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Abstract 

Antibiotic exposure can perturb the human gut microbiome and cause changes in the 

within-host abundance of the genetic determinants of drug-resistance in bacteria. Such 

within-host dynamics are expected to play an important role in mediating the relationship 

between antibiotic use and persistence of drug-resistance within a host and its 

prevalence within a population. Developing a quantitative representation of these 

within-host dynamics is an important step towards a detailed mechanistic understanding 

of the population-level processes by which antibiotics select for resistance. Here we 

study extended-spectrum beta-lactamase (ESBL) producing organisms of the 

Enterobacteriaceae bacterial family. These have been identified as a global public health 

priority and are resistant to most first-line antibiotics for treatment of Enterobacteriaceae 

infections.  

 

We analyse data from 833 rectal swabs from a prospective longitudinal study in three 

European countries including 133 ESBL-positive hospitalised patients. Quantitative 

polymerase chain reaction was used to quantify the abundance of the CTX-M gene family 

– the most wide-spread ESBL gene family – and the 16S rRNA gene as a proxy for 

bacterial load. We find strong dynamic heterogeneity in CTX-M abundance that is largely 

explained by the variable nature of the swab sampling. Using information on time-varying 
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antibiotic treatments, we develop a dynamic Bayesian model to decompose the serial 

data into observational variation and ecological signal and to quantify the potentially 

causal antibiotic effects.  

 

We find an association of treatment with cefuroxime or ceftriaxone with increased CTX-M 

abundance (approximately 21% and 10% daily increase, respectively), while treatment 

with meropenem or piperacillin-tazobactam is associated with decreased CTX-M 

(approximately 8% daily decrease for both). Despite a potential risk for indirect selection, 

oral ciprofloxacin is also associated with decreasing CTX-M (approximately 8% decrease 

per day). Using our dynamic model to make forward stochastic simulations of CTX-M 

dynamics, we generate testable predictions about antibiotic impacts on duration of 

carriage. We find that a typical course of cefuroxime or ceftriaxone is expected to more 

than double a patient’s carriage duration of CTX-M. A typical course of 

piperacillin-tazobactam or of meropenem – both options to treat hospital acquired 

infections (HAI) like pneumonia – would reduce CTX-M carriage time relative to 

ceftriaxone plus amikacin (also an option to treat HAIs) by about 70%. While most 

antibiotics showed little association with changes in total bacterial abundance, 

meropenem and piperacillin-tazobactam were associated with decrease in 16S rRNA 

abundance (3% and 4% daily decrease, respectively).  

 

Our study quantifies antibiotic impacts on within-host resistance abundance and 

resistance carriage, and informs our understanding of how changes in patterns of 

antibiotic use will affect the prevalence of resistance. This work also provides an 

analytical framework that can be used more generally to quantify the antibiotic treatment 

effects on within-host dynamics of determinants of antibiotic resistance using clinical 

data.   
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Introduction 

Antibiotic use can select for resistance through multiple pathways (Lipsitch & Samore, 

2002) : It may i) affect the duration of resistance carriage and hence transmission 

potential, ii) increase bacterial load of resistant organisms and thus increase transmission, 

or iii) selectively suppress host microbial flora where resistance is lacking, which may 

reduce the potential for transmission of sensitive organisms and also render those people 

more susceptible to cross-infections with resistant bacteria. For all of these processes, a 

quantitative understanding of within-host selection dynamics is important.  

 

Here we focus on Enterobacteriaceae, a bacterial family that is commonly found in the 

healthy mammalian gut microbiome (Donnenberg, n.d.). Some member 

genus-species—Klebsiella pneumonia, Escherichia coli , Enterobacter  spp .—are important 

opportunistic human pathogens that can cause urinary tract, bloodstream, and 

intra-abdominal infections, as well as respiratory tract infections such as 

hospital-acquired pneumonia. A major concern is the global increase in 

extended-spectrum beta-lactamase (ESBL)-producing organisms in this family (Tacconelli 

et al., 2018) . ESBL genes – of which the most important and globally widespread is the 

bla CTX-M gene family – confer resistance to clinically important broad-spectrum 

antimicrobials, such as third generation cephalosporins (D. L. Paterson, 2000). These 

genes commonly reside on large conjugative plasmids (Bonnet, 2003) , and are co-carried 

with other antibiotic resistance determinants, making them a good marker for multi-drug 

resistance (MDR) in the Enterobacteriaceae (Schwaber, Navon-Venezia, Schwartz, & 

Carmeli, 2005). Because Enterobacteriaceae have their main biological niche in the gut 

microbiome (Masci, 2005) , these bacteria are exposed to substantial collateral selection 

from antibiotics used to treat or prevent infections with other organisms (“bystander 

selection”(Tedijanto, Olesen, Grad, & Lipsitch, 2018)). Quantifying the effects of antibiotic 

therapy on the within-host resistance dynamics will help us to better understand the 
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potential for selection of drug-resistant Enterobacteriaceae associated with different 

patterns of antibiotic usage.  

