create three MuStARD snoRNA detection models, one for detecting the CD box snoRNA             
subspecies (MuStARD-snoSFC-U-CDbox), one for H/ACA box      
(MuStARD-snoSFC-U-HACAbox) and one for detecting both subspecies at the same time           
(MuStARD-snoSFC-U). For training the MuStARD-snoSFC-U-CDbox model we removed        
CD box snoRNAs with size more than 130nt. For the validation set we used 28 sequences                
originating from chromosomes 3, 4, 5, 20, 21 and 22. For the training set we utilized 208                 
sequences located in the remaining chromosomes except 22 snoRNAs from chromosomes 1            
and 2 (no size distinction for the creation of this set) that were used for testing the                 
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performance of snoRNA prediction algorithms. For training the        
MuStARD-snoSFC-U-HACAbox model we removed H/ACA box snoRNAs with size more          
than 150nt. For the validation set we used 29 snoRNAs originating from chromosomes 2, 3,               
4, 20, 21 and 22. For the training set we utilized 94 sequences located in the remaining                 
chromosomes except 17 snoRNAs from chromosome 1 (no size distinction) that were kept             
for testing. For training the MuStARD-snoSFC-U model we removed H/ACA and CD box             
snoRNAs with size more than 150nt. For the validation set we used 42 snoRNAs originating               
from chromosomes 3, 4, 20, 21 and 22. For the training set we utilized 317 sequences located                 
in the remaining chromosomes except 48 snoRNAs from chromosomes 1 and 2 (no size              
distinction) that consisted the testing set. 

Testing on genomic region scanning data 

The process of testing algorithms on a static labelled dataset can often provide             
misleading results about performance especially in cases of models that have been designed             
for genome-wide scanning. Such ‘stress’ tests are often also able to unveil interesting aspects              
about the computational complexity and the time required by algorithms to complete a task.              
To this end, 99 human pre-miRNAs (no size or quality distinction) located on chromosome              
14 were extended by +/- 5,000bp and the resulting regions were merged in the case of strand                 
specific overlaps. Both strands of the merged loci were scanned with all MuStARD’s final              
pre-miRNA detection models (Supplementary Table 1) as well as with existing algorithms            
(Figure 2, Supplementary Table 2) using a window of 100bp and a stride of 5bp. This                
resulted in a scanning benchmark dataset of 1 million bp divided into 208,708 overlapping              
100bp windows.  

Two distinct strategies were employed to assess the performance of each algorithm. In             
the first approach, each window was assessed independently (method A) while in the second              
only windows exhibiting a score above 0.5 were retained to form ‘hotspots’ of positively              
predicted regions after merging cases of strand specific overlaps (method B) or overlaps             
regardless of strand (method C). These regions were subsequently cross checked with the 99              
annotated chromosome 14 pre-miRNAs to extract performance metrics in the 0.5-0.9 score            
range, when possible. In all scenarios, positive predictions were considered true positives            
(TPs) if they covered at least 50% of the overlapping annotated pre-miRNA’s size.             
HuntMi(Gudyś et al. 2013) and microPred(Batuwita and Palade 2009) algorithms only           
provide hard labelled results instead of a probabilistic score, therefore they were not included              
in the graphs. However, to facilitate a fair comparison between all algorithms, performance             
metrics based on all methods (A, B and C) were extracted at a fixed score threshold of 0.5                  
( Supplementary Tables 2, 3 and 4). 

For assessing the performance of MuStARD-snoSFC-U,      
MuStARD-snoSFC-U-CDbox, MuStARD-snoSFC-U-HACAbox, snoReport-CDbox and    
snoReport-HACAbox models human snoRNAs on the test chromosomes (see in previous           
section) were extended by +/- 10,000bp and the resulting regions were merged in the case of                
strand specific overlaps. Both strands of the merged loci were scanned with different window              
sizes (depending on the model) and a stride of 5bp. For comparing the snoRNA detection               
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models, only method C was applied. 
Method C was also applied to annotated mouse pre-miRNAs and snoRNAs using            

MuStARD’s SFC-U models and snoReport in the case of snoRNAs ( Figures 3 and 4,              
Supplementary Tables 4 and 5 ). 

