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Abstract 

A number of recent studies have highlighted the findings that certain lncRNAs are 

associated with alternative splicing (AS) in tumorigenesis and progression. Although existing 

work showed the importance of linking certain misregulations of RNA splicing with lncRNAs, a 

primary concern is the lack of genome-wide comprehensive analysis for their associations.  

We analyzed an extensive collection of RNA-seq data, quantified 198,619 isoform 

expressions, and found systematic isoform usage changes between hepatocellular carcinoma 

(HCC) and normal liver tissue. We identified a total of 1375 splicing switched isoforms and further 

analyzed their biological functions.  

To predict which lncRNAs are associated with these AS genes, we integrated the co-

expression networks and epigenetic interaction networks collected from text mining and database 

searching, linking lncRNA modulators such as splicing factors, transcript factors, and miRNAs 

with their targeted AS genes in HCC. To model the heterogeneous networks in a single framework, 

we developed a multi-graphic random walk (RWMG) network method to prioritize the lncRNAs 

associated with AS in HCC. RWMG showed a good performace evaluated by ROC curve based 

on cross-validation and bootstrapping strategy.  

As a summary, we identified 31 AS-related lncRNAs including MALAT1 and HOXA11-

AS, which have been reported before, as well as some novel lncRNAs such as DNM1P35, 

HAND2-AS1, and DLX6-AS1. Survival analysis further confirmed the clinical significance of 

identified lncRNAs.  
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1. Introduction 

Alternative splicing (AS) changes are frequently observed in cancer and may serve as the 

cancer driver genes. They could originate from somatic mutations that dysfunctions the splicing 

regulatory mechanisms or influences the expression changes of splicing factors or transcript 

factors1. Therefore, AS genes recognized as important signatures for tumorigenesis are of 

significant values in developing therapeutic targets in cancer clinical trials. For example, SF3B1-

targeting compounds spliceosome inhibitor E7107 which have been implemented in advanced 

tumor2. 

Numerous studies showed that the long non-coding RNAs “lncRNAs” (>200nt in length) 

are associated with a number of AS mechanisms3,4. LncRNAs may interact with specific 

alternative splicing factors (ASF) or through other intermediate molecules affecting chromatin 

remodeling to fine-tune the splicing of target genes4. For instance, our previous experimental study 

showed the MALAT1 regulated a ASF, SRSF1 (SF2), in gastric cancer cells5,6. Ji et al. reported 

MALAT1 promotes tumor growth and metastasis in colorectal cancer through binding to SFPQ 

and releasing oncogene PTBP2 7. LINC01133 interacts with splicing factor SRSF6 in colorectal 

cancer 8, acting as a target mimic for SRSF6 interaction with EZH2 and LSD1 in non-small cell 

lung cancer (NSCLC)9.  

A number of splicing regulatory proteins that promote the transformation of their target 

genes can be triggered by transcriptional factors (TFs). For example, a TF, MYC, induced 

upregulation of hnRNP A1 and hnRNP A2, which in turn, regulate alternative splicing of pyruvate 

kinase to promote expression of the cancer-associated pyruvate kinase M2 (PKM2) isoform10,11. 

There exist more comprehensive lncRNA regulatory mechanism in AS, since lncRNAs are either 

pre-transcriptional or post-transcriptional specialists, acting as decoys to draw effectors (miRNAs, 

TFs, or ASFs) away from their targets, as cofactors or guides to alter TF-promoter interactions, 

and as molecular switches to alter TF or ASF activity across multiple targets.  

Although previous efforts identified both lncRNAs and AS that may be important in 

cancer, gaps exist in current studies that only a few cancer-related AS that are regulated by 

lncRNAs have been extensively investigated. However, their methodology either didn’t genome-

widely link lncRNAs to comprehensive AS mechanisms or correlate with clinical outcomes. 

Furthermore, to date, next-generation sequencing technologies have facilitated the identification 

of an accumulation of ~40K novel lncRNAs, whose regulatory functions in AS remain unknown 
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in tumorigeneses. Therefore, a key open question is: how many novel lncRNAs are associated with 

AS modulations in tumorigenesis, genome-wisely.   

Here we utilized a novel network propagation technology, random walk-based multi-

graphic model (RWMG), to simultaneously integrate complicated biological connections among 

lncRNA - effectors (TF, ASF, and miRNA) -AS interaction networks and co-expression networks 

in a single analysis framework. This method is an extended application inspired by Random walk 

with restart algorithm to prioritize important lncRNAs that are involved in AS based on the 

hypothesis that more important genes are likely to receive more links from other networks. In 

comparison with traditional random walk algorithms, which treat all genes equally, our flexible, 

scalable method can be formulated to rank a subset of vertices (e.g., PCGs, lncRNAs), based on 

pre-knowledge as the starting walking vertices. This method is more accurate than other traditional 

“shortest path” network-based integrative methods, as it can overcome the “noisy” and 

“incomplete” highly dimensional heterogeneous data. 