 

In this work, we analysed follow-up rectal swabs (n=833) from 133 ESBL positive 

hospitalised patients from three hospitals (Italy, Romania, Serbia) to study the dynamics 

of antibiotic resistance gene abundance. Both CTX-M gene and 16S rRNA gene 

abundance, as a proxy for total bacterial load, were determined using quantitative 

polymerase chain reaction (qPCR). Previously, (Meletiadis et al., 2017)  demonstrated a 

statistical association between exposure to ceftriaxone and increases in relative 

abundance of CTX-M using a subset of these data. Here, we aimed to fully characterise 

the within-host dynamics of CTX-M by developing a mechanistic model relating changes 

in CTX-M and 16S rRNA abundance to fine-grained patient-level antibiotic exposure data 

including all important classes of antibiotics used in this population. We extended 

previous work that uses discrete time Markov models to infer ecological parameters from 

microbial ecosystems (Faust & Raes, 2012; Stein et al., 2013) . By incorporating 

hidden-state dynamics, our model explicitly accounts for observation uncertainty (due to 

variability in qPCR measurements and the rectal swab procedure), allowing us to separate 

observation noise from real within-host processes. We then used this model to make 

predictions about how patterns of exposure to different antibiotics would impact on 

CTX-M carriage duration. The development of this data-driven within-host model and its 

use in exploring the impact of antibiotic treatment on amplification and loss of resistance 

is an important step in developing a quantitative mechanistic understanding of how 

antibiotic use drives changes in the prevalence of resistance in a population.  

 

Results 

1 Patient cohort and treatment  During enrolment time of the study a total of 1,102 

patients were screened positive for ESBL Enterobacteriaceae at admission, and 133 

patients (12%) gave consent to be included in the study: 51 (38%) from Romania; 52 
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(39%) from Serbia; and 30 (23%) from Italy. The median length of hospital stay was 15 

days (maximum of 53 days), and a median of five rectal swabs per patient were taken 

(range of 1-15). 114 out of 133 (86%) enrolled patients received antibiotics during their 

stay and 85 of these, 114 (75%) received two or more different antibiotics. The different 

antibiotic classes, ranked by proportion of antibiotic treatment days, were cephalosporins 

(22.9%), antimycobacterials (18.8%), fluoroquinolones (16.3%), penicillins (8.3%), 

imidazole derivatives (8%), glycopeptide (7%), carbapenems (4.6%), and others (14.1%). 

Two thirds of antibiotic treatment days were from intravenously administered antibiotics 

and one third from oral administration. Details on individual antibiotics are given in Table 

2.  

 

2 Resistance dynamics The time-varying CTX-M abundance exhibits a diverse range of 

dynamic patterns, including monotonic increases and decreases, as well as highly 

variable non-monotonic behaviour (Figure 1 a). Qualitatively similar fluctuations in CTX-M 

abundance were seen both in the presence and absence of antibiotic treatment. To 

determine whether this high level of dynamic variation contained a meaningful biological 

signal, we first studied temporal autocorrelation. If the observed variability is driven by 

observation uncertainty – for instance through the swab procedure, DNA extraction, or 

qPCR process – we expect little autocorrelation in the time series. Conversely, if the 

observed fluctuations reflect true within-host dynamics in carriage levels, we would 

generally expect to see positive autocorrelation. We found a clear signal of first-order 

autocorrelation for both the CTX-M and the 16S rRNA gene time series, though 

autocorrelation was substantially stronger for the CTX-M data (Supplementary Figure 1 

a and b ). Using a Bayesian state-space model that decomposes the time series data into 

an observation component (representing noise due to variability in qPCR runs and in the 

swab and DNA extraction procedure) and a process component (due to the within-host 

dynamics), we estimated that much of the variability in CTX-M and 16S rRNA outcomes 

was due to measurement error associated with the swab procedure (median estimate 

 

5 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2019. ; https://doi.org/10.1101/548453doi: bioRxiv preprint 

https://doi.org/10.1101/548453
http://creativecommons.org/licenses/by-nc/4.0/


[90% credible interval [CrI]] of 54% [44%, 57%] and 73% [68%, 77%], respectively). 

However, the CTX-M data in particular were found to contain a strong process 

component signal, indicating that a median estimate of 36% (90% CrI 30%, 43%) of the 

variability in the qPCR outcomes was due to underlying within-host dynamics 

(Supplementary Figure 1 c ). To further investigate the determinants of CTX-M gene 

variation, we explored how much the CTX-M gene load varied between different patients 

or, over time, within the same patient. Using a Bayesian state-space model (see Materials 

and Methods) we found 16S rRNA gene abundance to be two orders of magnitude higher 

than CTX-M (median ratio 16S / CTX-M [90% CrI] 158 [88, 181]), with an estimated 

coefficient of variation (ratio of standard deviation to the mean) of 5.5 for 16S rRNA and 

32.1 for CTX-M. Between-patient abundance of CTX-M showed substantially more 

variability than within-patient abundance (median ratio [90% CrI] 134 [18, 1422]). In 

contrast, 16S rRNA gene abundance had similar between-patient and within-patient 

variability (median ratio [90% CrI] 0.8 [0.4,1.7]) (Figure 2). 

