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Abstract 

Scene-selective regions of the human brain form allocentric representations of locations in our 

environment. These representations are independent of heading direction and allow us to know 

where we are regardless of our direction of travel. However, we know little about how these location-

based representations are formed. Using fMRI representational similarity analysis, we tracked the 

emergence of location-based representations in scene-selective brain regions. We estimated patterns 

of activity for two distinct scenes, taken before and after participants learnt they were from the same 

location. During a learning phase, we presented participants with two types of panoramic videos: (1) 

an overlap video condition displaying two distinct scenes (0o and 180o) from the same location, and 

(2) a no-overlap video displaying two distinct scenes from different locations (that served as a control 

condition). In the parahippocampal cortex (PHC) and retrosplenial cortex (RSC), representations of 

scenes from the same location became more similar to each other only after they had been shown in 

the overlap condition, suggesting the emergence of location-based viewpoint-independent 

representations. Whereas location-based representations emerged in the PHC regardless of 

subsequent behaviour, RSC representations only emerged for locations where participants could 

behaviourally identify the two scenes as belonging to the same location. The results demonstrate that 

we can track the emergence of location-based representations in the PHC and RSC in a single fMRI 

session and suggest that the RSC plays a key role in using such representations to locate ourselves in 

space. 
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Introduction 

Rapidly learning the spatial layout of a new environment is a critical function that supports flexible 

cognition. This ability is thought to be underpinned by the emergence of spatial representations in 

scene-selective brain regions, including location-based representations that signal where we are 

irrespective of our current heading direction. Given we are unable to sample all possible viewpoints 

from a given location simultaneously, the formation of location-based representations requires the 

integration of scenes across differing viewpoints. Despite evidence for the existence of location-based, 

viewpoint-independent, representations in scene-selective regions (Marchette, Vass, Ryan, & Epstein, 

2015; Robertson, Hermann, Mynick, Kravitz, & Kanwisher, 2016; Vass & Epstein, 2013), we know little 

about how such representations emerge. 

Models of spatial navigation suggest that distinct brain regions are responsible for supporting 

allocentric (viewpoint-independent) and egocentric (viewpoint-dependent) representations of our 

environment (Byrne, Becker, & Burgess, 2007; Julian, Keinath, Marchette, & Epstein, 2018). 

Specifically, the parahippocampal cortex (PHC) is thought to encode allocentric spatial representations 

related to navigational landmarks (Burgess, Becker, King, & O’Keefe, 2001; Epstein, Patai, Julian, & 

Spiers, 2017), and spatial context more broadly (Epstein & Vass, 2014). In contrast, the parietal lobe 

is thought to support egocentric representations of specific viewpoints that underpin route planning 

(Byrne et al., 2007; Calton & Taube, 2009). To enable efficient route planning, a transformation 

between allocentric and egocentric representations is thought to occur in the retrosplenial cortex, 

cueing allocentric representations from egocentric inputs and vice versa (Bicanski & Burgess, 2018; 

Byrne et al., 2007).  

In support of these models, human fMRI studies using representational similarity analyses (RSA) have 

found evidence for location-based, viewpoint-independent, representations (henceforth referred to 

as “location-based representations”) in a network of brain regions including the PHC and RSC 

(Marchette, Vass, Ryan, & Epstein, 2014; Robertson et al., 2016; Vass & Epstein, 2013). However, little 

is known about how such representations are formed. First, we don’t know whether location-based 

representations can emerge rapidly (i.e., in the course of a single fMRI session). Second, without 

tracking their formation, it is difficult to determine exactly what information is being represented. For 

instance, shared representations across viewpoints may relate to long-term semantic knowledge that 

is invoked when seeing different views of a well-known location (see Marchette, Ryan, & Epstein, 

2017). 

Here, we test whether location-based representations of novel environments can be learnt by 

integrating visual information across different scenes. Multivariate patterns of BOLD activity were 
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recorded as participants passively observed a number of scenes depicting different views of novel 

locations. Subsequently, using an experimental manipulation introduced by Robertson et al. (2016), 

participants watched videos that showed these scenes as part of a wider panorama. Half of the videos 

allowed participants to learn the spatial relationship between two scenes from the same location 

(overlap condition). The remaining videos acted as a control by presenting scenes from different 

locations (no-overlap condition). Following the videos, we again recorded patterns of activity for each 

of the scenes. Whereas Robertson et al. (2016) only assessed scene representations following video 

presentation, we also scanned before and during video presentation. This allowed us to track the 

emergence of location-based representations using representational similarity analyses (RSA), as well 

as assess neural activity when these representations were being formed. 

We show that patterns in the PHC and RSC become more similar between scenes following the 

presentation of the video panoramas. This increase in similarity is specific to the ‘overlap’ video 

condition, where the scenes from the same location were presented. No increase in pattern similarity 

was seen for the ‘no-overlap’ condition, where two scenes from different locations were presented. 

Importantly, whereas location-based representations in the PHC emerged regardless of behavioural 

performance, representations in the RSC emerged only in instances where participants could 

(following scanning) identify that the scenes came from the same location. Thus, in support of 

computational models of spatial navigation, the RSC appears to play a critical role in translating 

allocentric representations in the medial temporal lobe into more behaviourally-relevant egocentric 

representations in the parietal cortex. 

Methods 

Participants 

Twenty-eight, right handed participants were recruited from the University of York, UK. These 

participants had no prior familiarity with the locations used as stimuli in the experiment (see below). 