In addition, previous tumor and normal comparison studies are limited to normal adjacent 

to tumor (NAT) tissues. However, these tissues are not truly ‘normal’ as they usually surrounded 

by tumor contaminations. Therefore, many potential cancer biomarkers involved in AS may be 

missed. By combining the ‘pure’ healthy liver organs from GTEx with TCGA expression data, we 

broaden the scope of suspected candidates with a variety of AS patterns.  

2. Method and materials 

2.1 Data description and project design 

The framework of the underlying biological hypothesis and model assumption for this 

project can be found in Fig S1 A-B. The analysis described in this manuscript relied on multiple 

types of data. We downloaded GTEx RNAseq data with 110 normal liver samples; TCGA RNAseq 

data and clinical data from 369 liver tumors and 50 normal samples from the UCSC Xena database 

(http://xena.ucsc.edu/).  The raw RNAseq data (Illumina HiSeq 2000 RNA Sequencing platform) 

was re-processed with UCSC’s Xena Toil 12  to quantify gene level and transcript isoform level 

expression for both coding and non-coding genes. Given that the non-coding transcript expression 

of RNAseq data contains many small and uncertain transcripts, we filtered out the small and 

uncertain transcripts but kept transcripts for intergenic lncRNAs, antisense, sense_intronic, 

sense_overlapping, processed_transcripted, and processed_pseudogene categories based on 

GENCODE v23 annotation13.  
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2.2 Identification of HCC Tumor-specific non-coding genes (lncRNAs, pseudogenes) 

from TCGA and GTEx RNA-seq data.  

We performed a trimmed mean of M-values (TMM) normalization method for RNAseq 

count data 14 so that the expression level for lncRNAs and pseudogenes are comparable. The TMM 

normalized data were further transformed to log2-counts per million for linear modeling. HCC 

differentially expressed (DE) lncRNAs and pseudogenes between tumor and normal samples (T/N) 

were analyzed by R package limma15 with cutoff settings (P<1.0E-04 and Fold Change > 2). The 

method to identify DE miRNAs has been reported in our previous work16. These identified HCC 

specific non-coding DE genes (lncRNAs, pseudogenes, and miRNAs) are expected to represent 

potential key functions in liver tumorigenesis.  

2.3 Analysis of alternative splicing isoforms and functional consequence  

We first removed isoforms which are all zero counts across all the samples. We used R 

package “IsoformSwitchAnalyzeR” to analyze individual isoform switches from T/N comparison 

and their biological consequence changes17,18. Differentially switched isoforms between T/N were 

determined by the following criteria: difference in isoform fraction (dIF) > 0.1 and FDR corrected 

q-value < 0.05. The functional consequences of switched isoforms were further analyzed for 

protein-coding potential(CPAT)19, Non-sense mediated decay (NMD) status, protein domains 

(Pfam) 20,21,  and the amino acid sequence of open reading frames (ORF). We used 0.364 as 

suggested to distinguish coding and non-coding isoforms in CPAT analysis. NMD is a process that 

recognizes mRNAs carrying a premature termination codon (PTC) and triggers their degradation 

to prevent the synthesis of dysfunctional or even harmful proteins. AS that controls gene 

expression is an important process facilitating mRNA degradation in specific isoforms that would 

lead to NMD 22. Since we know the exon structure of all isoforms in a given gene (with isoform 

switching), we obtained their corresponding spliced nucleotide sequence and corresponding 

coding sequence from ORF positions23. The alternative splicing (AS) patterns of switched isoforms 

predicted by spliceR24 include Alternative 3’ acceptor sites (A3), Alternative 5’ donor sites (A5), 

Exon skipping (ES), Mutually exclusive exons (MEE),  Mutually exclusive skip (MES), AS at TF 

start sites (ATSS), AS at termination site (ATTS), and Intron retention (IR). Enrichment tests are 

performed via base R’s prop.test and comparisons of group difference are done with fisher.test. P 

values are corrected for multiple testing using the Benjamin- Hochberg scheme and an FDR < 0.05 

is considered significant.  
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2.4 Construction of AS-associated lncRNA epigenetic regulatory interaction 

subnetworks in HCC 

We collected all possible physical interactions of lncRNAs and their targeted genes through 

database searching and text mining as the global background information. These interactions are 

evidenced from experiments validation, neighborhood, gene fusion, and co-occurrence 

information of lncRNAs connecting with miRNA-, TF-, ASF-, and switched genes. Specifically, 

HCC LncRNA-target networks were compiled from the following resources: Chiu et al.,25, 

miWalker2.0 26, STARBASE v2 27, and lncRNA-disease 28 29, which were analyzed from several 

high-throughput assays, including ENCODE enhanced version of the crosslinking and 

immunoprecipitation assay (eCLIP) and chromatin immunoprecipitation sequencing (ChIP-seq) 

data 30. HCC specific miRNA-target networks has been described in our previous published 

results16; TF-target predicted interaction network were manually curation from the following 

databases and publications Chiu et al. 25, Table S5, HTRIdb 31, Whitfield 32, and TRANSFAC 33 based 

on combined evidence from ENCODE ChIP-Seq assays and position weighted matrix (PWM) for 

TF motif analysis.  

