
Scalable multiple whole-genome alignment and locally collinear

block construction with SibeliaZ

Ilia Minkin∗1 and Paul Medvedev1, 2, 3

1Department of Computer Science and Engineering, The Pennsylvania State University
2Department of Biochemistry and Molecular Biology, The Pennsylvania State University

3Center for Computational Biology and Bioinformatics, The Pennsylvania State University

Abstract

Multiple whole-genome alignment is a challenging problem in bioinformatics. Despite many
successes, current methods are not able to keep up with the growing number, length, and com-
plexity of assembled genomes, especially when computational resources are limited. Approaches
based on compacted de Bruijn graphs to identify and extend anchors into locally collinear blocks
have potential for scalability, but current methods do not scale to mammalian genomes. We
present an algorithm, SibeliaZ-LCB, for identifying collinear blocks in closely related genomes
based on analysis of the de Bruijn graph. We further incorporate this into a multiple whole-
genome alignment pipeline called SibeliaZ. SibeliaZ shows run-time improvements over other
methods while maintaining accuracy. On sixteen recently-assembled strains of mice, SibeliaZ
runs in under 16 hours on a single machine, while other tools did not run to completion for eight
mice within a week. SibeliaZ makes a significant step towards improving scalability of multiple
whole-genome alignment and collinear block reconstruction algorithms on a single machine.

1 Introduction

Multiple whole-genome alignment is the problem of identifying all the high-quality multiple local
alignments within a collection of assembled genome sequences. It is a fundamental problem in
bioinformatics and forms the starting point for most comparative genomics studies, such as re-
arrangement analysis, phylogeny reconstruction, and the investigation of evolutionary processes.
Unfortunately, the presence of high-copy repeats and the sheer size of the input make multiple
whole-genome alignment extremely difficult. While current approaches have been successfully ap-
plied in many studies, they are not able to keep up with the growing number and size of assembled
genomes (Earl et al., 2014). The multiple whole-genome alignment problem is also closely related
to the synteny reconstruction problem and to the questions of how to best represent pan-genomes.

There are two common strategies to tackle the whole-genome alignment problem (Dewey and
Pachter, 2006). The first one is based on finding pairwise local alignments (Altschul et al., 1990,
1997; Schwartz et al., 2003; Harris, 2007; Kent, 2002) and then extending them into multiple local
alignments (Blanchette et al., 2004; Dubchak et al., 2009; Angiuoli and Salzberg, 2011; Paten et al.,
2011a). While this strategy is known for its high accuracy, a competitive assessment of multiple
whole-genome alignment methods (Alignathon, Earl et al. (2014)) highlighted several limitations.

∗506 Wartik Lab University Park, PA 16802, USA, ivminkin@gmail.com

1

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

First, many algorithms either do not handle repeats by design or scale poorly in their presence,
since the number of pairwise local alignments grows quadratically as a function of a repeat’s copy
number. In addition, many algorithms use a repeat database to mask high-frequency repeats.
However, these databases are usually incomplete and even a small amount of unmasked repeats may
severely degrade alignment performance. Second, the number of pairwise alignments is quadratic
in the number of genomes, and only a few existing approaches could handle more than ten fruit fly
genomes (Earl et al., 2014). Therefore, these approaches are ill-suited for large numbers of long and
complex genomes, such as mammalian genomes in general and the recently assembled 16 strains of
mice (Lilue et al., 2018) in particular.

Alternatively, anchor based strategies can be applied to decompose genomes into locally collinear
blocks (Darling et al., 2004). These are blocks that are free from non-linear rearrangements, such
as inversions or transpositions. Once such blocks are identified, they can independently be globally
aligned (Darling et al., 2004; Dewey, 2007; Paten et al., 2008; Darling et al., 2010; Minkin et al.,
2013a). The problem of constructing blocks from anchors is known as the chaining problem which
had been extensively studied in the past (Myers, 1995; Abouelhoda and Ohlebusch, 2005; Ohlebusch
and Abouelhoda, 2006). All of the methods applicable to datasets consisting of multiple genomes
are heuristic since the exact algorithms depend exponentially on the number of genomes. Such
strategies are generally better at scaling to handle repeats and multiple genomes since they do not
rely on the computationally expensive pairwise alignment.

A promising strategy to find collinear blocks is based on the compacted de Bruijn graph (Raphael
et al., 2004; Pham and Pevzner, 2010; Minkin et al., 2013b) widely used in genome assembly.
Though these approaches do not work well for divergent genomes, they remain fairly accurate for
closely related genomes. For example, Sibelia (Minkin et al., 2013b) can handle repeats and works
for many bacterial genomes; unfortunately, it does not scale to longer genomes. However, the last
three years has seen a breakthrough in the efficiency of de Bruijn graph construction algorithms
(Marcus et al., 2014; Chikhi et al., 2016; Baier et al., 2016; Minkin et al., 2017). The latest
methods can construct the graph for tens of mammalian genomes in minutes rather than weeks.
We therefore believe the de Bruijn graph approach holds the most potential for enabling scalable
multiple whole-genome alignment of closely related genomes.

In this paper, we describe an algorithm SibeliaZ-LCB for identifying collinear blocks in closely
related genomes. SibeliaZ-LCB is suitable for detecting homologous sequences which have evolu-
tionary distance to the most recent common ancestor (MRCA) of at most 0.09 substitutions per
site. SibeliaZ-LCB is based on the analysis of the compacted de Bruijn graph and uses a graph
model of collinear blocks similar to the “most frequent paths” introduced by Cleary et al. (2017).
This allows it to maintain a simple, static, data structure, which scales easily and allows simple
parallelization. Thus, SibeliaZ-LCB overcomes a bottleneck of previous state-of-the-art de Bruijn
graph-based approaches (Pham and Pevzner, 2010; Minkin et al., 2013a), which relied on a dynamic
data structure which was expensive to update. Further, we extend SibeliaZ-LCB into a multiple
whole-genome aligner called SibeliaZ. SibeliaZ works by first constructing the compacted de Bruijn
graph using our previously published TwoPaCo tool (Minkin et al., 2017), then finding locally
collinear blocks using SibeliaZ-LCB, and finally, running a multiple-sequence aligner (spoa, Vaser
et al. (2017)) on each of the found blocks. To demonstrate the scalability and accuracy of our
method, we compute the multiple whole-genome alignment for a collection of recently assembled
strains of mice. We also test how our method works under different conditions, including vari-
ous levels of divergence between genomes and different parameter settings. Our software is freely
available at https://github.com/medvedevgroup/SibeliaZ/.

2

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://github.com/medvedevgroup/SibeliaZ/
https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

2 Results

GC CA AC

CG

CT

GT

TC CC

TT

(a)

(b)

Figure 1: The de Bruijn graph and an example of a collinear block. (a) The graph built from
strings “GCACGTCC” and “GCACTTCC”, with k = 2. The two strings are reflected by the blue
and red walks, respectively. This is an example of a collinear block from two walks. There are four
bubbles. The bubble formed by vertices “AC” and “TC” describes a substitution within the block,
while three other bubbles are formed by parallel edges. The blue and red walks form a chain of
four consecutive bubbles. (b) An example of more complex block, where we have added a third
sequence “CACGTTCC” (green) to the input. We can no longer describe the block as a chain of
bubbles, as they overlap to form tangled structures. Instead, we consider the path in the graph
(dashed black) that shares many vertices with the three collinear walks. This carrying path shares
many vertices with the three extant walks, and each walk forms its own chain with it. The task of
finding good collinear blocks can then be framed as finding carrying paths that form good chains
with the genomic walks.

2.1 Algorithm overview

As described in the introduction, the major algorithmic innovation of this paper is the SibeliaZ-
LCB algorithm. SibeliaZ-LCB takes as input a de Bruijn graph built on a collection of assembled
genomes. An assembled genome is itself a set of contig sequences. SibeliaZ-LCB identifies and
outputs all non-overlapping blocks of homologous subsequences of the input genomes. A block can
be composed of two or more sequences from one or more genomes. In this subsection, we will give a
high level overview of SibeliaZ-LCB, leaving the more formal and detailed version for the Methods.

SibeliaZ-LCB relies heavily on the de Bruijn graph of the genomes. In this graph, the vertices
correspond to the k-mers (substrings of fixed length k) of the input. A k-mer that appears multiple
times in the input is represented using just one node. Then, k-mers that appear consecutively in
some input sequence are connected by an edge from the left one to the right one (see Figure 1a for
an example). This way, each genome corresponds to a path in the graph that hops from k-mer to
k-mer using the edges.

In this graph, two homologous sequences form what is called a chain: an interleaving sequence of
parallel edges, which correspond to identical sequences, and “bubbles”, which correspond to small
variations like single nucleotide variants or indels. However, the concept of a chain is difficult to
extend to more than two homologous sequences because the tangled pattern in the graph is difficult
to precisely define (see Figure 1b for an example).

3

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

(a)

(b)

(c)

(d)

Figure 2: An example of running Algorithm 1 on the graph from Figure 1b, starting from edge
GC → CC as the seed. Each subfigure shows the content of the collinear block P and the carrying
path. The collinear walks are solid, the carrying path is dashed, and the rest of the graph is dotted.
Subfigure (a) shows the state of these variables after the initialization; subfigures (b-d) show the
state after the completion of each phase.

To address this challenge, we introduce the idea that each block has a “carrying path” in the
de Bruijn graph that holds the block together. The basic idea is that the homologous sequences
forming the block have a lot of shared k-mers and their corresponding genomic paths go through
nearly the same vertices. A carrying path is then a path that goes through the most frequently
visited vertices, loosely similar to the notion of a consensus sequence from alignment. Each genomic
path from the block then forms a chain with this carrying path (see Figure 1b for an example).

We do not know the carrying paths in advance but we can use them as a guiding mechanism
to find blocks. We start with an arbitrary edge e in the graph and all other genomic paths that
form bubbles with e. We make e the starting point of a carrying path and use it along with the
other genomic paths to initiate the collection of sequences making up the block corresponding to
this carrying path. To extend the carrying path, we look at the edges extending the genomic paths
in the current block and take the most common one. The data structures maintaining the genomic
paths in the block and the carrying path are then updated and the extension procedure repeats.
Figure 2 shows an example of running this algorithm. We continue this process until the scoring

4

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

function that describes how well a carrying path holds the block together falls below zero. At
that point, we consider the possibility that we may have over-extended the block and should have
instead ended it earlier. To do this, we look at all the intermediate blocks we had created during
the extension process and output the one that has the highest score. Once a block is output, we
output all its constituent edges as used so that they are not chosen as part of a future block.