 

3 Associating resistance and antibiotic treatment The change in relative resistance 

between samples, measured as CTX-M abundance divided by 16S rRNA gene 

abundance, was only slightly elevated in time intervals where antibiotics were given 

compared to those where they were not ( Figure 3 a). However, use of antibiotics with 

expected activity against ESBL producers (doxycycline, ertapenem, meropenem, 

tigecycline, colistin, augmentin, ampicillin-sulbactam, piperacillin-tazobactam, amikacin, 

gentamicin, ciprofloxacin, imipenem, levofloxacin) was associated with a modest 

decrease in CTX-M abundance (Figure 3 b). In contrast, the use of antibiotics with broad 

spectrum killing activity but no activity against ESBL producers (amoxicillin, ampicillin, 

cefepime, cefotaxime, ceftazidime, ceftriaxone, cefuroxime, ofloxacin, 

sulfamethoxazole-trimethoprim) was associated with substantially higher increases in 

relative CTX-M abundance (Figure 3 c).  

 

4 Mechanistic antibiotic effect model Fitting a dynamic model of CTX-M abundance 
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and 16S rRNA abundance to the data, we found that cefuroxime and ceftriaxone were 

associated with increases in both absolute CTX-M abundance (mean daily increase [90% 

CrI] 21% [1%, 42%] and 10% [4%, 17%], respectively) and relative CTX-M abundance 

(14% [-1%, 30%] and 11% [5%, 17%], respectively) ( Figure 4). Piperacillin-tazobactam, 

meropenem and ciprofloxacin (when given orally) were negatively associated with both 

CTX-M (-8% [-18%, 2%], -8% [-17%, 1%], and -8% [-17%, 2%], respectively) and 16S 

rRNA gene abundance (-3% [-8%, 1%], -2% [-7%, 1%], and -1% [-6%, 3%], 

respectively), although uncertainty is large ( Figure 4). Their effect on relative resistance 

(CTX-M / 16S rRNA) also appears to be negative ( -5% [-14%, 5%] for 

piperacillin-tazobactam, -5% [-14%, 4%] for meropenem, -7% [-15%, 3%] for oral 

ciprofloxacin). Intravenously administered ciprofloxacin did not show these effects. 

Imipenem and meropenem had similar effects on CTX-M abundance, while no clear 

effects were evident for amikacin, metronidazole, and augmentin.  

With the dynamic model, we are able to make predictions about the time required for the 

CTX-M genes to fall below detection levels. To achieve this, we add to our stochastic 

model a threshold below which the CTX-M gene cannot be detected (see Materials and 

Methods ). The predictions show a high degree of uncertainty, visible as long-tailed 

predictive distributions. Because of the skew, we report here the median instead of the 

mean together with 80% credible intervals. We find that a single 8-day course of 

cefuroxime or a 14-day course of ceftriaxone substantially prolongs carriage of CTX-M, 

by a median estimate of 147% (80% CrI 13.4%, 577%) for cefuroxime and 120% (80% 

CrI -8.6%, 492%) for ceftriaxone versus no exposure (Figure 5, upper panel). Addition of 

oral ciprofloxacin to a course of augmentin or ceftriaxone reduces CTX-M carriage 

duration (by approximately 51% [80% CrI -115%, 89%] and 48% [80% CrI -71.1%, 

86%]) (Figure 5, upper panel ). A typical 14-day course of meropenem or a 8-day course 

of piperacillin-tazobactam reduce CTX-M carriage time relative to no treatment (by 

approximately 42% [80% CrI -25%, 75%] and 41% [80% CrI -45%, 71%], respectively), 

and each reduces CTX-M carriage even more relative to a 7-day course of combined 
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ceftriaxone plus amikacin (by approximately 69% [80% CrI 20%, 89%] and 66% [80% CrI 

-7%, 88%], respectively) (Figure 6, middle panel ). Finally, a 14-day course of 

meropenem reduces CTX-M resistance carriage relative to a shorter 5-day course (by 

approximately 69% [80% CrI 20%, 89%]) (Figure 6, lower panel ).  