Genes related to AS regulatory pathway were collected from pathCards34, KEGG 

spliceosome 35, NCBI Biosystems mRNA processing36, REATOME mRNA splicing pathway and 

processing of capped intron-containing pre-mRNA pathway37. These genes were involved in an 

essential component of splicing factors or non-snRNA spliceosome required for the second 

catalytic step of pre-mRNA splicing. Among these collected 335 splicing regulator genes, 86 are 

experimental validated as alternative splicing factors (ASF). ASF and target genes interactions 

were manually confirmed from SpliceAid 238, ASF motif analysis from SFmap39, a subset of RNA-

binding protein network by Chiu et. al25, Table S6, and STRING database 40. 

Finally, identified HCC DE lncRNAs, pseudogenes, and miRNAs were mapped to the 

global regulatory networks to construct HCC-specific sub-networks that contain switched genes 

as the targets or TF/ASF as the co-effectors of non-coding RNA regulators.  

2.5 Construction of HCC lncRNA-AS co-expression interaction networks at isoform 

level 

Pearson correlation was used to estimate the lncRNA co-expression relationships at 

isoform level. We only kept the connections for the pairs of lncRNA and protein-coding genes 

(PCGs), if their absolute correlation coefficient > 0.75, FDR p <0.05. The types of PCGs included 
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the TFs, ASFs, and genes with isoform switches. Directions of lncRNAs that are negatively 

correlated with their targeted PCGs were predicted to inhibit their expression, while positive 

correlation indicates activation.   

2.6 Random walk multi-graphic (RWMG) model for the integration of heterogeneous 

interaction networks 

Random walk multi-graphic (RWMG) model is an integrative application of page rank 

with restart algorithm (RWR) on multiple layers of networks. Detailed method description can be 

found in our previously published report 41. Briefly, given a graph G(V,E), (𝑖,𝑗)∈V are the vertices 

lncRNA i and AS genes j , and edge (𝑖,𝑗)∈𝐸 is weighted by the connectivity score between these 

vertices. Multiple edges are allowed to connect between any two vertices based on the relationship 

defined from the co-expression network, epigenetic regulatory network and splicing pathway PPI 

networks. Assuming the total number of lncRNAs to be m and of AS genes to be n, the probability 

for which lncRNA i will traverse to AS genes j is defined by the adjacency matrix: 𝐵𝑐|𝑖, 𝑗| =

B𝑖𝑗

∑ 𝐵𝑘𝑗
𝑚
𝑘=1

. A “teleportation term” is added to  𝐵𝑐 for the sake of numerical stability. Thus the transition 

matrix for networks is defined as , where  an m by n matrix 

with all entries is equal to 1,   α is the probability of a lncRNA jumping to one of its neighbors 

with the probability governed by matrix 𝐵𝑐, and 1−𝛼 defines the probability of this lncRNA 

jumping randomly to any other vertex and relinquishing the matrix 𝐵𝑐 for traversal.  

The final multi-dimensional heterogeneous network will be merged for the overlapped 

lncRNA node features and taken the union of distinct nodes to augment each individual network 

with missing connections. We implemented the RWR algorithm on the final multi-graphic network 

by R packages dnet and igraph 42. Network visualization was performed by R package visNetwork 

43. Those genes with known roles in regulating AS network will be set as the “seed” nodes in 

advance to predict the “new” lncRNAs, based on move probabilities from the current node to any 

of their randomly selected neighbors.  

To evaluate our approach’s sensitivity, we simulated different random walk strategies for 

optimization. We created a list of experimentally validated AS associated genes as “gold-standard” 

true positive genes (TPG) curated from the careful literature review and randomly selected genes 

as the “gold-standard” true negative (TNG). We chose the “best” model that has the most candidate 

significantly enriched in the “gold-standard” gene list. In reality, the number of TPG is much 
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smaller compared to TNG. To avoid bias from highly imbalanced data between these two sets, we 

performed a bootstrap resampling technique by selecting an equal number of data as TNG. This 

process was repeated 10 times, and the overall performances were calculated by the mean value of 

these performances. 

2.7 Survival analysis for prognostic confirmation of identified pathogenic lncRNAs 

and Pseudogenes.  