In this way, SibeliaZ-LCB finds a single block. Afterwards, we try to find another block by
starting from another arbitrary edge. This process continues until all the edges in the graph are
either used or had been tried as potential starters for a carrying path.

2.2 Datasets, tools, and evaluation metrics

Evaluation of multiple whole-genome aligners is a challenging problem in its own right and we
therefore chose to use the practices outlined in the Alignathon (Earl et al., 2014) competition as a
starting point. They present several approaches to assess the quality of a multiple whole-genome
alignment. Ideally it is best to compare an alignment against a manually curated gold standard;
unfortunately, such a gold standard does not exist. We therefore chose to focus our evaluation on
real data.

We evaluated the ability of SibeliaZ to align real genomes by running it on several datasets
consisting of varying number of mice genomes. We retrieved 16 mice genomes available at Gen-
Bank (Benson et al., 2017) and labeled as having a “chromosome” level of assembly. They consist
of the mouse reference genome and 15 different strains assembled as part of a recent study (Lilue
et al., 2018) (Table S1). The genomes vary in size from 2.6 to 2.8 Gbp and the number of scaffolds
(between 2,977 and 7,154, except for the reference, which has 377). We constructed 4 datasets of
increasing size to test the scalability of the pipelines with respect to the number of input genomes.
The datasets contain genomes 1-2, 1-4, 1-8 and 1-16 from Table S1, with the genome 1 being the
reference genome.

To measure accuracy, we used several ground truth alignments (to be described) and employed
the metrics of precision and recall used in the Alignathon and implemented by the mafTools pack-
age (Earl et al., 2014). For these metrics, alignment is viewed as an equivalence relation. We
say that two positions in the input genomes are equivalent if they originate from the same posi-
tion in the genome of their recent common ancestor. We denote by H the set of all equivalent
position pairs, participating in the “true” alignment. Let A denote the relation produced by an
alignment algorithm. The accuracy of the alignment is then given by recall(A) = 1− |H \ A|/|H|
and precision(A) = 1− |A \H|/|A|, where \ denotes set difference.

To evaluate recall, we compared our results against annotations of protein-coding genes. We
retrieved all pairs of homologous protein-coding gene sequences from Ensembl and then computed
pairwise global alignments between them using LAGAN (Brudno et al., 2003). The alignment con-
tains both orthologous and paralogous genes, though most of the paralogous pairs come from the
well-annotated mouse reference genome. We removed any pairs of paralogous genes with overlap-
ping coordinates, as these were likely mis-annotations, as confirmed by Ensembl helpdesk (Perry,
2018). We made these filtered alignments as well as the alignments produced by SibeliaZ available
for public download from our GitHub repository (see Section 4.4 for the links).

We define the nucleotide identity of an alignment as the number of matched nucleotides divided
by the length of an alignment, including gaps. The distribution of nucleotide identities as well as
the coverage of the annotation is shown in Figure S1. In our analysis, we binned pairs of genes
according to their nucleotide identity.

Since protein-coding genes only compromise a small portion of the genome, we also computed
all-against-all pairwise local alignments between chromosomes 1 of genomes 1-2 and 1-4 using

5

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

LASTZ (Harris, 2007), a reliable local aligner known for its accuracy. We only computed alignments
between chromosomes of different genomes, i.e. did not include self-alignments, which excludes
duplications such as paralogous genes from the alignment. We used default settings of LASTZ
except that we made it output alignments of nucleotide identity at least 90%. We then evaluated the
recall and precision of our alignments but restricted our alignments to the sequences of chromosome
1. We then treated the LASTZ alignments as the ground truth. The LASTZ alignments are
available for download from our repository’s supplemental data section. Note that because the
alignment is represented as a set of positions pairs, it is possible to evaluate a multiple whole-
genome alignment using pairwise local alignments.

To measure precision, we use the LASTZ alignments on chromosome 1. However, it is computa-
tionally prohibitive to compute such alignments with LASTZ for the whole genome. We therefore
also use an indirect way to assess precision for the whole genome. For each column in the align-
ment we calculate the average number of nucleotide differences (Tajima, 1989). In an alignment
of highly similar genomes that has high precision, we expect these numbers to be low (close to
0) for most of the columns in the alignment. Otherwise, it would suggest presence of unreliable
poorly aligned blocks in the alignment. Formally, given a column c of a multiple whole-genome
alignment with ci being its i-th element, average number of nucleotide differences is given by
π(c) =

∑
1≤i≤|c|

∑
i<j≤|c| I[ci 6= cj]/

(|c|
2

)
. The variable I[ci 6= cj] is equal to 1 if both ci and cj are

different valid DNA characters and 0 otherwise; |c| is the number of rows in the column c.
We benchmarked the performance of SibeliaZ against Progressive Cactus (Armstrong et al.,

2019), an aligner based on analysis of the Cactus graphs Paten et al. (2011b) built from pairwise
alignments. We also attempted to run Sibelia (Minkin et al., 2013b) (a predecessor of SibeliaZ) and
MultiZ+TBA (Blanchette et al., 2004), but these could run to completion within a week on even a
single mouse genome. Other multiple aligners (Dubchak et al., 2009; Darling et al., 2010; Angiuoli
and Salzberg, 2011) benchmarked in the Alignathon could not handle a dataset of 20 flies and
hence are unlikely to scale to a mammalian dataset. We also chose to not run Mercator (Dewey,
2007) since it requires a set of gene exons as input and hence solves a different problem: in this
paper we focus on computing the whole-genome alignment directly from the nucleotide sequences
without using external information. Further details about parameters, versions, and hardware are
in Supplementary Note 2.

2.3 Running time and memory

The running times of SibeliaZ and Cactus are shown on Figure 3 (Table S2 contains the raw values).
On the dataset consisting of 2 mice, SibeliaZ is more than 10 times faster than Cactus, while on 4
mice SibeliaZ is more than 20 times faster. On the datasets with 8 and 16 mice, SibeliaZ completed
in under 7 and 16 hours, respectively, while Cactus did not finish (we terminated it after a week).
For SibeliaZ, we note that the global alignment with spoa takes 44-73% of the running time, and,
for some applications (e.g. rearrangement analysis), this step may be further omitted to save time.
Memory is shown in Table S2. When it is able to complete, Cactus has better memory performance
than SibeliaZ; however, both tools require memory that is well within the range of most modern
servers but outside the range of personal computers.

6

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

1-2 1-4 1-8 1-16
100

101

102

103

104

Dataset

R
u
n
n
in
g
ti
m
e
in

m
in
u
te
s
(l
og

sc
al
e)

SibeliaZ
Cactus

1-2 1-4 1-8 1-16
100

101

102

103

104

Dataset

R
u
n
n
in
g
ti
m
e
in

m
in
u
te
s
(l
og

sc
al
e)

Figure 3: Running times of the different pipelines on the mice datasets (on a log scale). Each bar
corresponds to a pipeline. The bar of SibeliaZ is split according to its components: spoa (hatch
fill), TwoPaCo (solid fill), and SibeliaZ-LCB (empty fill). Cactus is not shown on datasets 1-8 and
1-16 because it did not complete. We used 32 threads for each experiment.

2.4 Accuracy

In Tables 1 and 2, we show the properties of the alignments found by SibeliaZ and Cactus. To
compute recall, we only used nucleotides from gene pairs having at least 90% identity in the
annotation. For the datasets where Cactus was able to complete, SibeliaZ had and similar recall
on orthologous pairs. We did not evaluate the results on paralogs by Cactus since it heuristically
filters out paralogous alignments (Armstrong et al., 2019) as a part of its pipeline. SibeliaZ’s recall
decreases only slightly going up to the whole 16 mice dataset, indicating that the recall scales with
the number of genomes.

We also measured coverage, which is the percent of the genome sequence that is included in
the alignment. The coverage of both tools is roughly the same, but SibeliaZ has only about half
the blocks. The different amounts of blocks produced by the tools are likely to be a result of the
different approaches to the formatting of the output. Representation of multiple whole-genome
alignment is ambiguous and the same alignment can be formatted in different but mathematically
equivalent forms varying by the number blocks.

Dataset N. of blocks, SibeliaZ N. of blocks, Cactus Coverage, SibeliaZ Coverage, Cactus

1-2 2,083,258 4,228,063 0.88 0.85
1-4 2,739,821 6,133,662 0.86 0.84
1-8 3,179,619 - 0.89 -
1-16 4,507,109 - 0.88 -

Table 1: Number of blocks and coverage by the multiple whole-genome alignments computed by
SibeliaZ and Cactus from the mice datasets.

7

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

Dataset Ort. nt. pairs, SibeliaZ Ort. nt. pairs, Cactus Par. nt. pairs, SibeliaZ

1-2 0.99 0.99 0.89
1-4 0.98 0.98 0.89
1-8 0.98 - 0.84
1-16 0.98 - 0.83

Table 2: Recall of the orthologous and paralogous basepairs by the multiple whole-genome align-
ments computed by SibeliaZ and Cactus from the mice datasets, using Ensembl gene annotation
as the ground truth. Recall of paralogs by Cactus is not included (see text).

We further investigate how the recall behaved as a function of nucleotide identity, for the two-
and four-mice dataset (Figure 4). As expected, recall decreases with nucleotide identity, though
SibeliaZ’s recall remains above 90% for nucleotides from similar (80-100% identity) orthologous
genes. Cactus has slightly better recall in orthologous genes of lower identity on the two-mice
dataset. We note that the gene annotation was constructed (Lilue et al., 2018) using an alignment
produced by Cactus which was further processed by annotation software CAT (Fiddes et al., 2018).
This fact might give Cactus a slight advantage in this comparison and explain why Cactus has
slightly better recall. Recall on orthologous gene pairs remains consistent in both two- and for-
mice datasets for both datasets.