 

 

Discussion and Conclusion 

By fitting a dynamic model accounting for both observation noise and within-host 

dynamics to time series data from 133 patients, we quantified the association between 

antibiotic exposure and changes in rectal swab abundance of gut bacteria and CTX-M 

resistance genes. The largest effects were found for exposures to the second and third 

generation cephalosporins cefuroxime and ceftriaxone, both of which were associated 

with increases in CTX-M abundance. Forward simulations indicated that if these 

associations are causal, exposure to typical courses of these antibiotics would be 

expected to more than double the expected carriage duration of CTX-M. Both cefuroxime 

and ceftriaxone have broad-spectrum killing activity (McLeod, Nahata, & Barson, 1985; 

Neu & Fu, 1978) , but have limited activity against ESBL-producing organisms (Livermore 

& Brown, 2001; Sorlózano et al., 2007). Therefore, a direct selective effect is biologically 

plausible to account for the above finding. Surprisingly, despite the relatively broad 

antibacterial spectrum of cefuroxime and ceftriaxone, there was no evidence that 

exposure to these antibiotics reduced 16S rRNA abundance. This may reflect high 

parameter uncertainty, or that killed bacterial strains may quickly be replaced by 

overgrowth of other, non-susceptible, strains (Hildebrand et al., 2019). Further, 16S 

abundance as measured by qPCR may not be a good proxy for the abundance of living 

bacterial cells. When bacteria are killed by antibiotics, we expect that shedding of dead 

cells from the gut could delay a measurable reduction in 16S rRNA or even lead to a 

temporary increase. It is therefore possible that we underestimated the effects of all 

antibiotics on suppressing the bacterial load. 
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Though credible intervals were wide, meropenem, piperacillin-tazobactam, and oral 

ciprofloxacin were all associated with reductions in CTX-M abundance. All three are 

broad-spectrum antibiotics with activity against ESBL producers in the absence of 

specific co-resistance, and are common agents for treating hospital-acquired infections 

(Lautenbach et al., 2001; Masterton, Drusano, Paterson, & Park, 2003; David L. Paterson, 

2006) . They were also associated with a negative effect on relative resistance, CTX-M 

divided by 16S rRNA gene abundance. This observation can be explained by a general 

reduction of bacterial biomass that leads the CTX-M abundance to drop below detection 

levels. In line with this, simulations suggest that a typical course of meropenem or of 

piperacillin-tazobactam would reduce CTX-M carriage time relative to no treatment by 

about 40% , and each reduces CTX-M carriage duration by about 70% relative to a 

combined course of ceftriaxone plus amikacin . Also, a standard (14 day) course of 

meropenem is found to reduce ESBL resistance carriage relative to a shortened course (5 

day) by approximately 70%. While these findings suggest suppression of ESBL producing 

bacteria by meropenem, it may at the same time increase selection for 

carbapenem-resistance. Finally, we also find that adding oral ciprofloxacin to augmentin 

or ceftriaxone reduces ESBL-producing bacteria carriage by approximately 50%. This is 

slightly surprising, because CTX-M carrying bacteria commonly co-carry resistance to 

other antibiotics in bacteria, especially resistance to ciprofloxacin, which would lead to 

indirect selection of ESBL through other antibiotics. In this study population, there 

appears to be little resistance to meropenem or to ciprofloxacin, as indicated by the 

CTX-M suppressing effect of these antibiotics. The effects of meropenem and 

ciprofloxacin on CTX-M resistance could vary depending on the local epidemiology of 

carbapenem and fluoroquinolone resistance. Although oral ciprofloxacin showed an 

association with reduced CTX-M abundance, intravenous ciprofloxacin showed near zero 

effect. Antibiotic selection for resistance with different routes of administration has been 

previously explored in a mouse model, which suggested that oral drug administration has 
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stronger selective effect on resistance than intravenous administration (Zhang et al. 2013) , 

but similar studies for humans are lacking. Delineating the relationship between the 

various routes of antibiotic administration and resistance, as we do here, will be important 

for informing stewardship guidelines about switching between intravenous and oral 

therapy.  

 

Few previous studies have quantified the association between antibiotic use and 

resistance abundance in the human microbiome. Two studies involving patients admitted 

to intensive care units looked at the effect of a preventative antibiotic cocktail (selective 

digestive decontamination) on microbiome resistance in patients, with one study 

(including n=13 patients) finding no clear effect (Buelow et al., 2014) , and the other (n=10) 

showing increases of four different resistance genes associated with treatment (Buelow et 

al., 2017) . These studies did not attempt to model patient time-series since only a 

maximum of three time-points per patient were sampled. Compared to these studies, we 

considered here a 10-fold bigger patient cohort of 133 patients and with a total of 833 

time points, a median of 5 per patient. We are not aware of any other data-driven 

mechanistic model of the relationship between antibiotic exposure and resistance gene 

abundance in the human gut, and we believe that this presents a useful analytical 

framework that can be adapted in the context of other studies to quantify the antibiotic 

treatment effects on within-dynamics from clinical data. Abundance of resistance 

measured in a patient’s stool has been shown to be predictive of the risk of the patient 

getting a resistant infection (Ruppé E, n.d.; Woerther et al., 2015). Thus predictive models, 

such as ours, can help to identify antibiotic exposures that would minimise this risk. 