All participants gave written informed consent and were reimbursed for their time. Participants had 

either normal or corrected-to-normal vision and reported no history of neurological or psychiatric 

illness. Data from five participants could not be included in the final sample due to: problems with 

fMRI data acquisition (1 participant), excess of motion related artefacts in the imaging data (3 

participants), and a failure to respond during one of the in-scanner tasks (1 participant). As such, 

analyses included 23 participants (10 males) with a mean age of 21.96 years (SD = 3.22). The study 

was approved by a local research ethics committee at the University of York. 
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Figure 1. Stimuli used, and analyses performed, during the in-scanner tasks. (A) An example location panorama 
with 2 endpoint images. Single endpoints were show during the in-scanner target detection task. As in Robertson 
et al. (2016), full panoramas were never shown as whole images but were presented during the in-scanner 
videos. (B) Depiction of the 2 video conditions: overlap vs no-overlap videos. Overlap videos showed camera 
pans from each endpoint of a given panorama (denoted A1 and A2) to the centre of that panorama. The central 
overlap allowed participants to learn a spatially coherent representation that included both A1 and A2. No-
overlap videos involved pans from endpoints B1 and C2 (taken from different panoramas) meaning that there 
was no visual overlap. (C) Similarity contrast matrices used to model changes in representational similarity 
between endpoints (i.e., between A1, A2, B1, B2, C1, and C2). Red squares indicate positively weighted 
correlations and blue squares indicate negatively weighted correlations (matrices are scaled to sum to 0). From 
left to right, the matrices account for the representational similarity of endpoints: (1) from the same location 
regardless of video condition, (2) that were seen in the same video (including overlap and no-overlap videos), 
(3) in the unseen condition specifically, and (4) in the overlap condition specifically. Linear combinations of these 
matrices, along with their interactions with a session regressor, accounted for each RSA effect across all 
experimental conditions. 

Stimuli 

We generated 12 panoramic images of different urban locations from the City of Sunderland, and 

Middlesbrough town centre, UK (Figure 1; https://osf.io/cgy97; also see Robertson et al., 2016). These 

panoramas spanned a 210° field-of-view horizontally but were restricted in the vertical direction to 

limit the appearance of proximal features (< 2 meters from camera). Throughout the experiment, 24 

‘endpoint images’ displaying 30° scenes taken from either end of each panorama were shown (i.e., 

centred at 0° and 180°; Figure 1A). These images were shown both inside and outside of the scanner 
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to assess participants’ spatial knowledge of the depicted locations and for the representational 

similarity analysis (see below). 

Endpoints were also shown in a number of videos (see https://osf.io/cgy97). In overlap videos, images 

A1 and A2 (taken from opposite ends of the same panorama) were presented such that their spatial 

relationship could be inferred (Figure 1B). Here, a camera panned from each endpoint to the centre 

of the panorama showing that A1 and A2 belonged to the same location. In contrast, a no-overlap 

video featured endpoints from two unrelated panoramas (images B1 and C2). Again, these videos 

showed an end-to-centre camera pan from each image. However, since there was no visual overlap 

between the video segments, observers could only infer that endpoints B1 and C2 belonged to 

different locations. The no-overlap condition acted as a control condition, ensuring endpoints B1 and 

C2 were seen in a similar video to endpoints in the overlap condition (A1 and A2), with the same 

overall exposure and temporal proximity. To ensure that the occurrence of a visual overlap was easily 

detectable, all videos alternated the end-to-centre sweep from each endpoint over two repetitions. 

Pairs of endpoints from the same panorama were grouped into sets of 3. The first pair in each set were 

assigned to the overlap video condition (A1 and A2). Two endpoints from different panoramas were 

assigned to the no-overlap video condition (B1 and C2). The remaining endpoints belonged to an 

unseen video condition as they were not shown during any video (B2 and C1). These assignments were 

counterbalanced across participants such that each image appeared in all 3 conditions an equal 

number of times. The order of camera pans during videos (e.g. A1 first vs A2 first) was also 

counterbalanced both within and across participants. Analyses showed the visual similarity of image 

endpoints was matched across experimental conditions as measured by the Gist descriptor (Oliva & 

Torralba, 2001) and local correlations in luminance and colour information (https://osf.io/un5gr). Pilot 

data revealed that participants could not reliably identify which endpoints belonged to the same 

location without having seen the videos (https://osf.io/ev5ry). 

Procedure 

Prior to entering the scanner, participants performed a behavioural task to assess their ability to infer 

which image endpoints were from the same location. Once in the scanner, they undertook a functional 

localiser task to identify scene-selective regions of the parahippocampal cortex (PHC) and retrosplenial 

cortex (RSC). They were then shown each image endpoint multiple times (performing a low-level 

attentional task) to assess baseline representational similarity between each image endpoint (i.e., 

prior to learning). Overlap and No-overlap videos were then presented, with participants instructed 

to identify whether the endpoints in each video belonged to the same location or not. Following this 

video learning phase, each image endpoint was again presented multiple times to assess post-learning 
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representational similarity between image endpoints. Finally, outside the scanner, participants 

performed the same pre-scanner behavioural task to assess the extent to which participants had 

learnt which image endpoints belonged to the same location (and a further test of associative 

memory, see below).  