At the same time, we observed a much less consistent picture for paralogous pairs of genes. For
example, SibeliaZ was able to recover nearly 90% of the paralogous basepairs belonging to gene
pairs of nucleotide identity of 90%, but found less than 45% of the basepairs of gene pairs of 80%
identity.

The results of the precision and recall measured with respect to LASTZ alignments are shown in
Table S3. On the dataset consisting of two genomes, Cactus had slightly higher recall of 0.97 versus
0.95 of SibeliaZ. On the other hand, SibeliaZ had better precision: 0.93 against 0.89 of Cactus.
With the four genomes, SibeliaZ maintained its recall of 0.95 while recall of Cactus dropped to
0.92. On this dataset SibeliaZ also had higher precision: 0.96 and 0.90, respectively. Overall, these
numbers show that the alignment accuracy of SibeliaZ and Cactus is similar.

Finally, since we could not evaluate genome-wide precision, we use the proxy of the average
number of nucleotide differences for the alignment columns (Figure S2). SibeliaZ’s alignment has a
high degree of similarity: more than 95% of the alignment columns have π(c) ≤ 0.1, which is what
we would expect from aligning closely related genomes. Cactus has slightly lower percentage of
highly similar columns, which may simply indicate that it finds more blocks with higher divergence.

We note that the results in this Section evaluate the accuracy of SibeliaZ-LCB and spoa si-
multaneously; however, since SibeliaZ is targeted at closely related genomes, we observed that the
global alignment procedure has a negligible effect on accuracy (data not shown). This is due to
the fact that the global alignment of similar sequences is likely to be unambiguous at homologous
nucleotides and robust with respect to different algorithms and their parameters.

2.5 Results on simulated data

8

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

Program Recall Precision

SibeliaZ 0.95 0.92
Cactus 0.98 0.95

Table 3: Recall and precision of the alignments computed by Cactus and SibeliaZ on the “primates”
dataset from the Alignathon.

In addition to the real data, we measured performance of different whole-genome aligners on
a larger simulated dataset with small genomic divergence, called “primates” in (Earl et al., 2014).
In this dataset the distance from the root to the leaves in the phylogenetic tree is equal to 0.02
substitutions per site. The dataset has four genomes, with four chromosomes each, and each genome
is approximately 185 Mbp in size. We did not use the other simulated dataset in (Earl et al., 2014)
since its divergence of around 0.4 substitutions per site is outside of the target range of SibeliaZ.

On this dataset, SibeliaZ pipeline was 20 times faster than Cactus and consumed 2.5 times less
memory: SibeliaZ finished in 18 minutes using 7 GBs of memory, while Cactus took 363 minutes to
finish and used 18 GBs of memory. Sibelia and MultiZ could not finish on the “primates” dataset in
a week. Table 3 demonstrate the recall and precision values for the alignments produced by SibeliaZ
and Cactus on this dataset. SibeliaZ showed recall of 95% and precision of 92%, while Cactus had
98% recall and 95% precision. We note that according to Earl et al. (2014) the precision values
calculated using this dataset can be considered lower bounds due to the features of the simulation
process. Particularly, the ground truth for this dataset is likely to miss some repetitive alignments,
hence we believe that the lower precision values of SibeliaZ may be due to this reason.

2.6 Gene families

We wanted to further understand SibeliaZ’s ability to recall homologous nucleotides from large gene
families. Aligning genes having many copies is a challenging task since they generate a tangled de
Bruijn graph. To investigate, we took each pair of genes in the two-mice dataset that have greater
than 90% nucleotide identity. We then identify any other homologous genes that had a nucleotide
identity of at least 90% to one of the genes in the pair. We refer to the number of such genes as
the inferred family size of the gene pair, which roughly corresponds to the gene family size in the
biological sense. Figure S3 then shows the recall of nucleotide pairs with respect to the inferred
family size of their respective genes. The recall shows a lot of variance with respect to the inferred
family size but does exhibit a general trend of decreasing with increasing family size. The largest
bin (with inferred family size of 58) corresponds to a single large gene family on the Y chromosome
(PTHR19368) and actually has relatively high recall.

This experiment shows that finding all copies of even very similar homologous sequences within
long genomes can be a challenging task. Moreover, the high variance we observe indicates that
this challenge cannot be reduced to a single factor like family size. A manual inspection of false
negatives suggests that the drop in recall may be due to complex substructures of unannotated
repeats forming tangled graph structures.

9

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Annotation nucleotide identity

R
ec
a
ll

Orthologs

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Annotation nucleotide identity

R
ec
a
ll

Paralogs

SibeliaZ 1-2
Cactus 1-2
SibeliaZ 1-4
Cactus 1-4

(b)

Figure 4: Recall of orthologous (a) and paralogous (b) nucleotide pairs, on the 1-2 and 1-4 mouse
datasets. Nucleotide pairs are binned according the nucleotide identity of their respespective genes
in the annotation. Recall of paralogs by Cactus is not shown (see text).

2.7 Effect of parameters and sequence divergence

SibeliaZ-LCB has four primary parameters that affect its performance. The most critical depen-
dence is on the size of a k-mer (i.e. k) and the maximum allowed length of a bubble b. For a given
sequence divergence, the distance between shared k-mers forming bubbles in homologous regions
increases with k. At the same time, the maximum allowed length of a bubble is b. If the distance
exceeds b, then SibeliaZ may fail to uncover such regions and result in lower recall. To avoid this
situation, we can either decrease k or increase b. Decreasing k is desirable up to a point, but when
k becomes too low, the de Bruijn graph becomes convoluted and our algorithm becomes more time
and memory consuming. Increasing b can also be done but simultaneously increases the allowable
gap length, leading to decreased precision.

Over-alignment is the problem of combining non-homologous sequences in a single block, which
is closely related to low precision (Schwartz and Pachter, 2007). In our case, one can control over-
alignment by looking at the π(c) scores, as we have done in our analysis (Figure S2). A higher
score indicates that more divergent sequences are included in a block. If the divergence is deemed
too high by the user, it is recommended to reduce b.

To investigate this complex interplay between k and b and its relationship to sequence diver-
gence, we used simulations (Supplementary Note 3) to measure recall (Figure S4) and precision
(Figure S5) under various combinations. As predicted, recall increases with decreasing k and with
increasing b, and precision decreases with increasing b. We note though that the precision varies
only a little and remains high. Based on these analyses, we recommend two values of k for prac-
tical usage. For less complex organisms (e.g. bacteria), we recommend k = 15, since it yields the
highest recall. This value is impractical for complex organisms (e.g. mammals) due to runtime, so
we recommend setting k = 25 in those cases as it provides a reasonable trade-off between accuracy
and required computational resources (we used this for our mice datasets). For the value of b, we
observed that increasing b lowers the precision at only higher values. Hence, we recommend b = 200

10

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

as the default in all cases, as it led to high recall across all tested ranges of k on our simulated data
without lowering precision.

To test the level of divergence which SibeliaZ-LCB can tolerate, we took the default values of
k = 15 or 25 and b = 200 and plotted the precision vs. recall curve as a function of the root-to-leaf
divergence of the dataset (Figure S6). We see that for k = 25 the recall deteriorates significantly for
datasets having a root-to-leaf evolutionary distance of more than 0.09 substitutions per site. Based
on this, we recommend that for large datasets SibeliaZ-LCB be only used for detecting homologs
with an evolutionary distance to the MRCA of at most 0.09 substitutions per site.

The other two parameters that can effect SibeliaZ-LCB’s performance are the minimum size of a
locally collinear block m and the abundance pruning parameter a. These parameters should be set
according to the type of data and its intended use. The parameter m controls the fragmentation of
the alignment and the coverage — higher m results in longer blocks spanning less of the genomes,
since short blocks are not reported. We recommend the parameter m to be set to the length
of the shortest homologous sequence of interest to the downstream analysis. We set m = 50 as a
default, since this is smaller than 93.1% of the known mice exons (Sakharkar et al., 2005) and, more
generally, we do not expect most applications to be interested in much blocks shorter than 50nt.
In the case that a user is interested in larger homologous units, they can increase m together with
b. Alternatively, they can use either synteny block generation or alignment chaining algorithms
for post-processing the alignments produced by SibeliaZ (see Supplementary Note 1 for relevant
references).

The abundance pruning parameter a is a filtering parameter for k-mers whose abundance is
above a. Such k-mers are still considered by SibeliaZ-LCB, but to a smaller extent, resulting
in reduced recall in regions with such k-mers. We recommend setting a as high as the compute
resources allow, keeping in mind that homologous blocks with multiplicity higher than a are possibly
not going to be captured. For the mice dataset, we used a = 150.

3 Discussion

In this paper, we presented a whole-genome alignment pipeline SibeliaZ based on an algorithm for
identifying locally collinear blocks. The algorithm analyses the compacted de Bruijn graph and
jointly reconstructs the path corresponding to a collinear block and identifies the induced collinear
walks. We assume that the collinear walks share many vertices with this carrying path and form
chains of bubbles. Each carrying path and the induced block is found greedily, using a scoring
function that measures how close it is to all the sequences in the block. We then globally align the
collinear blocks to generate the whole-genome alignment.

SibeliaZ builds on the ideas laid down in DRIMM-Synteny (Pham and Pevzner, 2010) and
Sibelia (Pham and Pevzner, 2010) that used variants of the de Bruijn graphs for finding synteny
blocks (we elaborate on the connection between the whole genome alignment and synteny recon-
struction in Supplementary Note 1). Sibelia did not scale beyond bacterial genomes due to its
slow graph construction algorithm and the fact that it continuously had to modify the graph.
TwoPaCo (Minkin et al., 2017) addressed the former issue and we use it as a standalone module
in SibeliaZ. The latter issue was addressed in this paper by SibeliaZ-LCB, which achieves its speed
in part because it keeps the underlying graph static.

The main strength of our approach is speed — we achieve drastic speedups compared to the
state-of-the-art Progressive Cactus aligner (Armstrong et al., 2019) while retaining comparable
accuracy. Using a single machine, on 16 mice genomes, SibeliaZ runs in under 16 hours, while
Progressive Cactus is not able to complete for even 8 mice genomes, within seven days. We note

11

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

that it is possible for Cactus to construct larger alignments by utilizing a distributed computer
cluster (Armstrong et al., 2019). In our study, we concentrated on improving scalability of the
whole-genome alignment when only a single machine is available. In the future we hope to develop
a version of SibeliaZ that will work in the distributed setting as well. Overall, SibeliaZ is the only
tool available that can scale to many long, closely related genomes on a single machine.