Another major benefit of the modelling framework we have developed is the ability to 

make testable predictions about the impact of different antibiotics on the duration of 

carriage of resistant determinants at levels above detection thresholds. Understanding 

this impact of antibiotics on carriage duration is a key step in developing a mechanistic 

understanding of the relationship between the frequency with which antibiotics are used 

in a population and the proportion of the population in whom resistance can be detected. 
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Such an understanding relies on quantifying the antibiotic effects in individual exposed 

patients, as we do here, but also on quantifying the knock-on effects on transmission to 

contacts. These indirect effects are likely to be considerable. A recent study in Dutch 

travellers returning to the Netherlands who had acquired ESBL carriage overseas found 

that their new ESBL carriage status was associated with a 150% increase in the daily risk 

of non-carrying household members becoming ESBL positive (Arcilla et al., 2017) . 

Developing mechanistic models for the spread of ESBLs and other resistance 

determinants within host populations accounting for such direct and indirect antibiotic 

effects is an important priority for future research. Such models would help us to 

understand and predict how changes in antibiotic usage patterns affect the prevalence of 

antimicrobial resistance in a community and would help to prioritise interventions to 

reduce the burden of antimicrobial resistance. 

 

Materials and Methods 

Study participants and follow-up This was an observational, prospective, cohort study 

that included data from three hospitals (Italy, Serbia and Romania), with known high 

prevalence rates of antibiotic resistance in bacterial infections. The study was conducted 

over two years from January 2011 to  December 2012 as part of the multi-centre SATURN 

(‘Impact of Specific Antibiotic Therapies on the prevalence of hUman host ResistaNt 

bacteria’) project (NO241796; clinical trials.gov NTC01208519). The study enrolled adult 

(>18 y) inpatients of medical and surgical wards, excluding pregnant patients. Enrolled 

patients were screened at admission for carriage of ESBL-producing Enterobacteriaceae 

with rectal swabs (E swab, Copan, Italy). Patients who tested positive for ESBL carriage 

(details below) were included in the follow-up cohort. For all follow-up patients (n=133) 

rectal swabs were taken every two to three days during hospitalisation, which includes 

one swab at admission and one at discharge. The swabs were stored at -80 degrees 

Celsius and sent to a central laboratory for processing. The study also collected 
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information on antibiotics administered, duration, and route of administration. See Table 

1  for an overview of the study details.  

 

ESBL identification Samples taken at admission were cultured on chromogenic agars 

(Brilliance ESBL, Oxoid, Basingstoke, UK) to test for ESBL positive organisms. ESBL 

status was confirmed with the double disk diffusion method.  

 

Quantitative PCR DNA was extracted from the swab samples and a fixed volume of DNA 

solution was used as a template for quantitative PCR (qPCR) assays. Two singleplex 

qPCR assays were conducted, one to assess quantity of CTX-M gene family with primers 

CTX-M-A6 (TGGTRAYRTGGMTBAARGGCA) and CTX-M-A8 

(TGGGTRAARTARGTSACCAGAA) (product length, 175 bp) and one targeting a 

conserved bacterial 16S rRNA gene region bacteria using the following primer set, 

16S_E939F (GAATTGACGGGGGCCCGCACAAG) and 16S_1492R 

(TACGGYTACCTTGTTACGACTT) (product length, 597 bp) to assess total bacterial 

quantity. Quantification with qPCR was carried out mostly in duplicates, with some 

triplicates. 

 

Time series autocorrelation We first transformed all qPCR measurements onto 

log-scale. For all patients and each time point we then computed the mean of the qPCR 

duplicates (or triplicates) for CTX-M and 16S rRNA. To get reliable estimates of 

autocorrelation, we selected only patients with more than five time points. Separately for 

the CTX-M and 16S rRNA gene data, we computed the first-order autocorrelation 

(disregarding varying spacing between time points) for each patient, and we averaged 

these values across the patients. We then simulated serially uncorrelated “white noise” 

time series, again separately for CTX-M and 16S rRNA, with the same length as the 

patient data and with identical time series mean and variance. Similar to the real data, we 

computed mean autocorrelations for the simulated data and show their distribution for a 

large number of simulations (n=10,000) together with the observed autocorrelation 
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(Supplementary Figure 1 a and b ). We also computed the proportion of simulated 

datasets that showed an average autocorrelation equal to, or larger than, the observed 

data, and we show those numbers on the arrows in Supplementary Figure 1 a and b .  

 

Estimating observation and process noise in time series To estimate the amount of 

observation noise and process noise in the time series we constructed a Bayesian 

state-space model that included qPCR noise, swab noise, and biological noise. This 

model is given through: 

(s , ),q 
i,j,k,g ~ N i,j,g σqpcr 

 

(x , ),si,j,g ~ N i,j,g σswabg  

(x , ),xi,j+1,g ~ N i,j,g σbiog  

where i denotes a given patient, j denotes a swab (one per time point), k denotes a qPCR 

measurement (multiple repeats per swab), and g  denotes the genetic target, either CTX-M 

or 16S rRNA. The term , represents the measured quantity of genetic targe g, of theq 
i,j,k,g  

k th qPCR replicate (on a log-scale) from patient i, at time point j . In addition, there are two 

hidden-state parameter vectors: is the underlying, true sequence abundance ofsi,j,g  

genetic target g  that a qPCR assay with 100% efficiency could (in theory) measure at time 

point j for patient i , and is the actual gene abundance of genetic target g, in the swabxi,j,g  

at time point j for patient i , before the added noise through the swab process and gene 

extraction. The unobserved variables of interest are , the qPCR machine errorσqpcr 
 