To confirm the pathogenic characters of identified lncRNAs and pseudogenes, univariate 

Cox proportional model was used to evaluate the association of selected genes with overall 

survival outcomes. Kaplan–Meier plots and log-rank test statistics were used to visualize the high- 

and low-risk groups. The cutoff of the high- and low-risk group was determined by the median 

value of the normalized count of selected genes.  

3. Results 

3.1 Significantly expressed lncRNAs and pseudogenes in HCC 

We identified 369 differentially expressed (DE) lncRNA genes and 171 DE pseudogenes 

from T/N comparison( Table S1). The visualizations of DE lncRNAs and pseudogenes were shown 

in volcano plots (Fig. 1). Compared to other studies, many DE LncRNAs, such as MALAT1, 

CDKN2B-AS1, and HOTTIP, have been reported to be associated with liver cancers before 44-46. 

We also highlighted several important pseudogenes, such as HNRNPA1P4, HNRNPA1P21, which 

are the pseudogenes of heterogeneous nuclear ribonucleoproteins A1 (hnRNPs) who play key roles 

in the regulation of alternative splicing. We performed DE analysis as the initial screen step to 

narrow the focus of the HCC specific non-coding genes associated with AS for the downstream 

network analysis. 

3.2 Identification of significantly switched isoforms and prediction of alternative 

splicing patterns 

From the isoform level expression T/N comparison, we identified 1375 switched isoforms 

mapping to 1078 unique genes. Among these switched isoforms, 1251 are protein-coding isoforms, 

and 124 are non-coding isoforms including antisense, lincRNA, pseudogenes, and others (Table. 

S2). We found that the proportion of switching rate for coding genes is much higher than non-

coding genes (Fisher's exact test, p.value= 8.4e-08, Fig. 2 A-B). In order to intuitively visualize 

the splicing composition of these switched isoforms, we breakdown the dIF distribution according 

to isoform types such as lincRNA, antisense, and pseudogenes with the most significant switched 
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isoforms (dIF > 0.2 or dIF < -0.2) highlighted (Fig. 2C). 

Fig. 2D shows the eight splicing patterns for switched isoforms stratified by isoforms usage 

gain or loss in the tumor. Some of the switched isoforms are predicted to have multiple AS events 

in HCC (Table S3). Interestingly, we observed a global phenomenon that the AS events are not 

equally used - most prominently illustrated by the use of ATSS in HCC, where there is (a lot) more 

losses than the gain of amino acid coding exons. It is noteworthy that IR and ATSS are enriched 

in significant loss of isoform usage in tumor, but A5 and A3 are significantly enriched in a gain 

(Fig 2E). Here IR events are of particular functional interest since they represent the largest 

changes in isoforms. As we displayed in the violin plots, the enriched IR and A3 splicing groups 

reported the significantly opposite direction of isoform usages between T/N samples (Fig. 2F). 

3.3 Analysis of functional consequences for switched isoforms 

The overview of switched isoforms impacting the biological function alterations in HCC 

is shown in Fig 3A. We can see that the number of protein domain gain is comparable to domain 

loss, but is significantly more than domain “switch”.  Here, the “switch” term indicates both a gain 

and a loss occurred. Also, switching resulting in ORF gain is significantly more than ORF loss. 

For the Gene Ontology analysis, both gain and loss switched isoforms are associated with different 

types of metabolic process. KEGG analysis shown the isoform loss in tumor tissue are associated 

with virus infection, hepatitis C, etc, while isoform gain in the tumor is associated with Base 

excision repair, apoptosis, etc (Table S2).  

Importantly, we confirmed 20 genes with switched isoforms which are involved in AS 

regulatory functions (Table 1).  Fig. 3B displays one of an example of AS factor, SNRPF’s 

isoforms structures, gene expression, and isoforms’ usage in T/N comparison. SNRPF is a core 

component of U small nuclear ribonucleoproteins, which are key components of the pre-mRNA 

processing spliceosome. We can see from the figure that there is no significant difference for 

SNRPF gene expression, but an opposite expression pattern for transcript ENST00000553192.5.1 

with other isoforms. All the above evidence showed that genes with switched isoforms are often 

functional important in tumorigenesis, but may be ignored from previous studies due to their genes 

expression may be not significantly differentiated. 

3.4 Prediction of AS correlated non-coding RNAs at both transcript and gene level 

In order to identify which lncRNAs are associated switched isoforms at the transcript level, 

we constructed a lncRNA and genes with switched isoforms co-expression network. Different 
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from traditional gene level co-expression network, the connections between lncRNA and genes 

with multiple splicing isoforms could be 1 vs. 1 or 1 vs. many. The lncRNAs - switched isoforms 

connections have been summarized in Table S3. Due to space limitation, we only illustrated the 

relationships between lncRNAs and genes with enriched AS patterns in Fig 4A.  