The biggest limitation of our approach is the limited tolerance to the divergence of input se-
quences. As suggested by the results on simulated bacterial data, SibeliaZ works best for aligning
genomes having an evolutionary distance to the most recent common ancestor of at most 0.09
substitutions per site. Aligning more divergent genomes with SibeliaZ is still possible but it will
result in smaller recall; for such datasets, Cactus remains a better option. In the future, we hope
to address this limitation by employing techniques like postprocessing of the output with more
sensitive homology finders.

If the alignments themselves are not needed, SibeliaZ-LCB can be run alone (without spoa) to
construct the collinear blocks. This is most useful in applications stemming from studies of genome
rearrangements, which can be applied to study breakpoint reuse (Pevzner and Tesler, 2003b),
ancestral genome reconstruction (Kim et al., 2017) and phylogenies (Luo et al., 2012). Locally
collinear blocks are also a required input for scaffolding tools using multiple reference genomes (Kim
et al., 2013; Kolmogorov et al., 2014; Chen et al., 2016; Aganezov and Alekseyev, 2016). For such
applications, the output of SibeliaZ-LCB can be used either directly or after postprocessing by a
synteny block generator (Pham and Pevzner, 2010; Proost et al., 2011).

There are several remaining open questions of interest. A formal analysis of SibeliaZ-LCB’s
runtime is relevant, but doing it in a useful way is a challenge. The worst-case running time does
not reflect the actual one; moreover, we observed that the actual one depends on multi-thread
synchronization, which is challenging to model. However, it would be interesting if such a time
analysis can be performed parametrized by the crucial properties of the structure of the input. We
also did not investigate how close to an optimal solution our greedy heuristic gets. One way to do
this would be to find an optimal carrying path using exhaustive enumeration, but the search space
even for a small realistic example is too big. We suspect that a polynomial time optimal solution
is not possible, but the computational complexity of our problem is open.

SibeliaZ is the first multiple whole-genome aligner that can run on a single machine in rea-
sonable time on a dataset such as the 16 mouse genomes analyzed in this paper. With ongoing
initiatives like the Vertebrate Genomes Project and the insect5k, thousands of species will soon
have a reference genome available, and the sequencing and assembly of various sub-species and
strains will be the next logical step for many comparative genomics studies. For example, Port-
wood et al. (2018) currently holds 18 assembled maize genomes, with more to come in the recent
future. Similarly, the Solanaceae Genomics Network has recently released the genomes of 13 diverse
tomato accessions (https://solgenomics.net/projects/tomato13/). Analysis of such datasets
is likely to be carried out in single-lab settings with limited compute resources, rather than at large
computing centers like EMBL or NCBI. SibeliaZ makes a significant leap towards enabling such
studies.

4 Methods

4.1 Preliminaries

First, we will define the de Bruijn graph and related objects. Given a positive integer k and a
string s, we define a multigraph G(s, k) as the de Bruijn graph of s. The vertex set consists of

12

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://solgenomics.net/projects/tomato13/
https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

all substrings of s of length k, called k-mers. For each substring x of length k + 1 in s, we add a
directed edge from u to v, where u is the prefix of x of length k and v the suffix of x of length k.

Each occurrence of a (k+ 1)-mer yields a unique edge, and every edge corresponds to a unique
location in the input. Two edges are parallel if they are oriented in the same direction and have the
same endpoints. Note that two edges are parallel if and only if they were generated by the same
(k+ 1)-mer. This way, we use the notion of parallel edges to refer to a set of identical (k+ 1)-mers
in the input strings. Parallel edges are not considered identical. The de Bruijn graph can also
be constructed from a set of sequences S = {s1, . . . , sn}. This graph is the union of the graphs
constructed from the individual strings: G(S, k) =

⋃
1≤i≤nG(si, k). See Figure 1 for an example.

The set of all edges in a graph G is denoted by E(G). We write (u, v) to denote a edge from
vertex u to v. A walk p is a sequence of edges ((v1, v2), (v2, v3), . . . , (v|p|−1, v|p|)) where each edge
(vi, vi+1) belongs to E(G). The length of the walk p, denoted by |p|, is the number of edges it
contains. The last edge of a walk p is denoted by end(p). A path is a walk that visits each vertex
at most once.

In a de Bruijn graph, a given edge x was generated by a (k + 1)-mer starting at some position
j of some string si. To retrieve the position j of the (k + 1)-mer that generated edge x, we define
function pos(x) = j. We use the function pos to map edges of the graph back to positions of the
k-mers that generated them. For an edge x, its successor, denoted by next(x), is an edge y such
that both x and y are generated by the same string and pos(y) = pos(x) + 1. Note that a successor
does not always exist.

A walk p = (x1, . . . , x|p|) is genomic if next(xi) = xi+1 for 1 ≤ i ≤ |p| − 1. In other words,
a walk is genomic if it was generated by a substring in the input. The b-extension of a genomic
walk p is the longest genomic walk q = (y1, . . . , y|q|) such that y1 = next(end(p)) and |q| ≤ b. The
b-extension of a walk p is uniquely defined and usually has length b, unless p was generated by a
substring close to an end of an input string. Intuitively, b-extension defines edges lying ahead of a
walk. As our algorithm works in the seed-and-extend manner, we later use b-extensions to find the
most appropriate extension of the current block. The concatenation of two walks x and y is a walk
(if it exists) xy consisting of edges of x followed by edges of y. We use the concatenation operation
to extend the genomic walks constituting locally-collinear blocks using appropriate b-extensions.

q1
q2

q3

Figure 5: An example of computing the score of a walk p (solid) relative to a carrying path
pa = q1q2q3 (dashed). The path p forms a chain with the subpath q2 of p, while subpaths q1 and
q3 form hanging ends. We count the length of p and subtract lengths of the hanging ends. Thus,
the score f(pa, p) = 4− (1 + 1)2 = 0.

4.2 Problem formulation

In this section, we will define the collinear block reconstruction problem in de Bruijn graphs. A
collinear block is a set of edge-disjoint genomic walks with length at least m, where m is a parameter.
We call walks constituting a collinear block collinear walks. In order to quantify how well collinear

13

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

walks correspond to homologous sequences, we will define a collinearity score of a collinear block.
Our problem will then be to find a set of collinear blocks that are pairwise edge-disjoint and have
the largest score.

We capture the pattern of two homologous collinear walks through the concept of chains and
bubbles. A bubble is a subgraph corresponding to a possible mutation flanked by equal sequences.
Formally, a pair of walks x and y form a bubble (x, y) if all of the following holds: (1) x and
y have common starting and ending vertices; (2) x and y have no common vertices except the
starting and ending ones; and (3) |x| ≤ b and |y| ≤ b, where b is a parameter. A chain c =
((x1, y1), (x2, y2), . . . , (xn, yn)) is a sequence of bubbles such that x = x1x2 . . . xn and y = y1y2 . . . yn
are walks in a de Bruijn graph. In other words, a chain is a series of bubbles where each bubble is
a proper continuation of the previous one. Note that two parallel edges form a bubble and a chain
arising from equal sequences corresponds to a series of such bubbles. This way, a chain models a
pair of sequences that potentially have point mutations and indels. For an example of a bubble
and a chain, see Figure 1.

The subgraph resulting from more than two collinear walks can be complex, and there are
several ways of capturing it. We note that there are previous studies generalizing the idea of
bubbles, see (Onodera et al., 2013; Sung et al., 2015; Iliopoulos et al., 2016; Brankovic et al., 2016;
Paten et al., 2017), mostly in the context of analyzing assembly graphs. We decided to follow a
different approach designed specifically for capturing locally-collinear blocks.

Our approach is to give a definition that naturally leads itself to an algorithm. As homologous
sequences all originate from some common ancestral sequence sa, they should have many common
k-mers and there should be a path pa = G(sa, k) through the graph forming a long chain with each
walk p in the collinear block. We call such path a carrying one. We require the chains to be longer
than m to avoid confusing spuriously similar sequences with true homologs. At the same time, a
collinear walk may only partially form a chain with the carrying path, leaving hanging ends at the
ends of the carrying path, which is undesirable since it implies that these graphs originate from
dissimilar sequences. We note that compared to the previous work on chaining anchors (Myers,
1995; Abouelhoda and Ohlebusch, 2005; Ohlebusch and Abouelhoda, 2006) our definition of the
block will be more relaxed. Namely, we will not require for common k-mers to be present in all
copies of a block. In addition, many alignment methods use phylogenetic information for scoring
purposes. We decided to not use it since our method targets closely-related sequences, such as
strains of the same species, where the phylogeny is often unknown.

We formalize this intuition by introducing a scoring function quantifying how well a carrying
path describes a collection of the collinear walks. The function rewards long chains formed by the
carrying path and a collinear walk and penalizes the hanging ends. Given a carrying path pa and a
genomic walk p, let q2 be the longest subpath of pa that forms a chain with p. Then, we can write
pa = q1q2q3. Recall that m is the parameter denoting the minimum length of a collinear block, and
b is the maximum bubble size We define the score f(pa, p) as:

f(pa, p) =

0, if |p| < m

|p| − (|q1|+ |q3|)2, if |p| ≥ m and |q1|, |q3| ≤ b
−∞, if |p| ≥ m and (|q1| > b or |q3| > b)

(1)

The third case forbids walks (i.e. gives them a score of −∞) where the hanging ends are too long,
and the first case ignores walks (i.e gives them a score of 0) that weave through pa but are too
short. The second case gives a score that is proportional to the length of the part of pa that forms
a chain with p. At the same time, it reduces the score if the collinear walks leave hanging ends
q1 and q3 — the parts of pa not participating in the chain. The penalty induced by these ends is

14

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

squared to remove spuriously similar sequences from from the collinear block. This form of scoring
function showed better performance compared to other alternatives (data not shown). We do not
penalize for discrepancy between p and q2 for the sake of simplicity of the scoring function and
avoiding extra computation needed to calculate it. Figure 5 shows an example of computing the
score.