(assumed to be the same for CTX-M and 16S rRNA), , the swab variation of theσswabg  

genetic targe g , and , the variation of genetic target g from biological processes. Onσbiog  

all parameters we assigned uniform (“flat”) priors over their legal range of values, which 

was [-∞, +∞] for hidden-state parameters, and [0, +∞] for the noise parameters. We then 

fitted this model to the CTX-M and 16S rRNA measurements. The posteriors are shown in 

Supplement Figure 1 c , where we expressed each type of noise as a fraction of the total 

noise. The model was fitted using Stan software (Carpenter et al., 2017)  and with 
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additional analysis in R (R Core Team, 2016), and we sampled from the posterior with four 

chains with 2000 iterations that included a burn-in period of 300 iterations. 

 

Between and within time series variance For the estimation of between and within time 

series variation we used a Bayesian hierarchical model, which accounted for unbalanced 

sampling between patients. This model used the mean estimates of (actual genexi,j  

abundance in time point j  for patient i ) from the previous model, and it took the form 

(μ , ),xi,j ~ N i σwithin  

(μ , ),μi ~ N  σbetween  

where  is the mean abundance of patient i, around which the measurements wereμi  

assumed to be normally distributed with standard deviation , the within time seriesσwithin  

variation. The mean abundances were assumed to follow a normal distribution with a 

population mean and , the between patient variation. We assigned uniformμ σbetween  

priors over the range of [-∞, +∞] for the population and the patient means, and over the 

range of [0, +∞] for the standard deviations. We fitted the model using Stan, with 4000 

iterations and a burn-in period of 500 iterations. Model estimates are shown in Figure 3. 

To calculate the coefficient of variation for the non log-scaled CTX-M and 16S rRNA 

measurements, we use the transform described by Koopmans  et al.:  

 ,cv = √es2ln − 1  

where is the estimated standard deviation of the log-scaled data.s 
ln  

 

Association of antibiotic treatment and changes in resistance To study the 

association between antibiotic treatment and resistance we looked at relative abundance 

of resistance (CTX-M abundance / 16S rRNA gene abundance) as a marker of natural 

selection. First, we computed the changes in relative resistance for every pair of adjacent 

time points and for each antibiotic we used a binary variable indicating whether or not a 

given antibiotic was administered between these time points. When an antibiotic 

treatment was on the same day as a swab, this treatment was allocated to the time 
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interval between this day and the next swab. We first looked at how changes in relative 

resistance are associated with courses of any antibiotics, then with courses of antibiotics 

that are active against ESBL-producing bacteria (doxycycline, ertapenem, meropenem, 

tigecycline, colistin, augmentin, ampicillin-sulbactam, piperacillin-tazobactam, amikacin, 

gentamicin, ciprofloxacin, imipenem), and finally with antibiotics that have a 

broad-spectrum activity but no activity against ESBL (amikacin, amoxicillin, ampicillin, 

cefepime, cefotaxime, ceftazidime, ceftriaxone, cefuroxime, levofloxacin, ofloxacin, 

sulfamethoxazole-trimethoprim). Results are shown in Figure 4, upper panel . We 

evaluated how likely the observed differences between treatments are under the 

assumption of no association between treatment and resistance. For this we did a 

permutation or “reshuffling” experiment: we randomly reassigned (without replacement) 

the antibiotic treatment labels to the data intervals. We compute the distribution of mean 

differences from 50 000 permutations and compare this to the observed difference 

(Figure 4, lower panel ).  

 

Mechanistic within-host model We extended previous approaches of extracting 

ecological parameters from microbial ecosystem dynamics (Faust & Raes, 2012; Stein et 

al., 2013)  by applying a Bayesian state-space model, that allowed separating process 

noise from observation noise and accounting for different spacing between time steps.  

Under the assumption that 16S rRNA gene abundance is independent of antibiotic 

treatment, variation in 16S rRNA would be caused mainly by the swab procedure, and it 

could be used to normalise CTX-M abundance. However, as we found in Figure 5, 16S 

rRNA abundance was associated with certain antibiotic treatment. Thus, we used a 

dynamic model that explicitly modelled antibiotic effects on 16S rRNA and on 

CTX-M/16S, from which the effects on CTX-M could then be computed. Studying the 

standard deviation between qPCR measurement repeats as a function of the mean, we 

observed that qPCR variation remained relatively stable over five orders of magnitude of 

the mean measurement (from 1.5 to 6.5 on the log scale), but it increased quickly for 
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lower magnitudes ( Supplementary Figure 2). In the Bayesian model for different sources 

of variation described above, the parameter  assumed that the qPCR uncertainty isσqpcr  

the same across measurements. Here, we aim to account for the fact that low 

measurements of gene copy numbers have higher uncertainty. We fitted a smooth spline 

(choosing five degrees of freedom) to the qPCR measurements (red line in 

Supplementary Figure 2 ). This let us assign an estimated qPCR standard deviation to 

every set of qPCR repeats. We provided those estimates as data to the Bayesian model. 