 

Pre-/Post-scanner tasks 

Participants were tested on their ability to identify which endpoints belonged to the same location 

both before and after scanning (both outside of the scanner). On each trial, one endpoint surrounded 

by a red box was presented for 3 seconds. Following this, 5 other endpoints were displayed in a 

random sequence, each shown alongside a number denoting the order of appearance (i.e., 1-5; Figure 

2A; 2 seconds per image, 500 ms inter-stimulus interval). One image in the sequence (the target) was 

taken from the same panorama as the cue. The remaining 4 endpoints (lures) belonged to panoramas 

in the same set of stimuli. As such, if endpoint B1 was presented as the cue, B2 would be the target, 

and A1, A2, C1, and C2 would be lures (i.e., a 5-alternative forced choice, 5-AFC). After the 5 

alternatives had been shown, participants were prompted to select the target using a numeric key 

press (1-5). Across 24 trails, each endpoint was used as a cue image. 

 
 
Figure 2. Behavioural task and results (A) A schematic illustration of the pre- and post-video behavioural task. 
One endpoint was first presented as a cue (enclosed by red-box), followed by 5 numbered alternatives. 
Participants were then prompted to select which one of the alternatives belonged to the same location as the 
cue. (B) Performance on the pre- and post-video behavioural tasks plotted by video condition. Error bars 
represent 95% confidence intervals and the dashed line at p = .2 reflects chance level. 

Following scanning, and the second block of the location identity task describe above, participants 

were also asked to identify which images appeared together in the same video. Note: this is slightly 

different to the previous task since participants could have known that endpoints B1 and C2 appeared 

in the same video, despite not knowing which endpoints were from the same location (i.e., B2 and C1 
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respectively). Using a similar procedure to that described above, endpoints from either the overlap or 

no-overlap video conditions were cued and participants were asked to select the appropriate endpoint 

from the 5 alternatives in the same set. 

In-scanner tasks 

Functional localiser 

Before the main experimental task, participants undertook a functional localiser scan with the purpose 

of identifying four scene selective regions of interest (ROIs) - in particular, the left and right 

parahippocampal cortex (PHC), and the left and right retrosplenial cortex (RSC). This involved 

presenting 4 blocks of scene images (coasts, mountains, streets, and woodlands) interleaved with 4 

blocks of face images (male and female). In each block, 10 unique images were shown in quick 

succession with a display time of 700 ms per image and an inter-stimulus interval of 200 ms. Blocks 

were separated with a 9 second inter-block interval and their running order was counterbalanced 

across participants. The scene images used here were different to those in the main experiment and 

none were repeated during the localiser itself. All images were shown in greyscale and were presented 

with a visual angle of ~14°. To ensure localiser images were being attended to, participants were 

tasked with detecting an odd-ball target that was superimposed onto one of the images in each block. 

The target was a small red dot with a 3-pixel radius. When this was seen, participants were required 

to respond with a simple button press as quickly as possible (mean detection performance: d’ = 3.116, 

SD = 0.907). 

Presentation of endpoint images 

Participants were shown all 24 endpoint images during an event-related functional imaging task. The 

task was optimised to measures multivariate patterns of BOLD activity specific to individual endpoints 

and was run both before and after participants had seen the panoramic videos (session 1: pre-videos; 

session 2: post-videos). All endpoints were presented 9 times for both the pre- and post-video 

functional run.  Images were displayed for 2.5 seconds with an inter-stimulus interval of 2 seconds. 

The order of stimuli in each functional run was optimised to facilitate the decoding of unique BOLD 

patterns across endpoints. No image was presented on successive trails to avoid large adaptation 

effects and the design included 12 null events in each functional run (i.e., 10% of all events). Like the 

functional localiser, participants were tasked with detecting an odd-ball target that was superimposed 

onto a small proportion of the images. Here, the target was a group of 3 small red dots (3-pixel radius, 

< 0.2°), with each dot drawn at a random position on the image. Targets were present on 1 out of 

every 9 trials such that 8 repetitions of each endpoint image were target free (target trails were not 

used to estimate BOLD patterns). As above, participants were required to respond to these targets 
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with a simple button press (mean detection performance, d’, was 3.362, SD = 0.642, pre-videos, and 

3.659, SD = 0.485, post-videos). 

Panoramic video task 

Participants watched all video clips from the overlap and no-overlap video conditions whilst being 

scanned. Each video lasted a total of 20 seconds and was followed by a 10 second rest period. In the 

first 3 seconds of this rest period, participants were prompted to indicate whether each video segment 

depicted scenes from the same or different locations. Responses were recorded with a left/right 

button press. This question was asked to ensure that participants were attending to the visual overlap 

across segments (mean discrimination performance: d’ = 3.220, SD = 0.373). All videos were repeated 

3 times in a pseudorandom order to allow for sufficient learning. Prior to entering the scanner, 

participants were asked to remember which endpoints were seen together in the same video, even if 

they appeared in a no-overlap video. Participants were told that a test following the scan would assess 

their knowledge of this. 

MRI acquisition 

All functional and structural volumes were acquired on a 3 Tesla Siemens MAGNETOM Prisma scanner 

equipped with a 64-channel phased array head coil. T2∗-weighted scans were acquired with echo-

planar imaging (EPI), 35 axial slices (approximately 0° to AC-PC line; interleaved) and the following 

parameters; repetition time = 2000 ms, echo time = 30 ms, flip angle = 80°, slice thickness = 3 mm, in-

plane resolution = 3 × 3 mm. The number of volumes acquired during (a) the functional localiser, (b) 

the video task, and (c) each run of the endpoint presentation task was 75, 363, and 274 respectively. 

To allow for T1 equilibrium, the first 3 EPI volumes were acquired prior to the task starting and then 

discarded. Subsequently, a field map was captured to allow the correction of geometric distortions 

caused by field inhomogeneity (see the MRI pre-processing section below). Finally, for purposes of co-

registration and image normalization, a whole-brain T1-weighted structural scan was acquired with a 

1mm3 resolution using a magnetization-prepared rapid gradient echo pulse sequence. 