The collinearity score of a collinear block is given by

f(P) = max
pa

∑
p∈P

f(pa, p), (2)

where pa can be any path (not necessarily genomic). In other words, we are looking for a path
forming longest chains with the collinear walks and thus maximizes the score. The collinear blocks
reconstruction problem is to find a set of collinear blocks P such that

∑
P∈P f(P) is maximum

and no two walks in P share an edge. Note that the number of collinear blocks is not known in
advance. For an example of a complex collinear block in the de Bruijn graph and a carrying path
capturing it, refer to Fig 1b.

4.3 The collinear blocks reconstruction algorithm

Algorithm 1 Find-collinear-blocks

Input: strings S, integers k, b and m
Output: a set of edge-disjoint subgraphs of G(S, k) representing collinear blocks

1: P ← ∅ . Collinear blocks
2: G← G(S, k) . Construct the multigraph
3: for all distinct pairs (u, v) ∈ E(G) do . Check possible seeds
4: Initialize the current carrying path pa with (u, v)
5: P ← ∅ . Sorted set of collinear walks forming chains with pa
6: Pbest ← ∅ . Highest-scoring collinear block induced by pa
7: for edges x ∈ E(G) parallel to (u, v) not marked as used do
8: Add to P a new collinear walk consisting of x

9: while f(P) ≥ 0 do . Extend the carrying path as far as possible
10: Q← {q | q is the b-extension of a p ∈ P}
11: w0 ← last vertex in pa
12: t ← a vertex, reachable from w0 via a genomic walk, that is visited by the most walks

of Q.
13: Let r ∈ Q be the shortest walk from w0 to t
14: Denote the vertices of r as w0, w1, . . . , w|r|, with w|r| = t
15: for i← 1 to |r| do
16: Append (wi−1, wi) to the carrying path pa
17: P ← Update-collinear-walks(P,wi)
18: if f(P) > f(Pbest) then
19: Pbest ← P

20: if f(Pbest) > 0 then
21: P ← P ∪ {Pbest}
22: Mark edges visited by walks of Pbest as used

23: return P

15

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

Algorithm 2 Update-collinear-walks

Input: A sorted set of collinear walks P , a vertex w
Output: Updated set P

1: for edges x ∈ E(G) ending at w not marked as used do
2: Let p ∈ P be a walk such that its b-extension q contains x and pos(end(p)) is maximized .

Find a walk extendable with x
3: if such p exists then
4: Truncate q so that end(q) = x
5: Append p with q . Lengthen the chain that p forms with pa
6: else
7: Add a new walk consisting of the edge x to P

8: return P

w0

Figure 6: Illustration for Algorithm 2. A collinear walk p (solid) requires an update after the
carrying path pa is extended with the dashed edge (w0, w). The path pa now ends at the vertex w,
which has another incoming edge x. Since x is a part of b-extension of p (denoted by q), p can be
appended with q to form a longer chain and boost the collinearity score.

Our algorithm’s main pseudocode is shown in Algorithm 1 and its helper function in Algorithm 2.
First, we describe the high-level strategy. The main algorithm is greedy and works in the seed-and-
extend fashion. It starts with an arbitrary edge in the graph, and tries to extend it into a carrying
path that induces a collinear block with the highest possible collinearity score Pbest. If the block
has a positive score, then Pbest is added to our collection of collinear blocks P. The algorithm
then repeats, attempting to build a collinear block from a different edge seed. New collinear blocks
cannot use edges belonging to previously discovered collinear blocks. This process continues until
all possible edges are considered as seeds. The algorithm is greedy in a sense that once a block is
found and added to P, it cannot be later changed to form a more optimal global solution.

To extend a seed into a collinear block P , we first initialize the collinear block with a walk
for each unused edge parallel to the seed (including the seed) (lines 7 to 8). These parallel edges
represent the different occurences of the seed string in the input and, hence, form the initial collinear
block. We then proceed in phases, where each phase is an iteration of the while loop (lines 9 to 19).
During each phase, the carrying path pa is extended using a walk r of length at most b (lines 10
to 14). Next, we try to extend each of the collinear walks in a way that forms chains with the
extended pa (lines 15 to 19). The extension of a seed into a collinear block is also a greedy process,
since we only change pa and the walks in P by extending them and never by changing any edges.
Finally, we check that the collinearity score for our extended block is still positive — if it is, we
iterate to extend it further, otherwise, we abandon our attempts at further extending the block.
We then recall the highest scoring block that was achieves for this seed and save it into our final
result P (lines 20 to 22).

To pick the walk r by which to extend pa, we use a greedy heuristic (lines 10 to 14). First,

16

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

we pick the vertex t which we want to extension to reach (lines 10 to 12). We limit our search to
those vertices that can be reached by a genomic walk from the end of pa and greedily chose the
one that is most often visited by the b-extensions of the collinear walks in P . Intuitively, we hope
to maximize the number of collinear walks that will form longer chains with pa after its extension
and thereby boost the collinearity score. We then extend pa using the shortest b-extension of the
walks in P to reach t. We chose this particular heuristic because it showed superior performance
comparing to other possible strategies.

Once we have selected the genomic walk r by which to extend pa, we must select the extensions
to our collinear walks P that will form chains with par. This is done by the function Update-
collinear-blocks (Algorithm 2). We extend the walks to match r by considering the vertices of r
consecutively, one at a time. To extend to a vertex w, we consider all the different locations of w
in the input (each such location is represented by an edge x ending at w). For each location, we
check if it can be reached by a b-extension from an existing p ∈ P . If yes, then we extend p, so
as to lengthen the chain that it forms with pa. If there are multiple collinear walks that reach w,
we take the nearest one. If no, then we start a new collinear walk using just x. Figure 6 shows an
example of updating a collinear walk and Figure 2 shows a full run of the algorithm for a single
seed.

Our description here only considers extending the initial seed to the right, i.e. using out-going
edges in the graph. However, we also run the procedure to extend the initial seed to the left, using
the in-coming edges. The case is symmetric and we therefore omit the details.

4.4 Other considerations

For simplicity of presentation, we have described the algorithm in terms of the ordinary de Bruijn
graph; however, it is crucial for running time and memory usage that the graph is compacted
first. Informally, the compacted de Bruijn graph replaces each non-branching path with a single
edge. Formally, the vertex set of the compacted graph consist of vertices of the regular de Bruijn
graph that have at least two outgoing (or ingoing) edges pointing at (incoming from) different
vertices. Such vertices are called junctions. Let ` = v1, . . . , vn be the list of k-mers corresponding
to junctions, in the order they appear in the underlying string s. The edge set of the compacted
graph consists of edges {v1 → v2, v2 → v3, . . . , vn−1 → vn}. We efficiently construct the compacted
graph using our previously published algorithm TwoPaCo (Minkin et al., 2017).

This transformation maintains all the information while greatly reducing the number of edges
and vertices in the graph. This makes the data structures smaller and allows the algorithm to
fast-forward through non-branching paths, instead of considering each (k+1)-mer one by one. Our
previous description of the algorithm remains valid, except that the data structures operate with
vertices and edges from the compacted graph instead of the ordinary one. The only necessary
change is that when we look for an edge y parallel to x, we must also check that y and x spell the
same sequence. This is always true in an ordinary graph but not necessarily in a compacted graph.

An important challenge of mammalian genomes is that they contain high-frequency (k+1)-mers,
which can clog up our data structures. To handle this, we modify the algorithm by skipping over
any junctions that correspond to k-mers occurring more than a times; we call a the abundance
pruning parameter. Specifically, prior to constructing the edge set of the compacted de Bruijn
graph, we remove all high abundance junctions from the vertex set. The edge set is constructed as
before, but using this restricted list of junctions as the starting point. This strategy offers a way to
handle high-frequency repeats at the expense of limiting our ability to detect homologous blocks
that occur more than a times.

The organization of our data in memory is instrumental to achieving high performance. To

17

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

represent the graph, we use a standard adjacency list representation, annotated with position
information and other relevant data. We also maintain a list of the junctions in the paragraph
above in the order they appear in the input sequences, thereby supporting next() queries. The
walks in the collinear block P are stored as a dynamic sorted set, implemented as a binary search
tree. The search key is the genome/position for the end of each walk. This allows performing
binary search in line 2 of Algorithm 2.

Another aspect that we have ignored up until now is that DNA is double-stranded and collinear
walks can be reverse-complements of each other. If s is a string, then let s̄ be its reverse complement.
We handle double strandedness in the natural way by using the comprehensive de Bruijn graph,
which is defined as Gcomp(s, k) = G(s, k) ∪ G(s̄, k) (Minkin et al., 2017). Our algorithm and
corresponding data structures can be modified to work with the comprehensive graph with a few
minor changes which we omit here.

Our implementation is parallelized by exploring multiple seeds simultaneously, i.e. parallelizing
the for loop at line 3 of Algorithm 1. This loop is not embarrassingly parallelizable, since two
threads can start exploring two seeds belonging to the same carrying path. In such a case, there
will be a collision on the data structure used to store used marks. To address this issue, we process
the seeds in batches of fixed size. All the seeds within a batch are explored in parallel and the results
are saved without modifying the “used” marks. Once the batch is processed, a single arbiter thread
checks if there is any overlap in the used marks of the different threads. If there is, it identifies the
sources of the conflict and reruns the algorithm at the conflicting seeds serially. Since most seeds do
not yield valid carrying paths, such conflicts are rare. Once there is no conflict, the arbiter updates
the used main data structures with the results of the batch. This design allows the computation
result to be deterministic and independent of the number of threads used.

Author contributions

Conceptualization, IM; Methodology, IM and PM; Software, IM; Validation, IM and PM, Writing
- Original Draft, IM and PM; Writing - Review & Editing, IM and PM, Funding Acquisition, PM.

Competing Interests

The authors declare no competing interests.