However, since the lncRNA regulation mechanism involved in AS events is very 

comprehensive, as the regulation may not directly be reflected from expression abundance, but 

through physical interaction or DNA/RNA binding. LncRNA could influence genes splicing 

patterns by inhibiting and activating the expression of alternative splicing factors, or through 

transcript factors indirectly interact with splicing factors and ultimately cause AS factor targeted 

gene expression change. Therefore, we constructed a comprehensive gene level network keeping 

as many TF, AS-regulators, and their targeted genes as possible in AS modulation.  

Fig 4B illustrated the HCC lncRNAs - AS network including connections with TFs, ASFs, 

and miRNAs based on evidence from publicly available resource and gene-level co-expression 

analysis. Only the lncRNA which directly alters AS genes expression or indirectly alters AS genes 

through TF, ASF or miRNAs can be included for downstream RWMG analysis. Table S4 provided 

the prediction of all AS-related genes ranking by RWMG important score.  

3.5 Computational, Clinical and experimental evaluation for predicted pathogenic 

lncRNAs involved in AS regulation 

As the ROC curve shown in Fig 5A, the averaged area under curve (AUC) value after 

optimization has been improved from 0.751 to 0.923 based on bootstrapping value. In order to 

select the best number of top n ranked genes that correspond to a good tradeoff between the 

sensitivity and specificity, we selected the cutoff based on the trend of the changes at which n 

where Δ𝑇𝑃𝑅 /Δ𝐹𝑃𝑅 exhibiting a sudden drop (Fig 5B). We can see from the figure, n=150 is the 

best number for gene selection. The top ranked lncRNAs associated with AS functions can be 

found in Table 2. 

Among the top predicted lncRNAs that are involved in AS, we further confirmed their 

clinical significance. As a result of univariate survival analysis screen, a total of 51 lncRNAs and 

24 pseudogenes were found to be associated with HCC overall survival respectively (Table S5). 

Fig 6 A and B showed the top 10 significant genes based on the Cox proportional regression model. 

Fig 6 C-D showed the survival curve and distribution of CDKN2B-AS1 and UBE2SP1.  
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4. Discussion 

In the last decade, great studies have investigated the association of splicing isoforms and 

lncRNAs profiles from deep sequencing. For example, it has been known for a long time that some 

small nuclear uridine (U)-rich RNAs (snRNPs) who are the core components of the pre-mRNA 

processing spliceosome can collaborate with some splicing factors which are encoded by 

heterogeneous nuclear ribonucleoprotein complex subunits (hnRNPs) to fine-tune complex 

splicing regulations4. Impressively, we found a number of core snRNPs isoforms including 

SNRPE, SNRPD3, SNRPD3, SNRPF, and SNRNP40 are switched, although their expression 

abundance is not necessary differentially expressed from T/N comparison in HCC development. 

For example, SNRNP40 catalyzes the removal of introns from pre-messenger RNAs. Similarly, a 

hnRNP U like protein HNRNPUL2, who is also a scaffold-attachment factor, plays an important 

role in the formation of a 'transcriptional' complex by binding to scaffold attachment region and 

cause chromatin remodeling. 

The primary mechanisms involving lncRNAs in AS modulation can be classified in three 

ways, including: (i) lncRNAs directly influencing isoform expression through activation or 

suppression mechanism; (ii) lncRNAs forming RNA-RNA duplexes with pre-mRNA molecules 

and (iii) lncRNAs affecting the target AS genes through indirectly inhibiting or promoting the 

expression of splicing factors or through transcript factors. However, most previous studies only 

focus on individual genes and/or isoform switches regulated by lncRNAs. More comprehensive 

interactions can be detected at isoforms level besides of gene level. Our predictions identified 

several candidates onco- and tumor suppressor lncRNAs whose somatic alterations associated with 

AS at both isoform and gene level and of clinical significance in HCC.  

In the transcriptional level correlation network, we found the majority of lncRNA isoforms 

were correlated with more than one AS event, among which some were playing opposite roles in 

the AS regulations. In addition, we can see that many lncRNAs may partially in competition with 

the same AS event. For example, the pseudogenes of UBE2S, which are UBE2SP1, UBE2SP2, 

and UBE2MP1, are significantly correlated with FEN1’s Intron Retention and Alternative 5’ donor 

sites mechanisms (Fig 4A). The FEN1 gene plays an important role in removing 5' overhanging 

flaps and the 5-3 exonuclease activities involved in DNA replication and repair 47. While the 

UBE2S is involved in ubiquitination and subsequent degradation of VHL, resulting in an 

accumulation of HIF1A 48, however, the reason why its pseudogenes are associated with FEN1 is 
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not clear. Maybe the next step for experimental validation for a deep understanding of the 

mechanisms. Taken together, these results confirmed that these identified lncRNAs need to be 

better investigated in the future. Our results provided a better resolution of AS correlated lncRNAs 

at the isoform level.  