MRI pre-processing 

Image pre-processing was performed in SPM12 (www.fil.ion.ucl.ac.uk/spm). This involved spatially 

realigning all EPI volumes to the first image in the time series. At the same time, images were corrected 

for field inhomogeneity based geometric distortions (as well as the interaction between motion and 

such distortions) using the Realign and Unwarp algorithms in SPM (Andersson, Hutton, Ashburner, 

Turner, & Friston, 2001; Hutton et al., 2002). For the RSA, multivariate BOLD patterns of interest were 

taken as t-statistics from a first-level general linear model (GLM) of unsmoothed EPI data in native 
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space. Aside from regressors of interest, each first-level GLM included a set of nuisance regressors: 6 

affine motion parameters, their first-order derivatives, and regressors censoring periods of excessive 

motion (rotations > 1°, and translations > 1mm). For the analyses of univariate BOLD activations, EPI 

data were warped to MNI space with transformation parameters derived from structural scans (using 

the DARTEL toolbox; Ashburner, 2007). Subsequently, the EPI data were spatially smoothed with an 

isotropic 8 mm FWHM Gaussian kernel prior to GLM analysis. 

We also generated four binary masks per participant to represent each ROI in native space. To do this, 

a first-level GLM of the functional localiser data modelled BOLD responses to scene and face stimuli 

presented during the localiser task. Each ROI was then defined as the conjunction between a 

“scene > face” contrast and an anatomical mask of each region that had been warped to native space 

(left/right PHC sourced from: Tzourio-Mazoyer et al., 2002; left/right RSC sourced from: Julian, 

Fedorenko, Webster, & Kanwisher, 2012). Note, given previous research implicating the occipital place 

area (OPA) as a critical scene-selective region (e.g., Marchette et al., 2015; Robertson et al., 2016), we 

also attempted to identify this functional region in each participant. However, we were only able to 

identify the OPA bilaterally in 6 (out of 23) participants, nor did we see the OPA in a group-level 

analysis. As such, this region was not included as a region of interest in subsequent analyses.  

Representational similarity analyses 

Visual representations of specific endpoints 

We first examined whether the passive viewing of endpoint images evoked stimulus specific visual 

representations in each of our four ROIs (left and right PHC and RSC). Multivariate BOLD responses to 

the endpoints were estimated for session 1 (pre-videos) and session 2 (post-videos) separately. We 

then computed the similarity of these responses across sessions by correlating BOLD patterns in 

session 1 with patterns in session 2. The resulting correlation coefficients were Fisher-transformed 

and entered as a dependent variable into a mixed-effects regression model with random effects for 

subjects and endpoints. The main predictor of interest was a fixed effect that contrasted correlations 

between like endpoints (A1-A1, B1-B1) with correlations between different endpoints (i.e., A1-A2, A1-

B1 etc.). 

As well as running this analysis in each ROI, we performed a complementary searchlight analysis to 

detect endpoint-specific representations in other brain regions. Here, BOLD pattern similarity was 

computed at each point in the brain using spherical searchlights with a 3-voxel radius (the mean 

number of voxels per searchlight was 105.56). Fisher-transformed correlations for same- verses 

different-endpoints were contrasted at the first-level before running a group-level random effects 

analysis. 
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Location-based memory representations 

We next tested our principle hypothesis in each ROI: whether representations of endpoints A1 and A2 

became more similar to one another as a result of watching the overlap videos. Here, we generated a 

mixed-effects regression model to compare Fisher-transformed similarity estimates between 

endpoints of the same set (see Figure 1C). One fixed-effect predictor accounted for similarity changes 

from session 1 to session 2. A second accounted for similarity differences between the overlap 

endpoints (i.e., A1-A2) and all other endpoint correlations (‘Overlap’ matrix in figure 1C). As such, the 

interaction between these two predictors (Session*Overlap) coded the RSA effect of interest. 

The model also included predictors to account for changes in similarity between: (i) endpoints from 

the same location (A1-A2, B1-B2, C1-C2), (ii) endpoints shown in the same video (A1-A2, B1-C2), and 

(iii) endpoints that were not shown in any video (C1-B2). Together, these predictors ensured that 

variance loading onto the Session*Overlap effect was properly attributable to the learning of spatially 

coherent representations rather than some combination of other factors (e.g. same location + seen in 

same video). Predictors relating to session and each video condition (overlap, no-overlap, unseen) 

constituted a 2x3 factorial structure and so were therefore tested with a Session*Condition F-test. The 

model also included a behavioural covariate specifying whether participants were able to match 

endpoints A1 to A2 in the post-scanner task (mean centred with 3-levels: 0, 1 or 2 correct responses 

per pair). This examined whether changes in representational similarity were dependent on 

participants ability to identify that endpoints from the overlap condition belonged to the same 

location after scanning (i.e., a 3-way interaction; Session*Overlap*Behaviour). Finally, random effects 

in the model accounted for statistical dependencies across endpoints, sessions, and subjects. 

Finally, we also ran a complementary searchlight analysis that tested for RSA effects outside of our a 

priori ROIs (searchlight radius: 3-voxel). Here, a first-level analysis contrasted Fisher-transformed 

correlations for overlap endpoints vs all other endpoint combinations. A group-level random effects 

analysis then compared these similarity contrasts between sessions to test the Session*Overlap 

interaction. 