Our model then took the form: 

(s , ),q 
i,j,g,k ~ N i,j,g σqpcri,j,g  

(x , ),si,j,g ~ N i,j,g σswabg  

,xi,j,g=ratio = xi,j,g=CTX−M − xi,j,g=16S  

(x , ),xi,j+1,g=ratio ~ N i,j,g=ratio + f (abx)i,j,g=ratio σbiog=ratio
 

(x , ),xi,j+1,g=16S ~ N i,j,g=16S + f (abx)i,j,g=16S σbiog=16S
 

 f (abx)i,j,g = ∑
tj+1

tj
a[ g + ∑

nz

z=1
cz,g · yz,t] ,  

where the data is given through , the kth qPCR result (log-scaled) of patient i, atq 
i,j,g,k  

time point j, and genetic target g (CTX-M, 16S rRNA, or CTX-M/16S ratio), through σqpcri,j,g

, the estimated qPCR standard deviation of that set of measurements (of genetic target g, 

patient i, and time point j ), and through , a boolean variable indicating whether or notyz,t  

antibiotic z  was given on day t . The hidden-state variables are , the underlying, truesi,j,g  

sequence abundance at time point j for patient i , and genetic target g, and , thexi,j,g  

actual abundance of g  in the swab at time point j , for patient i. The swab variability of 

genetic target g  (CTX-M or 16S rRNA) is given through , and the biologicalσswab,g  

variability of the CTX-M/16S ratio and of 16S are given through  and .σbiog=ratio
σbiog=16S

 

Taking the difference between the abundance of CTX-M and 16S rRNA gene yields 

the log-scaled relative resistance of patient i  at time point j . We then model the,xi,j,g=ratio   

ecological dynamics with , the antibiotic-mediated change of g  (either thef (abx)i,j,g  
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relative resistance or 16S rRNA gene), at time point j, of patient i . We assume that 

changes in the relative resistance and in 16S are driven by a neutral trend (describing the 

dynamics in the absence of antibiotics) and by antibiotic effects. We further assume that 

effects are multiplicative. For example, consider a genetic target on day 0 of  with axt=0  

neutral trend of  Suppose two antibiotics are given with effects and , then on day.a0 c1 c2  

1 the genetic target becomes  . Thus, the ecological dynamics termxt=1 = xt=0 · a0 · c1 · c2  

loops over the days from , the day of swab j, until , the day of the following swab oftj tj+1  

the same patient i, and it sums the neutral effect  and the antibiotic effect, which isag  

given as product of effect of antibiotic z ( ) and the boolean indicator for treatment withcz,g  

z  on day t  ( ), summed over all antibiotics . Note, that summing the effects of a and cyz,t nz  

for dynamics on a log-scale is equivalent to multiplicative effects on the original scale. On 

the hidden-state variables we assigned uniform priors over the range [-∞, +∞], on the 

standard deviations describing swab and biological variability we assigned uniform prior 

over the range [0, +∞], and on the antibiotic effects (c ) we assigned conservative priors of 

the form N(0, 0.1). We fitted the model using RStudio and Stan software, and we sampled 

form the posterior with four parallel chains of 9000 iterations, which included a warm up 

phase of 2000 iterations.  

We forward simulated CTX-M data using the dynamical model above and the posterior 

distributions from the model fit. We added to the model a threshold below which the 

CTX-M gene becomes extinct or at least undetectable. According to a study of returning 

European travelers to Southeast Asia, ESBL carriers lose their resistant bacteria after a 

median of 30 days (Arcilla et al., 2017) . Accordingly, we simulated CTX-M time series 

without antibiotic treatment and chose an extinction threshold (0.25 CTX-M copy 

numbers) that achieved the same median extinction time. We then used this model to 

repeatedly (2,000 times) simulate CTX-M carriage times, with each simulation using a new 

draw from the parameter posterior. The resulting distribution of carriage times contains 

both the uncertainty in the parameter estimates and uncertainty from the Markov process. 
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We also simulated CTX-M carriage times repeatedly (200 times) with a single set of 

parameter values from the posterior, then taking the median carriage time which removes 

Markov process uncertainty, before drawing a new set of parameters and repeated this 

procedure 300 times. We used both of the above methods to simulate carriage time 

under different alternative antibiotic treatment. The resulting distributions are shown in 

Figure 6. 

 

Code and data availability R code and Stan code for the data analysis described above 

as well as the data will be made available online. 