18

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

Data availability

Strain Accession number

C57BL/6J GCA 000001635.8 [https://www.ncbi.nlm.nih.gov/assembly/GCA_000001635.8]
129S1/SvImJ GCA 001624185.1 [https://www.ncbi.nlm.nih.gov/assembly/GCA_001624185.1]
A/J GCA 001624215.1 [https://www.ncbi.nlm.nih.gov/assembly/GCA_001624215.1]
AKR/J GCA 001624295.1 [https://www.ncbi.nlm.nih.gov/assembly/GCA_001624295.1]
CAST/EiJ GCA 001624445.1 [https://www.ncbi.nlm.nih.gov/assembly/GCA_001624445.1]
CBA/J GCA 001624475.1 [https://www.ncbi.nlm.nih.gov/assembly/GCA_001624475.1]
DBA/2J GCA 001624505.1 [https://www.ncbi.nlm.nih.gov/assembly/GCA_001624505.1]
FVB/NJ GCA 001624535.1 [https://www.ncbi.nlm.nih.gov/assembly/GCA_001624535.1]
NOD/ShiLtJ GCA 001624675.1 [https://www.ncbi.nlm.nih.gov/assembly/GCA_001624675.1]
NZO/HiLtJ GCA 001624745.1 [https://www.ncbi.nlm.nih.gov/assembly/GCA_001624745.1]
PWK/PhJ GCA 001624775.1 [https://www.ncbi.nlm.nih.gov/assembly/GCA_001624775.1]
WSB/EiJ GCA 001624835.1 [https://www.ncbi.nlm.nih.gov/assembly/GCA_001624835.1]
BALB/cJ GCA 001632525.1 [https://www.ncbi.nlm.nih.gov/assembly/GCA_001632525.1]
C57BL/6NJ GCA 001632555.1 [https://www.ncbi.nlm.nih.gov/assembly/GCA_001632555.1]
C3H/HeJ GCA 001632575.1 [https://www.ncbi.nlm.nih.gov/assembly/GCA_001632575.1]
LP/J GCA 001632615.1 [https://www.ncbi.nlm.nih.gov/assembly/GCA_001632615.1]

Table 4: Accession numbers of the assembled mice genomes available at GenBank.

Table 4 contains the list of GenBank accession numbers of the mice genomes we used in our
experiments (Figures 3, 4, Supplementary Figures S1, S2, S3). The nine simulated datasets
we generated (Supplementary Figures S4, S5, S6), ground-truth alignments for the mouse data
(Figure 4, Supplementary Figures S1, S2, S3), and alignments produced by SibeliaZ and Pro-
gressive Cactus (Figure 4, Supplementary Figures S2, S3) are available for download at https:

//github.com/medvedevgroup/SibeliaZ/blob/master/DATA.txt.

Code availability

Our tool is open source and freely available at https://github.com/medvedevgroup/SibeliaZ.

Acknowledgements

We would like to thank Mikhail Kolmogorov for useful suggestions on the empirical evaluation of
our algorithm; Robert Harris for his help with running MultiZ; Son Pham for introducing us to the
problem; and the Ensembl support team for helping us with retrieving the gene annotations.

This work has been supported in part by NSF awards DBI-1356529, CCF-1439057, IIS-1453527,
and IIS-1421908 to PM. Research reported in this publication was supported by the National
Institute Of General Medical Sciences of the National Institutes of Health under Award Number
R01GM130691. The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

19

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://www.ncbi.nlm.nih.gov/assembly/GCA_000001635.8
https://www.ncbi.nlm.nih.gov/assembly/GCA_001624185.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001624215.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001624295.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001624445.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001624475.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001624505.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001624535.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001624675.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001624745.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001624775.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001624835.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001632525.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001632555.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001632575.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001632615.1
https://github.com/medvedevgroup/SibeliaZ/blob/master/DATA.txt
https://github.com/medvedevgroup/SibeliaZ/blob/master/DATA.txt
https://github.com/medvedevgroup/SibeliaZ
https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

References

Abouelhoda, M. I. and Ohlebusch, E. (2005). Chaining algorithms for multiple genome comparison. Journal of Discrete Algorithms,

3(2-4), 321–341.

Aganezov, S. and Alekseyev, M. A. (2016). Multi-genome scaffold co-assembly based on the analysis of gene orders and genomic repeats.

In International Symposium on Bioinformatics Research and Applications, pages 237–249. Springer.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular

biology, 215(3), 403–410.

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped blast and psi-blast:

a new generation of protein database search programs. Nucleic acids research, 25(17), 3389–3402.

Angiuoli, S. V. and Salzberg, S. L. (2011). Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics, 27(3),

334–342.

Armstrong, J., Hickey, G., Diekhans, M., Deran, A., Fang, Q., Xie, D., Feng, S., Stiller, J., Genereux, D., Johnson, J., Marinescu, V. D.,

Haussler, D., Alföldi, J., Lindblad-Toh, K., Karlsson, E., Jarvis, E. D., Zhang, G., and Paten, B. (2019). Progressive alignment with

cactus: a multiple-genome aligner for the thousand-genome era. bioRxiv .

Baier, U., Beller, T., and Ohlebusch, E. (2016). Graphical pan-genome analysis with compressed suffix trees and the burrows-wheeler

transform. Bioinformatics, 32(4), 497–504.

Beller, T. and Ohlebusch, E. (2016). A representation of a compressed de bruijn graph for pan-genome analysis that enables search.

Algorithms for Molecular Biology, 11(1), 20.

Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Ostell, J., Pruitt, K. D., and Sayers, E. W. (2017). Genbank. Nucleic

acids research.

Blanchette, M., Kent, W. J., Riemer, C., Elnitski, L., Smit, A. F., Roskin, K. M., Baertsch, R., Rosenbloom, K., Clawson, H., Green,

E. D., et al. (2004). Aligning multiple genomic sequences with the threaded blockset aligner. Genome research, 14(4), 708–715.

Brankovic, L., Iliopoulos, C. S., Kundu, R., Mohamed, M., Pissis, S. P., and Vayani, F. (2016). Linear-time superbubble identification

algorithm for genome assembly. Theoretical Computer Science, 609, 374–383.

Brudno, M., Do, C. B., Cooper, G. M., Kim, M. F., Davydov, E., Green, E. D., Sidow, A., Batzoglou, S., Program, N. C. S., et al.

(2003). Lagan and multi-lagan: efficient tools for large-scale multiple alignment of genomic dna. Genome research, 13(4), 721–731.

Chen, K.-T., Chen, C.-J., Shen, H.-T., Liu, C.-L., Huang, S.-H., and Lu, C. L. (2016). Multi-car: a tool of contig scaffolding using

multiple references. BMC bioinformatics, 17(17), 469.

Chikhi, R., Limasset, A., and Medvedev, P. (2016). Compacting de bruijn graphs from sequencing data quickly and in low memory.

Bioinformatics, 32(12), i201–i208.

Cleary, A., Kahanda, I., Mumey, B., Mudge, J., and Ramaraj, T. (2017). Exploring frequented regions in pan-genomic graphs. In

Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pages

89–97. ACM.

Dalquen, D. A., Anisimova, M., Gonnet, G. H., and Dessimoz, C. (2011). Alfa simulation framework for genome evolution. Molecular

biology and evolution, 29(4), 1115–1123.

Darling, A. C., Mau, B., Blattner, F. R., and Perna, N. T. (2004). Mauve: multiple alignment of conserved genomic sequence with

rearrangements. Genome research, 14(7), 1394–1403.

Darling, A. E., Mau, B., and Perna, N. T. (2010). progressivemauve: multiple genome alignment with gene gain, loss and rearrangement.

PloS one, 5(6), e11147.

Dewey, C. N. (2007). Aligning multiple whole genomes with mercator and mavid. In Comparative genomics, pages 221–235. Springer.

Dewey, C. N. and Pachter, L. (2006). Evolution at the nucleotide level: the problem of multiple whole-genome alignment. Human

Molecular Genetics, 15(suppl 1), R51–R56.

Doerr, D. and Moret, B. M. (2018). Sequence-based synteny analysis of multiple large genomes. In Comparative Genomics, pages

317–329. Springer.

Dubchak, I., Poliakov, A., Kislyuk, A., and Brudno, M. (2009). Multiple whole-genome alignments without a reference organism.

Genome research, 19(4), 682–689.

Earl, D., Nguyen, N., Hickey, G., Harris, R. S., Fitzgerald, S., Beal, K., Seledtsov, I., Molodtsov, V., Raney, B. J., Clawson, H., Kim, J.,

Kemena, C., Chang, J.-M., Erb, I., Poliakov, A., Hou, M., Herrero, J., Kent, W. J., Solovyev, V., Darling, A. E., Ma, J., Notredame,

C., Brudno, M., Dubchak, I., Haussler, D., and Paten, B. (2014). Alignathon: a competitive assessment of whole-genome alignment

methods. Genome Research, 24(12), 2077–2089.

20

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

Ernst, C. and Rahmann, S. (2013). Pancake: a data structure for pangenomes. In OASIcs-OpenAccess Series in Informatics,

volume 34. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Fiddes, I. T., Armstrong, J., Diekhans, M., Nachtweide, S., Kronenberg, Z. N., Underwood, J. G., Gordon, D., Earl, D., Keane, T.,

Eichler, E. E., et al. (2018). Comparative annotation toolkit (cat)simultaneous clade and personal genome annotation. Genome

research, 28(7), 1029–1038.

Harris, R. S. (2007). Improved pairwise alignment of genomic DNA. The Pennsylvania State University.

Holley, G., Wittler, R., and Stoye, J. (2016). Bloom filter trie: an alignment-free and reference-free data structure for pan-genome

storage. Algorithms for Molecular Biology, 11(1), 3.

Iliopoulos, C. S., Kundu, R., Mohamed, M., and Vayani, F. (2016). Popping superbubbles and discovering clumps: recent developments

in biological sequence analysis. In International Workshop on Algorithms and Computation, pages 3–14. Springer.

Kent, W. J. (2002). Blatthe blast-like alignment tool. Genome research, 12(4), 656–664.

Kim, J., Larkin, D. M., Cai, Q., Zhang, Y., Ge, R.-L., Auvil, L., Capitanu, B., Zhang, G., Lewin, H. A., Ma, J., et al. (2013).

Reference-assisted chromosome assembly. Proceedings of the National Academy of Sciences, 110(5), 1785–1790.