Statistical inference 

All p-vales are reported as two-tailed statistics. Corrections for multiple comparisons across our four 

regions of interest are made for each a priori hypothesis. Additionally, we report whole-brain effects 

from searchlight and mass univariate analyses when they survive family-wise error corrected 

thresholds (p < .05 FWE) at the cluster level (cluster defining threshold: p < .001 uncorrected). When 

key significance tests failed to reject the null hypothesis, we performed a complementary Bayesian 

analysis to examine whether the null was statistically preferred over the alternative hypothesis. In 
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each case, a Bayes factor in favour of the null hypothesis (BF01) was computed with a Cauchy prior 

centred at zero (i.e., no effect) and a scale parameter, r, of √2/2. Bayes factors greater than 3 are 

taken as evidence in favour of the null hypothesis (Kass & Raftery, 1995). 

Results 

Behavioural performance 

We first analysed behavioural responses to the pre- and post-scanner tasks to determine (a) whether 

participants were able to identify which endpoints belonged to the same location, and (b) whether 

performance increased as a result of watching the overlap videos. A generalised linear mixed-effects 

analysis modelled correct vs incorrect matches between cue and target endpoints as a function of 

session (pre- vs post- videos) and experimental condition (overlap, no-overlap, and unseen). As such, 

the model constituted a 2 x 3 factorial design with random intercepts and slopes for both participants 

and stimuli. 

The results, displayed in Figure 2B, revealed significant main effects of session (F1, 1098 = 47.302, 

p < .001), and condition (F2, 1098 = 6.500, p = .002), as well an interaction between them 

(F2, 1098 = 11.231, p < .001). The interaction indicated that performance was at chance level across all 

conditions before the videos (min p = 0.249, BF01 = 2.531), but substantially increased in the overlap 

video condition having seen the videos (t1098 = 6.867, p < .001; post-video > pre-video). This increase 

was not seen in the no-overlap condition (t1098 = 1.761, p = .079), however a significant increase was 

seen in the unseen condition (t1098 = 3.159, p = .002). The performance increases in the control 

conditions (only significant in the unseen condition) were likely the result of participants being able to 

exclude overlap endpoints as non-target alternatives in the 5-AFC test (i.e., a recall-to-reject strategy, 

disregarding A1 and A2 when cued with either B1, B2, C1 or C2). Consistent with this, session 2 

performance in the no-overlap and unseen conditions was not significantly different from chance level 

in a 3-AFC test (0.33; as opposed to 0.2 in a 5-AFC test; no-overlap: t1098 = -1.494, p = .135, BF01 = 1.729; 

unseen: t1098 = -0.054, p = .957, BF01 = 4.567). Nonetheless, performance in the overlap condition did 

significantly differ from this adjusted chance level (t1098 = 4.514, p < .001). 

Furthermore, participants increased ability to match endpoints in the overlap condition was not 

characteristic of a general tendency to match endpoints that appeared in the same video (i.e., 

selecting B1 when cued with C2). This was evident since matches between no-overlap endpoints were 

not more likely in session 2 compared with session 1 (t366 = 0.646, p = .519, BF01 = 3.785). In contrast, 

performance increases in the overlap condition (i.e., the post-video > pre-video effect reported above) 

were significantly larger than this general effect of matching all endpoints that appeared in the same 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 26, 2019. ; https://doi.org/10.1101/547976doi: bioRxiv preprint 

https://doi.org/10.1101/547976
http://creativecommons.org/licenses/by/4.0/


13 
 

video (t949.20 = 5.027, p < .001; d.f. computed via the Welch–Satterthwaite approximation). 

Additionally, participants were unable to explicitly match no-overlap endpoints shown in the same 

video during the final behavioural task (comparison to 0.2 chance level: t334 = -0.467, p = .641, 

BF01 = 4.141). In sum, participants rapidly learnt which scenes were from the same location, however 

this was only seen in the overlap condition (and not in the no overlap, or unseen, conditions). 

Visual representations of specific endpoints 

The mixed-effects model examining representational similarity across sessions revealed that 

correlations between like endpoints were greater than correlations between different endpoints in 

the left PHC (t13246 = 3.277, p = .004), and the right RSC (t13246 = 2.566, p = .041). This effect was not 

significant in the right PHC (t13246 = 1.474, p = .562, BF01 = 1.773), or the left RSC (t13246 = 1.815, p = .278, 

BF01 = 1.122). The searchlight analysis that tested this effect across the whole brain revealed 

representations in one large cluster that peaked in the right occipital lobe (area V1; t22 = 11.50, 

p < .001, k = 5202) and extended into the areas V2, V3, V4, and the fusiform gyri bilaterally. Three 

smaller clusters were also detected in the right Precuneus (t22 = 4.64, p = .011, k = 44), right inferior 

parietal lobule (t22 = 4.40, p = .028, k = 37), and right RSC (t22 = 4.32, p = .025, k = 38). Unthresholded 

statistical maps of these effects are available at https://neurovault.org/collections/4819.  