AS events are mainly regulated by splicing factors, which bind to pre-mRNAs and 

influence exon selection and splicing site choice. Moreover, transcriptional factors will activate or 

suppress the expression of ASF. Importantly, we found ASF may have switched isoforms. A 

switched ASF RP9, which can be bound by the proto-oncogene PIM1 product, a serine/threonine 

protein kinase, also can cause its target PIM1 switched. Although TFs were usually thought for a 

long time to encode a single protein that changes the expression of their target genes, more and 

more TFs, are now found to be alternatively spliced 49. Here, we also found a group of TFs in the 

ETS family (E26 transformation-specific), which are ETS1, ETS2, ETV3, ELF4, are switched 

together. These ETS genes have been confirmed to be associated with cancer through gene fusion 

50 and are involved in a wide variety of regulatory functions such as cell migration, proliferation, 

and cancer progression 51 52. Interestingly, the ETS1 target splicing factor QKI, and ETV3 target 

splicing factor CELF1. More interestingly, lncRNA FAM99B is predicted to be associated with 

these ETS family genes and their low expression are associated with HCC patients’ poor prognosis. 

CDKN2B-AS1, also known as ANRIL, its association with HCC has been reported in 

several studies53-55. CDKN2B-AS1 has both linear and circular isoforms and their functions are 

different. For example, its linear isoform can regulate the c-myc-enhancer binding factor RBMS1 

56, while its circular isoform is confirmed to be an important AS regulator that causing skipped 

exons 57 mainly found in cardiovascular disease 58 59. However, this is the first time we found it 

can activate alternative splicing genes in liver cancer. A potential explanation could be it is 

functionally related to lipid metabolism and a majority of liver cancer due to lipid disorder. In 

addition, the prognostic value of CDKN2B-AS1 has been revealed in our project. However, how 

exactly CDKN2B-AS1 controls these genes’ splicing is not clear. Further experimental validation 

can be planed. We identified HAND2-AS1 gene showed consistent alternative splicing pattern at 

the start sites and termination site for METTL7B at isoforms level. METTL7B is a membrane-

associated protein that resides on hepatic lipid Droplets. An explanation is that HAND2-AS1 

activate the METTL7B spliced isoform lipid disordered and is associated with HCC, which didn’t 

report before. Gene-level RWMG network analysis further reveals that both CDKN2B-AS1 and 
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HAND2-AS1 can influence AS either through TFs and ASFs. For example, HAND2-AS1 TFs (i.e. 

ETS1, SP1, E2F7), or ASFs (i.e. SRSF7, SFRP1, HNRNPK); CDKN2B-AS1 associated TFs (SP4, 

E2F7) and ASF (SRSF1, SRSF2). 

In this project, we extended this algorithm to multiplex and heterogeneous networks. The 

walk can explore different layers of the epigenetic regulatory network, expression correlation 

network, and protein interaction network. A recent Nature Review paper by Sharan et al., also 

suggested that the “network-propagation” method is a “powerful” and “accurate” refined approach 

in the network, since it is capable of dealing with “noisy” and “incomplete” observations by 

simultaneously considering all possible paths among vertices. Analyzing these heterogeneous data 

together will significantly improve the prediction accuracy. By using this gene-ranking strategy, 

potentially spurious predictions (false positives) that are supported by a single (shortest) path are 

down-weighted, and true high ranked genes that are potentially missed, even though they are well 

connected to the prior list (false negatives), are promoted. 

 To our best knowledge, this is the first attempt to predict lncRNAs regulations on AS using 

a rigorous, multi-graphic approach by integrating such large scale and complex networks. Of 

interest for potentially limiting the accuracy of random walk and network propagation methods are 

an incomplete collection of known lncRNAs, especially pseudogenes, used to supervise prediction 

of new candidates. As such, we addressed several unique challenges associated with these datasets’ 

complexity in each step. For example, in the data preprocessing steps, we have carefully addressed 

the challenges by collecting as many as experimental verified and predicted lncRNAs that are 

taking account of AS; In our statistical modeling steps, we carefully addressed the robustness of 

complex data integration, especially for non-informative or noisy datasets. Also, we investigated 

several random walk strategies by trying different groups of vertices such as lncRNAs, ASFs and 

TFs as a start point to optimize models. 

However, the lncRNA regulatory mechanism is very complicated, as its mechanism differs 

with different stages, such as the pre-mRNA or post-mRNA stage. Therefore, the main limitation 

of this project is we are not able to consider several other comprehensive mechanisms at different 

stages, such as recognition of the splicing site can be modulated by cis-regulatory sequences, 

known as splicing enhancers or silencers, which contribute to the generation of two or more 

alternatively-spliced mRNAs from the same pre-mRNA. Also, lncRNA determine AS patterns 

through chromatin remodeling mechanism and shape the 3D genome organization. Our next step 
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will focus on interpreting these mechanisms at different stages.  