Kim, J., Farré, M., Auvil, L., Capitanu, B., Larkin, D. M., Ma, J., and Lewin, H. A. (2017). Reconstruction and evolutionary history

of eutherian chromosomes. Proceedings of the National Academy of Sciences, 114(27), E5379–E5388.

Kolmogorov, M., Raney, B., Paten, B., and Pham, S. (2014). Ragouta reference-assisted assembly tool for bacterial genomes. Bioin-

formatics, 30(12), i302–i309.

Laing, C., Buchanan, C., Taboada, E. N., Zhang, Y., Kropinski, A., Villegas, A., Thomas, J. E., and Gannon, V. P. (2010). Pan-genome

sequence analysis using panseq: an online tool for the rapid analysis of core and accessory genomic regions. BMC bioinformatics,

11(1), 461.

Lilue, J., Doran, A. G., Fiddes, I. T., Abrudan, M., Armstrong, J., Bennett, R., Chow, W., Collins, J., Collins, S., Czechanski, A.,

et al. (2018). Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nature

genetics, 50(11), 1574.

Luo, H., Arndt, W., Zhang, Y., Shi, G., Alekseyev, M. A., Tang, J., Hughes, A. L., and Friedman, R. (2012). Phylogenetic analysis of

genome rearrangements among five mammalian orders. Molecular phylogenetics and evolution, 65(3), 871–882.

Marcus, S., Lee, H., and Schatz, M. C. (2014). Splitmem: a graphical algorithm for pan-genome analysis with suffix skips. Bioinfor-

matics, 30(24), 3476–3483.

Marschall, T., Marz, M., Abeel, T., Dijkstra, L., Dutilh, B. E., Ghaffaari, A., Kersey, P., Kloosterman, W., Makinen, V., Novak, A.,

et al. (2018). Computational pan-genomics: status, promises and challenges. Briefings in Bioinformatics, 19(1), 118–135.

Minkin, I., Pham, H., Starostina, E., Vyahhi, N., and Pham, S. (2013a). C-sibelia: an easy-to-use and highly accurate tool for bacterial

genome comparison. F1000Research, 2.

Minkin, I., Patel, A., Kolmogorov, M., Vyahhi, N., and Pham, S. (2013b). Sibelia: A Scalable and Comprehensive Synteny Block

Generation Tool for Closely Related Microbial Genomes, pages 215–229. Springer Berlin Heidelberg, Berlin, Heidelberg.

Minkin, I., Pham, S., and Medvedev, P. (2017). Twopaco: an efficient algorithm to build the compacted de bruijn graph from many

complete genomes. Bioinformatics, 33(24), 4024–4032.

Myers, G. (1995). Chaining multiple-alignment fragments in sub-quadratic time.

Ng, M.-P., Vergara, I. A., Frech, C., Chen, Q., Zeng, X., Pei, J., and Chen, N. (2009). Orthoclusterdb: an online platform for synteny

blocks. BMC bioinformatics, 10(1), 192.

Ohlebusch, E. and Abouelhoda, M. I. (2006). Chaining algorithms and applications in comparative genomics. Handbook of Computa-

tional Molecular Biology.

Onodera, T., Sadakane, K., and Shibuya, T. (2013). Detecting superbubbles in assembly graphs. In International Workshop on

Algorithms in Bioinformatics, pages 338–348. Springer.

Paten, B., Herrero, J., Beal, K., Fitzgerald, S., and Birney, E. (2008). Enredo and pecan: genome-wide mammalian consistency-based

multiple alignment with paralogs. Genome research, 18(11), 1814–1828.

Paten, B., Earl, D., Nguyen, N., Diekhans, M., Zerbino, D., and Haussler, D. (2011a). Cactus: Algorithms for genome multiple sequence

alignment. Genome Research, 21(9), 1512–1528.

Paten, B., Diekhans, M., Earl, D., John, J. S., Ma, J., Suh, B., and Haussler, D. (2011b). Cactus graphs for genome comparisons.

Journal of Computational Biology, 18(3), 469–481.

21

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

Paten, B., Novak, A. M., Garrison, E., and Hickey, G. (2017). Superbubbles, ultrabubbles and cacti. In S. C. Sahinalp, editor, Research

in Computational Molecular Biology, pages 173–189, Cham. Springer International Publishing.

Perry, E. (2018). Personal communication.

Pevzner, P. and Tesler, G. (2003a). Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome

research, 13(1), 37–45.

Pevzner, P. and Tesler, G. (2003b). Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution.

Proceedings of the National Academy of Sciences, 100(13), 7672–7677.

Pham, S. and Pevzner, P. (2010). Drimm-synteny: decomposing genomes into evolutionary conserved segments. Bioinformatics,

26(20), 2509–2516.

Portwood, J. L., Woodhouse, M. R., Cannon, E. K., Gardiner, J. M., Harper, L. C., Schaeffer, M. L., Walsh, J. R., Sen, T. Z., Cho,

K. T., Schott, D. A., et al. (2018). Maizegdb 2018: the maize multi-genome genetics and genomics database. Nucleic acids research,

47(D1), D1146–D1154.

Proost, S., Fostier, J., De Witte, D., Dhoedt, B., Demeester, P., Van de Peer, Y., and Vandepoele, K. (2011). i-adhore 3.0fast and

sensitive detection of genomic homology in extremely large data sets. Nucleic acids research, 40(2), e11–e11.

Raphael, B., Zhi, D., Tang, H., and Pevzner, P. (2004). A novel method for multiple alignment of sequences with repeated and shuffled

elements. Genome Research, 14(11), 2336–2346.

Sakharkar, M. K., Perumal, B. S., Sakharkar, K. R., and Kangueane, P. (2005). An analysis on gene architecture in human and mouse

genomes. In silico biology, 5(4), 347–365.

Schwartz, A. S. and Pachter, L. (2007). Multiple alignment by sequence annealing. Bioinformatics, 23(2), e24–e29.

Schwartz, S., Kent, W. J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R. C., Haussler, D., and Miller, W. (2003). Human–mouse

alignments with blastz. Genome research, 13(1), 103–107.

Sheikhizadeh, S., Schranz, M. E., Akdel, M., de Ridder, D., and Smit, S. (2016). Pantools: representation, storage and exploration of

pan-genomic data. Bioinformatics, 32(17), i487–i493.

Sung, W., Sadakane, K., Shibuya, T., Belorkar, A., and Pyrogova, I. (2015). An o(mlogm) -time algorithm for detecting superbubbles.

IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12(4), 770–777.

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by dna polymorphism. Genetics, 123(3), 585–595.

Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D., Ward, N. L., Angiuoli, S. V., Crabtree, J., Jones, A. L., Durkin,

A. S., et al. (2005). Genome analysis of multiple pathogenic isolates of streptococcus agalactiae: implications for the microbial

pan-genome. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13950–13955.

Vaser, R., Sović, I., Nagarajan, N., and Šikić, M. (2017). Fast and accurate de novo genome assembly from long uncorrected reads.

Genome research, 27(5), 737–746.

Vernikos, G., Medini, D., Riley, D. R., and Tettelin, H. (2015). Ten years of pan-genome analyses. Current opinion in microbiology,

23, 148–154.

Zekic, T., Holley, G., and Stoye, J. (2018). Pan-genome storage and analysis techniques. In Comparative Genomics, pages 29–53.

Springer.

22

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Notes, Figures, and Tables

Minkin and Medvedev, SibeliaZ

1

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Note 1 Other related work

A closely related problem to multiple whole-genome alignment is synteny reconstruction. In this
setting, genomes are decomposed into large blocks such that the gene order within each block is
preserved. This is similar to locally collinear blocks, but collinear blocks are usually smaller blocks
representing single genes or exons (or non-coding DNA). Collinear blocks can be viewed as high
resolution synteny blocks and, in general, the distinction between the two concepts can be blurry.
For a discussion on representation of synteny blocks at multiple scales, see Minkin et al. (2013b).
Synteny blocks are often reconstructed from anchors such as genes (Pevzner and Tesler, 2003a; Ng
et al., 2009; Pham and Pevzner, 2010; Proost et al., 2011) and, less commonly, from the nucleotide
sequences directly (Minkin et al., 2013b; Doerr and Moret, 2018).

A related active research area is data structures for representing pan-genomes (Tettelin et al.,
2005). A pan-genome as a collection of related genomes that are to be analyzed jointly. For a re-
view on computational pan-genomics, see (Vernikos et al., 2015; Marschall et al., 2018; Zekic et al.,
2018). Constructing a data structure for the efficient storage and querying of a pan-genome is re-
lated but tangential to the problem of identifying collinear blocks, which we consider in this paper.
Pan-genome data structures are concerned with efficiently representing the homology within the
pan-genome, while we focus on fast algorithms for obtaining such homologies. There is naturally
some overlap between the two areas, e.g. some pan-genome tools include a multiple whole-genome
alignment component (Ernst and Rahmann, 2013; Laing et al., 2010). Others use the de Bruijn
graph for representing the pan-genome (Marcus et al., 2014; Holley et al., 2016; Beller and Ohle-
busch, 2016; Sheikhizadeh et al., 2016). Our approach also relies on a de Bruijn graph, though we
use it as a technique to find collinear blocks rather than to represent them.

2

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Note 2 Parameter details and command lines

We tried to find the optimal parameters for all tools. For Sibelia, which could only run on simulated
data, we used the parameter set designed to yield the highest sensitivity (called the “far” set in
Sibelia). Progressive Cactus requires a phylogenetic tree in addition to the input genome which
it uses for adjusting the internal parameters. For the simulated datasets, we used the real tree
generated by the simulator; for the mice genomes, we used the guide tree from (Lilue et al., 2018).
Multiz+TBA were run with default parameters since its documentation does not provide a clear
guideline on how to adjust the parameters according to evolutionary distances between the input
sequences. We could not compile the version of MultiZ+TBA publicly available for download and
used a slightly modified version provided by Robert S. Harris. For TwoPaCo and spoa, we set the
parameters following the guidelines provided with the respective software. SibeliaZ was run with
k = 25, b = 200, m = 50, and a = 150.