Location-based memory representations 

The mixed-effects model examining representational similarity between different endpoints revealed 

a significant Session*Condition interaction in the right PHC (F2, 2746 = 6.402, p = .007, p-value corrected 

for multiple comparisons; Figure 3A). Post-hoc tests showed that this effect was driven by increased 

BOLD pattern similarity across sessions for endpoints in the overlap condition (t2746 = 2.854, p = .004), 

but not for any other condition (no-overlap: t2746 = 0.678, p = .498, BF01 = 3.714; unseen: t2746 = -0.584, 

p = .559, BF01 = 3.917). The Session*Condition interaction was not significant in any other ROI, 

including the right RSC (F’s2, 2746 < 2.014, p’s > .133, uncorrected). However, we saw a significant 

Session*Overlap*Behaviour interaction in the right RSC (t2746 = 2.530, p = .046, p-value corrected for 

multiple comparisons; Figure 3D). This suggests that the RSC encoded viewpoint-independent 

representations only when the spatial relationships between viewpoints could be retrieved later. No 

other ROIs showed a significant Session*Condition*Behaviour interaction (t’s < 0.867, p’s > .385, 

BF01’s > 3.263). 
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Figure 3. Results of the representational similarity analyses in the right parahippocampal cortex (PHC, top row) 
and right retrosplenial cortex (RSC, bottom row). A: PHC similarity estimates of scenes in the pre- and post-video 
sessions, plotted by experimental condition. There was a significant pre- to post increase in similarity estimates 
in the overlap condition (t2746 = 2.854, p = .004) that was not present in the no overlap and unseen conditions 
(t2746 = 0.678, p = .498, and t2746 = -0.584, p = .559 respectively). B: In the PHC, pre-video to post-video changes 
in representational similarity for the overlap condition plotted against the number of correct matches between 
overlap endpoints in the post-video behavioural task. This association was not significant (t2746 = 0.876, p = .386). 
C & D: Same as panels A and B but for the RSC region of interest. The RSC showed no overall similarity increases 
in any of the experimental conditions (t2746 = 0.539, t2746 = 1.086, and t2746 = -0.776 for the overlap, no overlap 
and unseen conditions respectively, all p’s > .277). Nonetheless, there was a significant association between 
behavioural performance and similarity increases in the overlap condition (t2746 = 2.530, p = .011). All bars plot 
baseline corrected similarity estimates having subtracted out correlations between non-associated endpoints 
that were only accounted for by the intercept term in the mixed-effects model (e.g. A1-B1, A1-B2, etc.). Error 
bars indicate 95% confidence intervals. 

The searchlight analysis that tested for a Session*Overlap interaction across the whole brain revealed 

one small cluster in the right inferior occipital gyrus (area V4; t21 = 4.78, pFWE = .010, k = 38). However, 

when BOLD similarity in the cluster was modelled with the full mixed-effects analysis described above, 

the Session*Overlap effect was found to not be significant (t2746 = 1.532, p = .126, uncorrected, 

BF01 = 1.649). Model parameter estimates suggested that the searchlight effect was likely driven by 

below baseline BOLD similarity in the overlap condition prior to scanning, 95% CI: [-0.127, -0.0105]. 
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Differentiating the PHC and RSC 

We next assessed whether there was evidence for dissociable roles of the right PHC and RSC, given 

that both represented location-based information but were differently associated with behavioural 

performance. Specifically, we assessed whether the presence of location-based representations was 

significantly more associated with subsequent behaviour in the RSC than the PHC. This would imply 

that the RSC plays a greater role in guiding subsequent behaviour than the PHC. We therefore tested 

whether the Session*Overlap*Behaviour (3-way) effect was larger in the RSC than the PHC. A 

comparison of the effect size did show evidence for such a dissociation (t2746 = 3.535, p < .001).  

This implies that the right PHC exhibited increased pattern similarity between A1 and A2 endpoints 

even when those endpoints were not subsequently remembered as belonging to the same location. 

We directly tested this by re-running the RSA having excluded A1/A2 pairs that were consistently 

remembered as belonging to the same location (i.e., having 2 correct responses during the post-

scanner test). Despite these exclusions, the Session*Overlap interaction remained significant in the 

right PHC (t1190 = 2.504, p = .012). In contrast, the RSC only showed increased pattern similarity when 

the endpoints were consistently remembered as belonging to the same location. Re-running the RSA 

on these remembered pairs alone yielded a Session*Overlap effect that was not statistically significant 

in the RSC, but was in the expected direction (t1550 = 1.748, p = .081, BF01 = 1.234). This lack of 

sensitivity is likely attributable to two outlying data-points that had standardised residuals of -3.191 

and -2.705, values that were considerably larger than all other residuals in the model (see figure 3D). 

Excluding these outliers yielded a significant Session*Overlap effect (t1548 = 2.183, p = .029).  

In sum, we saw an increase in pattern similarity in the PHC and RSC for scenes from different 

viewpoints when shown in the same overlap video. This increased pattern similarity was only seen in 

the overlap condition, where scene endpoints were from the same spatial location. Importantly, we 

saw a dissociation between PHC and RSC. Whereas the PHC showed increased pattern similarity 

regardless of subsequent behaviour, the RSC only showed increased pattern similarity when 

participants were subsequently able to identify those scenes as belonging to the same location 

(outside of the scanner). 

Univariate responses to endpoints 

We investigated whether each of our ROIs produced univariate BOLD activations consistent with a 

Session*Condition interaction, or a 3-way interaction with behaviour. No such effects were found; all 

F’s < 1.253, p’s > .265. Furthermore, a mass univariate analysis testing for these effects at the whole 

brain level yielded no significant activations. 
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Univariate responses to videos 

In a final analysis, we investigated whether univariate BOLD responses to the video clips differed 

between the overlap and no-overlap conditions. Here, first-level subtractions (overlap > no-overlap) 

were performed for each participant and the resulting contrast estimates were entered into a group-

level random effects analysis. This revealed two clusters showing a significantly greater BOLD response 

to overlap videos (Figure 4, hot colours). The largest of these peaked in the medial prefrontal cortex 

and extended into the anterior cingulate, left frontal pole, and left middle frontal gyrus (t22 = 5.66, 

pFWE < .001, k = 674). The second cluster peaked in the left supramarginal gyrus (t22 = 4.84, pFWE = .008, 

k = 154), adjacent to a smaller, sub-threshold effect in the left angular gyrus. 