 

5. Conclusion 

We performed a large-scale RNAseq analysis to identify alternative splicing isoforms and 

their biological consequences in liver cancer. To predict which lncRNAs are associated with 

splicing mechanisms in HCC, we developed a RWMG model to integrate multi-layers 

heterogeneous networks including epigenetic regulatory network, transcriptional level co-

expression network, and PPI network with the evidence that lncRNAs in the correlation between 

effectors (miRNAs, TFs, or ASFs) and their associated splicing genes. Our project is the first time 

using the network-based computational method to genome-wisely predict AS-related lncRNAs in 

HCC, which showed a good prediction performance (AUC=0.923) and clinical significance.   
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Legend 

Figure 1. HCC specific lncRNAs (A) and Pseudogenes (B) that are differentially expressed in tumor and 

normal.  

Figure 2. Genome-wide transcript analysis for switched isoforms between tumor and normal 

comparison in HCC. (A) Global distribution of whole genome transcriptions based on GENCODE 

annotation. The percentage of coding and non-coding genes are about half and half. (B) Distribution of 

the HCC switched Isoforms in coding and non-coding region. About 95% of switched isoforms are from 

protein-coding genes. (C) Distribution of differential isoform fraction (dIF) stratified by coding or non-

coding isoform types. The most significantly switched Isoforms (dIF> 0.2) are highlighted. (D) Illustration 

of alternative splicing event types for the switched isoforms and distribution of Isoforms gain (increased 

dIF) or loss (decreased dIF) in each types. (E) Enrichment analysis for alternative splicing types in isoform 

fraction gain or loss. IR and ATSS categories are enriched in loss switches, while A5 and A3 are 

significantly enriched in gain. (F) Distribution of dIF changes with or without IR and A3 events. Isoforms 

showed less usages in IR type and more usage in A3 type.  

 

Figure 3. (A) Overview of the number of switched isoforms predicted to have functional consequences. 

(B) Visualization of switched Isoform structure. Taking an splicing factor gene, SNRPF, for example, its 

isoform ENST00000553192.5.1 showed oposite switching pattern compared to others. And 3 out of 5 

isoforms showed differential isoform expressions, although no difference for the overall gene 

expression. 

 

Figure 4. (A) Visulization of lncRNA –AS co-expression network integrated by AS event types (i.e, A3, IR, 

ES) at the isoform expression level.  (B) Illustration of lncRNA-AS comprehive network derived from gene 

level co-expression network and regulatory network involved with co-effecors miRNA-, TF-, and ASF- 

interactions.  

 

Figure 5. (A) ROC curve for the predictive model evaluation. pPerf1 (AUC=0.923) with the “seed” genes 

showed a better performance than pPerf2 (AUC=0.751) without the “seed” genes. (2) Trade-off between 

the sensitivity and specificity with the number of top n genes. We can see that the best cutoff is n=150, 

as the ΔTPR/ΔFPR value decreasing very fast in the begining and approaching to smaller changes for n 

around 150. 
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Figure 6. Survival analysis for the identified lncRNA and psudeogenes involved in AS mechanisms. 

Hazard Ratio plots from Cox regression analysis for top 10 lncRNAs (A) and top 10 pseudogenes (B) 

associated with overall survival. K-M curves for a lncRNA, CDKN2B-AS1 (C) and a psudogene, UBE2SP1 

(D) using the median value as the cutoff. High expression of both genes are significantly associated with 

poor prognosis.   

 

Table 1. Statistic summary of splicing factor genes with alternative switched isoforms. 

 

Table 2. Statistic summary of predicted top-ranked non-coding RNAs associated with AS ranking by 

RWMG score.  

 

Supplementary files 

Figure S1. (A) Illustrations of overall project design, and (B) explaination of biological mechanisms.  

Table S1. Statistic summaries for significantly differential expression genes between tumor and normal 

comparison for lncRNAs and pseudogenes.   

Table S2. Statistic summaries and functional analysis for significantly switched isoforms between tumor 

and normal comparison for lncRNA and protein-coding genes, as well as prediction of splicing event 

patterns for switched genes. Gene ontology and KEGG pathway enrichment analysis are performed for 

upregulated isoforms (gain) and downregulated isoforms (loss) respectively.  

Table S3. Predicted lncRNA interaction pairs at the transcriptional co-expression level.  

Table S4. Statistic summary of AS-associated lncRNAs and PCGs ranking by RWMG predictive score. 