We performed all experiments on a machine running Ubuntu 16.04.3 LTS with 512 GB of RAM
and a 64 core CPU Intel Xeon CPU E5-2683 v4. We were limited to using at most 32 threads at
any given time. Progressive Cactus was run with 32 threads, since the authors recommended to use
as many threads as possible for the best performance. MultiZ+TBA and Sibelia are both single-
threaded. (There were several submissions to Alignathon which used an extensively parallelized
MultiZ or TBA; unfortunately, the software packages used for those submissions are not available
publicly for download.) TwoPaCo and SibeliaZ-LCB were run 16 and 32 threads respectively. We
note that spoa is run on each block, and our software includes a wrapper to automate this.

Here are the exact command lines for the tools we ran.

TwoPaCo:

twopaco -k <k_value> -f <bloom_filter_size> -t 16 -o <dbg_graph> <genomes_file>

SibeliaZ-LCB:

SibeliaZ-LCB --fasta <genomes_file> --graph <dbg_graph> -o <output_directory>

-k 25 -b 200 -m 50 -a 150 -t 4

spoa:

spoa <input_fasta_file> -l 1 -r 1 -e 8

Sibelia:

Sibelia <genomes_file> -o <output_directory> -s far --lastk 50 -m 50 --nopostprocess

MultiZ:

all_bz <guide_tree>

tba <guide_tree> *.*.maf <outputMafFile>

Progressive Cactus:

runProgressiveCactus.sh --maxThreads 32 <seqFile> <workDir> <outputHalFile>

source ./environment && hal2mafMP.py <outputHalFile> <outputMafFile>

All running times and memory usage numbers were obtained using the GNU time utility. The
exact versions of the software are in Table S4.

3

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Note 3 Simulation details

We used small simulated data in order to understand the role of a dataset’s genomic distance and
of our parameter settings. We used ALF (Dalquen et al., 2011) for simulation because it simulates
point mutations as well as genome-wide events such as inversions, translocations, fusions/fissions,
gene gain/loss, and lateral gene transfer. Furthermore, ALF is useful for benchmarking as it
also produces an alignment which represents the true homology between the genomes, making it
possible to directly assess the precision and recall. We simulated 6 datasets, each one consisting of
10 bacterial genomes. Each genome is composed of 1500 genes and of size approximately 1.5 Mbp.
We used such relatively small datasets to allow us to efficiently explore the parameter space. Each
of the 6 datasets corresponded to a different parameter for distance from the root to leaf species,
which we varied from 0.03 to 0.18 substitutions per site with the step of 0.03. In ALF, different
proteins evolve with different rates, which are derived from the base value using a probabilistic
distribution. See Dalquen et al. (2011) for more details and the simulation recipes for the exact
values of the parameters. For genome-wide events, we used ALF’s default rates. Links to download
the the simulation parameter files, the simulated genomes, and their alignments are available at
the GitHub repository (see Section 4.4 section in the main paper).

4

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

Tables and Figures

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
101

102

103

104

105

106

107

Annotation nucleotide identity

N
u
m
b
er

(l
o
g
sc
a
le
)

Orthologs

1-2
1-4
1-8
1-16

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
101

102

103

104

105

106

107

Annotation nucleotide identity
N
u
m
b
er

(l
o
g
sc
a
le
)

Paralogs

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

Annotation nucleotide identity

C
o
v
er
a
g
e

Orthologs

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.02

0.04

0.06

Annotation nucleotide identity

C
o
v
er
a
g
e

Paralogs

(d)

Supplementary Figure S1: Properties of the pairwise alignments constructed from pairs of homol-
ogous protein-coding genes in the various mice datasets. Panels (a) and (b) show the total number
of genes for each nucleotide identity value for orthologous and paralogous pairs respectively; (c)
and (d) demonstrate coverage of the genomes by these two categories of the genes.

5

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Column score

P
ro
p
o
rt
io
n

Dataset 1-2

SibeliaZ
Cactus

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Column score

P
ro
p
o
rt
io
n

Dataset 1-4

(b)

Supplementary Figure S2: Histogram of the average number of nucleotide differences π(c) calculated
for each column of SibeliaZ’s and Cactus’ alignment, for datasets 1-2 (a) and 1-4 (b) consisting of
2 and 4 mice geneomes respectively.

6

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Figure S3: The recall of paralogous genes by SibeliaZ as a function of inferred
family size, using the two-mice dataset. The n = 5152 gene pairs were split into 25 equally-sized
disjoint bins based on the inferred family size. The top histogram shows the number of gene pairs
in each bin. Exact sizes for each bin are (267, 250, 360, 452, 396, 489, 481, 155, 24, 35, 21, 12,
450, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1755). Points belonging to non-empty bins of size less than
10 are shown individually. Each box plot shows the median (middle line), the interquartile range
(outer borders of the box), minimum and maximum values within ±1.5 of the interquartile range
(whiskers). Data points outside of the ±1.5 interquartile range are represented by individual data
points.

7

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

15 20 25 30
100

200

300

400

k

b
Divergence 0.03

15 20 25 30

k

Divergence 0.06

15 20 25 30

k

Divergence 0.09

15 20 25 30
100

200

300

400

k

b

Divergence 0.12

0.7 0.8 0.9 1.0

Recall

15 20 25 30

k

Divergence 0.15

15 20 25 30

k

Divergence 0.18

(a) (b) (c)

(d) (e) (f)

Supplementary Figure S4: Effects of the parameters k and b on recall. Each panel (a-f) con-
tains a heatmap corresponding to a simulated dataset with the specified root-to-leaf divergence in
substitutions per site and a cell corresponds to a combination of parameters.

8

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

15 20 25 30
100

200

300

400

k

b
Divergence 0.03

15 20 25 30

k

Divergence 0.06

15 20 25 30

k

Divergence 0.09

15 20 25 30
100

200

300

400

k

b

Divergence 0.12

0.985 0.990 0.995 1.000

Precision

15 20 25 30

k

Divergence 0.15

15 20 25 30

k

Divergence 0.18

(a) (b) (c)

(d) (e) (f)

Supplementary Figure S5: Effects of the parameters k and b on precision. Each panel (a-f) con-
tains a heatmap corresponding to a simulated dataset with the specified root-to-leaf divergence in
substitutions per site and a cell corresponds to a combination of parameters.

9

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

0.985

0.990

0.995

1.000 0.03

0.06

0.09 0.09

0.12
0.12

0.15

0.150.18 0.18

Recall

P
re
ci
si
o
n

k = 15
k = 25

Supplementary Figure S6: The accuracy of SibeliaZ as a function of genomic divergence. Each
point is labeled with the height of the phylogenetic tree (in terms of substitutions per site) of its
respective simulated dataset.

10

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

ID Strain Size (Mb) N. Scaffolds

1 C57BL/6J 2,819 336
2 129S1/SvImJ 2,733 7,154
3 A/J 2,630 4,688
4 AKR/J 2,713 5,953
5 CAST/EiJ 2,654 2,977
6 CBA/J 2,922 5,466
7 DBA/2J 2,606 4,105
8 FVB/NJ 2,589 5,013
9 NOD/ShiLtJ 2,982 5,544
10 NZO/HiLtJ 2,699 7,022
11 PWK/PhJ 2,560 3,140
12 WSB/EiJ 2,690 2,239
13 BALB/cJ 2,627 3,825
14 C57BL/6NJ 2,807 3,894
15 C3H/HeJ 2,701 4,069
16 LP/J 2,731 3,499

Supplementary Table S1: Properties of the assembled mice genomes available at GenBank.

11

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

Dataset SibeliaZ/TwoPaCo SibeliaZ/SibeliaZ-LCB SibeliaZ/spoa SibeliaZ/Total Cactus

1-2 12 (9.30) 74 (36.00) 68 (121.50) 154 (121.50) 2,279 (37.50)
1-4 25 (17.70) 96 (72.70) 115 (133.60) 236 (133.60) 6,105 (89.80)
1-8 49 (34.50) 104 (106.30) 240 (132.50) 393 (132.50) -
1-16 101 (68.10) 153 (183.60) 736 (133.50) 990 (183.60) -

Supplementary Table S2: Running time (minutes) and memory usage (gigabytes, in parenthesis)
of SibeliaZ and Cactus on the mice datasets. A dash in a column indicates that the program did
not complete within in a week.

12

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

Dataset SibeliaZ Recall Cactus Recall SibeliaZ Precision Cactus Precision

1-2 0.95 0.97 0.93 0.89
1-4 0.95 0.92 0.96 0.90

Supplementary Table S3: Recall and precision of SibeliaZ and Cactus. We used pairwise local
alignments of chromosomes 1 from the different datasets produced by LASTZ as the ground truth.

13

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

Software Version Repostiory Commit
Sibelia 3.0.7 bioinf/Sibelia 397e6877116006c8591cbe14a7c6d366d1e0751a
SibeliaZ 1.2.0 medvedevgroup/SibeliaZ e90f5b25c931b5b011b98c558670f1697334ef69
TwoPaCo 0.9.4 medvedevgroup/TwoPaCo 9b9fee321dd561b7bd2b18892b0b2653c58eb6dd
spoa 3.0.1 rvaser/spoa 4c87d6831e9898dcaf2830182afece85e77b09ce
Progressive Cactus 0.0 glennhickey/progressiveCactus c4bed56c0cd48d23411038acb9c19bcae054837e
ALF 0.97 DessimozLab/ALF 7dfed367bd1f5c002dbbd2a23d597638b36b379c
LASTZ 1.04.00 lastz/lastz ce6e5f598e3e2190b23c512e571b9f9c244adb6e
LAGAN 2.0 - -
MULTIZ 11.2 - -

Supplementary Table S4: GitHub revisions of the software we used. We used the most up-to-date
versions available at the time of development of our project. A dash indicates that we downloaded
the software from the author’s website.

14

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 3, 2020. ; https://doi.org/10.1101/548123doi: bioRxiv preprint

https://doi.org/10.1101/548123
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Results
	Algorithm overview
	Datasets, tools, and evaluation metrics
	Running time and memory
	Accuracy
	Results on simulated data
	Gene families
	Effect of parameters and sequence divergence

	Discussion
	Methods
	Preliminaries
	Problem formulation
	The collinear blocks reconstruction algorithm
	Other considerations

	Other related work
	Parameter details and command lines
	Simulation details