 

Figure 4. Univariate BOLD effects showing differences in activity between the two video conditions (thresholded 
at t22 > 3, p < .003 uncorrected). Hot colours indicate areas showing a greater response to overlap vs no-overlap 
videos. Cool colours indicate areas showing a greater response to no-overlap vs overlap videos. An 
unthresholded statistical map of this contrast is available at https://neurovault.org/collections/4819. 

No effects for the reverse contrast (i.e., no-overlap > overlap) reached statistical significance at the 

whole-brain level. However, a small volume correction for the parahippocampal and retrosplenial 

cortices bilaterally revealed two significant clusters (Figure 4, cool colours). These were found in the 

right retrosplenial cortex (t22 = -4.95, pFWE = .024, k = 32) and right parahippocampal cortex (t22 = -4.87, 

pFWE = .022, k = 34, extending into the fusiform gyrus). Subthreshold effects in the left retrosplenial 

and parahippocampal cortices were also evident. These effects were also evident in an analysis that 

contrasted overlap and no-overlap BOLD estimates averaged across each ROI in native space. Here, 

both the right PHC and right RSC showed greater mean BOLD activity in the no-overlap video condition 

relative to the overlap condition (t42 = 3.638, p = .003 and t42 = 3.499, p = .004, respectively; corrected 

for multiple comparisons). Effects in the left PHC and left RSC were below threshold and considerably 

weaker (t42 = 1.828, p = .299 and t42 = 2.212, p = .130, respectively). 
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In sum, we saw greater activity in the medial prefrontal cortex during the overlap relative to no overlap 

videos. In contrast, the PHC and RSC, showed greater activity during the no-overlap relative to overlap 

videos. In other words, the medial posterior regions that showed increased pattern similarity following 

presentation of the overlap video showed decreased activity when participants were watching the 

videos. 

Discussion 

We show that scene-selective brain regions rapidly learn spatial representations of novel 

environments by integrating information across different viewpoints. Once participants observed the 

spatial relationship between different viewpoints from a given location, the right PHC and RSC 

maintained location-based, viewpoint-independent, representations. Whereas these location-based 

representations in PHC appeared regardless of whether participants could identify which scenes were 

from the same location, representations in RSC only emerged for scene pairs that participants could 

subsequently identify as being from the same location.  

The results provide further evidence that PHC and RSC support spatial representations that are not 

solely driven by visual features in a scene (Marchette et al., 2015; Robertson et al., 2016; Vass & 

Epstein, 2013; c.f. Watson, Hartley, & Andrews, 2017). In particular, the RSC effect replicates that of 

Robertson et al. (2016) using a similar panoramic video manipulation, although we only see the effect 

when subsequent behaviour is taken into account. Further, they demonstrate: (1) that location-based 

representations can emerge rapidly (in a single scanning session) and (2) that PHC and RSC are 

dissociable in terms of their behavioural relevance. Although we were specifically interested in the 

emergence of viewpoint-independent spatial representations, a similar approach could be used to 

track the emergence of viewpoint-independent representations of other stimulus categories (e.g., 

objects or faces), opening the door to understanding how such representations are formed across the 

visual system.  

These results demonstrate that we can track, using fMRI, the emergence of location-based 

representations in a single scanning session. The firing fields of place cells have been shown to emerge 

rapidly in the rodent hippocampus (Monaco, Rao, Roth, & Knierim, 2014). When placed on a circular 

track, individual locations where rats engaged in head-scanning behaviour (i.e., attentive, exploratory 

behaviour) on one run were associated with consistent place fields on the next run through the same 

location. Our results are consistent with this rapid emergence, providing evidence for location-based 

representations after only three learning exposures to the videos.  
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We also found that right RSC only exhibited location-based representations when participants were 

able to identify which scenes belonged to that location in a post-scanner test (PHC representations 

emerged regardless of subsequent behaviour). This implies that the ability to identify differing scenes 

as from the same location is more dependent on representations in RSC than PHC. Computational 

models hold that a network of medial posterior and temporal regions (including the PHC and RSC) 

perform complementary functions in support of spatial navigation and imagery (Bicanski & Burgess, 

2018; Byrne et al., 2007). Specifically, PHC is thought to represent allocentric information related to 

the spatial geometry of the environment. Conversely, the posterior parietal cortex supports egocentric 

representations that allows the organism to actively navigate. The RSC transforms allocentric 

representations in the MTL into egocentric representations in the parietal cortex (and vice versa). 

Critically, the models predict that spatial navigation and planning is carried out in an egocentric 

reference frame. Thus, the RSC is critical to the translation of allocentric, to more behaviourally-

relevant egocentric information.   