Table S5. Statistic summary of significant lncRNAs and psudogenes associated with overall survival. 
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Table 1 

isoform_id gene_id gene_name dIF q_value 

ENST00000555295.1 ENSG00000100836.10 PABPN1 0.182 1.10E-32 

ENST00000459687.5 ENSG00000100410.7 PHF5A 0.172 6.07E-18 

ENST00000411938.1 ENSG00000128534.7 LSM8 0.169 2.49E-19 

ENST00000553192.5 ENSG00000139343.10 SNRPF 0.152 6.22E-21 

ENST00000297157.7 ENSG00000164610.8 RP9 0.145 2.68E-19 

ENST00000491106.1 ENSG00000060688.12 SNRNP40 0.128 4.28E-19 

ENST00000560313.2 ENSG00000090470.14 PDCD7 0.124 2.17E-06 

ENST00000301785.5 ENSG00000214753.2 HNRNPUL2 0.116 1.19E-28 

ENST00000402849.5 ENSG00000100028.11 SNRPD3 0.113 1.67E-11 

ENST00000535326.1 ENSG00000110107.8 PRPF19 0.103 1.79E-07 

ENST00000597776.1 ENSG00000130520.10 LSM4 0.102 2.31E-34 

ENST00000472237.5 ENSG00000132792.18 CTNNBL1 0.102 5.80E-13 

ENST00000548994.1 ENSG00000075188.8 NUP37 0.101 1.68E-11 

ENST00000564651.5 ENSG00000102978.12 POLR2C 0.1 3.01E-14 

ENST00000505885.1 ENSG00000096063.14 SRPK1 -0.108 1.94E-11 

ENST00000404603.5 ENSG00000100028.11 SNRPD3 -0.109 2.30E-15 

ENST00000540127.1 ENSG00000214753.2   HNRNPUL2 -0.116 2.99E-48 

ENST00000367208.1 ENSG00000182004.12 SNRPE -0.13 1.79E-31 

ENST00000527554.2 ENSG00000100697.14 DICER1 -0.139 2.98E-21 

ENST00000595761.1 ENSG00000213024.10 NUP62 -0.157 3.62E-31 

ENST00000488937.1 ENSG00000136875.12 PRPF4 -0.159 6.94E-12 

ENST00000559051.1 ENSG00000090470.14 PDCD7 -0.163 9.60E-15 

ENST00000216252.3 ENSG00000100410.7 PHF5A -0.216 4.30E-21 
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Table 2  

Gene. Symbol Ranking Score Types 

LINC00675 1 0.00368174 lincRNA 

CTD-2171N6.1 2 0.002824633 lincRNA 

HOTTIP 3 0.002677841 antisense 

DNM1P35 4 0.002483954 antisense 

LEF1-AS1 5 0.002397948 antisense 

AP006285.7 6 0.002123275 lincRNA 

WARS2-IT1 7 0.002081091 antisense 

LINC00355 8 0.002063983 lincRNA 

RP11-81H3.2 9 0.002032482 lincRNA 

HOXA11-AS 10 0.002028198 antisense 

RP11-261N11.8 11 0.002005615 antisense 

RP3-355L5.4 12 0.001938399 antisense 

RP11-138J23.1 13 0.001929433 lincRNA 

RP11-525K10.3 14 0.001923733 antisense 

RP11-495P10.7 15 0.001917542 lincRNA 

DLX6-AS1 16 0.00188837 antisense 

RP11-356C4.5 17 0.001861006 lincRNA 

CDKN2B-AS1 18 0.001856714 antisense 

RP11-495P10.5 19 0.001834267 lincRNA 

SFTA1P 20 0.001751498 lincRNA 

PRSS51 21 0.001750058 antisense 

MALAT1 22 0.001672339 lincRNA 

FEZF1-AS1 23 0.001669135 antisense 

RP4-530I15.9 24 0.001619806 antisense 

RP11-158M2.5 25 0.001618054 antisense 

CTD-2374C24.1 26 0.001617345 lincRNA 

PWRN1 27 0.001605646 lincRNA 

CTC-573N18.1 28 0.001534221 lincRNA 

RP11-284F21.9 29 0.001527715 lincRNA 

RP11-3J1.1 30 0.001523171 lincRNA 

FENDRR 31 0.001509286 lincRNA 
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Gene. Symbol Ranking Score Types 

hsa-miR-3662 1 0.003384 miRNA 

hsa-miR-760 2 0.002603 miRNA 

hsa-miR-34c-5p 3 0.002485 miRNA 

hsa-miR-214-3p 4 0.002232 miRNA 

hsa-miR-301b-3p 5 0.002073 miRNA 

hsa-miR-3687 6 0.001947 miRNA 

hsa-miR-767-5p 7 0.00189 miRNA 

hsa-miR-765 8 0.00184 miRNA 

hsa-miR-1269a 9 0.001744 miRNA 

hsa-miR-135a-5p 10 0.001726 miRNA 

hsa-miR-1254 11 0.001669 miRNA 

hsa-miR-877-5p 12 0.001662 miRNA 

hsa-miR-130a-5p 13 0.001588 miRNA 

hsa-miR-184 14 0.001578 miRNA 
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