Testing on labelled data 

For the purposes of testing the final pre-miRNA detection model on labelled data and              
comparing with existing algorithms, all positive and negative instances located on           
chromosome 14 were used from the enhanced data set described in the previous section after               
removing sequences with size less than 100bp. The total number of positive instances in the               
test set was 44 and the total number of negatives 893 (Supplementary Figure X,              
Supplementary Table 3). 

Application of existing algorithms 

There are over 30 pre-miRNA prediction algorithms listed in OMICtools repository.           
The majority of these studies provide access to the trained models only through web-server              
interfaces which allow a small number of sequences to be processed at once. Only a handful                
of studies provide stand-alone implementations that can be downloaded and applied on            
benchmark datasets locally. However, a small fraction of these implementations are able to             
properly function and provide results. 

We only managed to assess the prediction efficiency of HuntMi, microPred, MiPred,            
triplet-SVM, and MirBoost on our benchmark datasets. HuntMi and microPred tools do not             
support parallelization, and the average processing time for a sequence of 100nt is 3 minutes.               
The scanning benchmark sequences were grouped into 100 bins to faster the analysis for              
HuntMi and microPred. Also, microPred random sequence generation parameter setting was           
500. Each bin was analyzed independently by HuntMi and microPred on virtual machines             
provided by the MetaCentrum-CESNET supercomputer cluster. MiRBoost’s SVM model         
was re-trained to support probabilistic output using the dataset included in the code repository              
and parameters ‘svm-train -h 0 -c 8.0 -g 0.125 -w1 1 -w-1 1 -b 1’. Then miRBoost was                  
applied on our benchmark dataset with parameters ‘miRBoost -d 0.25’. For triplet-SVM, we             
initially applied RNAfold on our benchmark dataset with parameters ‘RNAfold --noPS           
--noconv --jobs=10’ and the output was forwarded to the triplet-SVM perl script with             
parameters ‘triplet_svm_classifier.pl 22’ that pre-processes the data and reformats it for the            
final prediction modules that requires libsvm. The final triplet-SVM results were obtained            
using svm-predict with parameters ‘svm-predict -b 1’. MiPred was applied on the benchmark             
dataset with default parameters. For the snoRNA use-case snoReport was used with default             
settings. 

Assessing MuStARD’s ability to detect non-human-homologous pre-miRNAs in mouse 

Mouse hairpins regions of miRNA transcripts (N=1,227) were derived from the           
miRBase database; orthologous miRNA (N=129) between mouse and human were retrieved           
from the Ensembl BioMart hub(Kinsella et al. 2011) . Initially, accurate MuStARD           
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predictions (true positives) were recognized as overlapping with mouse hairpins regions           
through bedtools intersect v2.27.1. Subsequently, non-human-homologous pre-miRNAs       
were distinguished as the negative intersection between accurate MuStARD predictions and           
the human orthologous miRNA dataset. Bedtools options 'same strandedness' and          
'overlaps=0.5' were used in both cases (-s and -f, respectively). 

Software and hardware requirements 

MuStARD is developed in Python 2.7 for the Deep Learning aspect (tensorflow 1.10             
and Keras 2.2.2), R for visualizing the performance and Perl for file processing, reformatting              
and module connectivity. Full list of dependencies can be found on MuStARD’s gitlab page. 
MuStARD is able to execute either on CPU or GPU depending on the underlying hardware               
configuration by taking into advantage tensorflow’s flexibility. The framework has been           
designed to maintain a minimal memory footprint thus allowing the execution even on             
personal computers. Running time heavily depends on input dimensionality, number of           
instances in the training set, learning rate and GPU availability. 

 

AVAILABILITY 
MuStARD is an open source Deep Learning framework available in GitLab           
( gitlab.com/RBP_Bioinformatics/mustard). 

SUPPLEMENTARY DATA 
Supplementary Data are available at NAR online. 
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