Our behavioural task required participants to match distinct scenes from the same location. This task 

likely requires a transformation from the presented egocentric viewpoint, to an allocentric 

representation (ego-to-allocentric). Subsequently, the allocentric representation allows for the 

retrieval of the associated viewpoint from the same location (allo-to-egocentric). Consequently, RSC 

is likely to be more tightly coupled to behaviour relative to the PHC, as shown in the present data. This 

is because the RSC is required for both the ego-to-allocentric, and allo-to-egocentric, mappings 

necessary for the task. If only the allo-to-egocentric mapping is disrupted, the PHC can still show 

viewpoint-independence (because the ego-to-allocentric transformation can still occur). However, if 

the ego-to-allocentric mapping is disrupted, both the PHC and RSC will fail to show viewpoint-

independence. Thus, failure to encode either direction of mapping between these reference frames 

will disrupt RSC representations (and behaviour), whereas the PHC can still demonstrate viewpoint-

independence under some circumstances (even when there is no behavioural evidence for allocentric 

learning). 

A related possibility is that participants engaged in active imagery of the associated scenes during the 

passive viewing task for specific locations, leading to subsequent improvements in behaviour for these 

locations. Note, that the task did not explicitly require memory retrieval; participants had to attend to 

the images and respond to odd-ball targets. As such, the activation of these representations do not 

appear to depend on any task-specific memory demands per se. It is possible that the retrieval of PHC 

representations (i.e., ego-to-allocentric mapping) occurs relatively automatically, consistent with the 

proposal that allocentric representations in the MTL are automatically updated during self-motion in 
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an environment (Bicanski & Burgess, 2018; Byrne et al., 2007). However, the retrieval of associated 

egocentric representations (i.e., allo-to-egocentric mapping) may not occur automatically during 

passive viewing of scenes, consistent with the observation that viewpoint-independent 

representations in the RSC are abolished when participants engage in a task that prevents them from 

active retrieval of spatial information (Marchette et al., 2015). Importantly, both of the above 

accounts are consistent with the proposal that the RSC plays a critical role in mapping between 

allocentric and egocentric spatial representations.  

Although we have provided evidence for location-based representations in both the PHC and RSC, it 

is not clear precisely what form such representations take. The PHC has been proposed to represent 

several complementary spatial representations, including geometric information regarding one’s 

location in relation to bearings and distances to environmental features (e.g., boundaries; Park, Brady, 

Greene, & Oliva, 2011). The representations that we observed in PHC may reflect enriched spatial 

representations relating specific scenes to environmental features outside the current field-of-view. 

Also consistent with our results, PHC may represent spatial contexts more broadly (Epstein & Vass, 

2014). The experimental manipulation used here could be modified to learn novel locations in the 

same spatial context, potentially dissociating between the above accounts. A further proposal is that 

viewpoint-independent representations in the PHC reflect prominent landmarks that are visible across 

viewpoints (Marchette et al., 2015). While this proposal yields similar predictions to the above 

accounts, it is perhaps less able to account for our finding of shared representations of views that did 

not contain any of the same landmarks. 

RSC representations may reflect the retrieval of spatial or conceptual information associated with the 

environment (Marchette et al., 2015). Further evidence suggests that the RSC contains multiple 

viewpoint dependent and independent (Vass & Epstein, 2013), as well as local and global (Jacob et al., 

2017; Marchette et al., 2014), spatial representations. This multitude of representations fits with the 

proposed role of the RSC as a transformation circuit, mapping between allocentric and egocentric 

representations. The heterogeneity of representations, relative to the PHC, may also be a further 

reason why we did not see clear evidence for location-based representations without taking behaviour 

into account. Regardless of the exact nature of such representations, our results provide clear 

evidence that we can track their emergence in both PHC and RSC.  

We also examined activity during learning of new spatial relationships (i.e., when participants were 

watching the videos). BOLD activations in medial posterior brain regions were greater for no-overlap 

videos (depicting a spatially incoherent panorama) compared to overlap videos (depicting a complete 

panorama). This effect perhaps reflects greater fMRI adaptation during the overlap videos since they 
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presented the central viewpoint of the panorama more frequently than no-overlap videos (Figure 1). 

However, it is interesting that the same cortical regions that showed increased pattern similarity 

following presentation of the overlap video showed decreased activity when participants were 

watching the videos. This underlines the complex relationship between univariate activity during 

learning, and resultant changes in patterns of activity following learning.  

Additionally, we found that mPFC showed greater BOLD response in the overlap than no-overlap 

condition. This may reflect a mnemonic integration process that guides the learning of viewpoint-

independent representations. Similar effects in mPFC have been observed in tasks that require 

integrating overlapping memories to support inference and generalisation (Milivojevic, Vicente-

Grabovetsky, & Doeller, 2015; Schlichting, Mumford, & Preston, 2015). Indeed, mPFC has been 

suggested to operate as a mnemonic resonator, detecting new information that is congruent with 

previously learnt material so that it can be integrated into a generalised representation (van Kesteren, 

Ruiter, Fernández, & Henson, 2012). Our results are broadly in line with this proposal, where mPFC 

may be detecting the presence of overlapping spatial information during the overlap videos, resulting 

in the integration of previously learnt representations into more coherent viewpoint-independent 

representations in posterior medial regions (i.e., PHC and RSC). Despite this, our results do not exclude 

the possibility that mPFC activations reflect dis-inhibition from medial-posterior inputs (which showed 

reduced activity), or attentional differences related to the behavioural task. 

We have shown that brain regions in the scene network, specifically right PHC and RSC, rapidly learn 

representations of novel environments by integrating information across different viewpoints. They 

appear to be relatively viewpoint-independent in that they become active regardless of which part of 

an environment is in the current field-of-view. We show that PHC and RSC have dissociable roles, with 

RSC playing a critical role in translating allocentric representations into a behavioural-relevant 

egocentric reference frame. Finally, our experimental approach allows for tracking the emergence of 

viewpoint-independent representations across the visual system. 
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