 

Acknowledgements 

We thank Jonas Schluter, Marc Lipsitch, and Thomas Crellen for valuable feedback along 

the way. RN as well as the study were supported by funding from the European 

Community’s R-GNOSIS Integrated project (FP7/2007-2013) under grant agreement 

number 241796. RN and BSC were also supported by The Medical Research Council and 

Department for International Development (grant number MR/K006924/1). BSC works 

within the Wellcome Trust Major Overseas Programme in SE Asia (grant number 

106698/Z/14/Z). 

 

 

 

 
References 

 

 

Arcilla, M. S., van Hattem, J. M., Haverkate, M. R., Bootsma, M. C. J., van Genderen, P. J. J., 

Goorhuis, A., … Penders, J. (2017). Import and spread of extended-spectrum 

β-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): a 

 

18 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2019. ; https://doi.org/10.1101/548453doi: bioRxiv preprint 

http://paperpile.com/b/NJF1Gg/t7kD
http://paperpile.com/b/NJF1Gg/t7kD
http://paperpile.com/b/NJF1Gg/t7kD
https://doi.org/10.1101/548453
http://creativecommons.org/licenses/by-nc/4.0/


 

prospective, multicentre cohort study. The Lancet Infectious Diseases, 17 (1), 78–85. 

Bonnet, R. (2003). Growing Group of Extended-Spectrum -Lactamases: the CTX-M Enzymes. 

Antimicrobial Agents and Chemotherapy, 48 (1), 1–14. 

Buelow, E., Bello González, T. D. J., Fuentes, S., de Steenhuijsen Piters, W. A. A., Lahti, L., 

Bayjanov, J. R., … van Schaik, W. (2017). Comparative gut microbiota and resistome profiling 

of intensive care patients receiving selective digestive tract decontamination and healthy 

subjects. Microbiome, 5 (1), 88. 

Buelow, E., Gonzalez, T. B., Versluis, D., Oostdijk, E. A. N., Ogilvie, L. A., van Mourik, M. S. M., … 

van Schaik, W. (2014). Effects of selective digestive decontamination (SDD) on the gut 

resistome. The Journal of Antimicrobial Chemotherapy, 69 (8), 2215–2223. 

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., … Riddell, A. 

(2017). Stan: A Probabilistic Programming Language. Journal of Statistical Software, 76 (1). 

https://doi.org/10.18637/jss.v076.i01 

Donnenberg, M. S. (n.d.). Enterobacteriaceae. In M. D. Bennett (Ed.), Principles and Practice of 

Infectious Diseases (pp. 2503–2517). Elsevier. 

Faust, K., & Raes, J. (2012). Microbial interactions: from networks to models. Nature Reviews. 

Microbiology, 10 (8), 538–550. 

Hildebrand, F., Moitinho-Silva, L., Blasche, S., Jahn, M. T., Gossmann, T. I., Heuerta-Cepas, J., … 

Bork, P. (2019). Antibiotics-induced monodominance of a novel gut bacterial order. Gut. 

https://doi.org/10.1136/gutjnl-2018-317715 

Koopmans, L. H., Owen, D. B., & Rosenblatt, J. I. (1964). Confidence Intervals for the Coefficient 

of Variation for the Normal and Log Normal Distributions. Biometrika, 51 (1/2), 25. 

Lautenbach, E., Strom, B. L., Bilker, W. B., Patel, J. B., Edelstein, P. H., & Fishman, N. O. (2001). 

Epidemiological investigation of fluoroquinolone resistance in infections due to 

extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. 

Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of 

 

19 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2019. ; https://doi.org/10.1101/548453doi: bioRxiv preprint 

http://paperpile.com/b/NJF1Gg/t7kD
http://paperpile.com/b/NJF1Gg/t7kD
http://paperpile.com/b/NJF1Gg/t7kD
http://paperpile.com/b/NJF1Gg/t7kD
http://paperpile.com/b/NJF1Gg/t7kD
http://paperpile.com/b/NJF1Gg/rNw6
http://paperpile.com/b/NJF1Gg/rNw6
http://paperpile.com/b/NJF1Gg/rNw6
http://paperpile.com/b/NJF1Gg/rNw6
http://paperpile.com/b/NJF1Gg/rNw6
http://paperpile.com/b/NJF1Gg/Wwic
http://paperpile.com/b/NJF1Gg/Wwic
http://paperpile.com/b/NJF1Gg/Wwic
http://paperpile.com/b/NJF1Gg/Wwic
http://paperpile.com/b/NJF1Gg/Wwic
http://paperpile.com/b/NJF1Gg/Wwic
http://paperpile.com/b/NJF1Gg/Wwic
http://paperpile.com/b/NJF1Gg/Wwic
http://paperpile.com/b/NJF1Gg/W3pk
http://paperpile.com/b/NJF1Gg/W3pk
http://paperpile.com/b/NJF1Gg/W3pk
http://paperpile.com/b/NJF1Gg/W3pk
http://paperpile.com/b/NJF1Gg/W3pk
http://paperpile.com/b/NJF1Gg/W3pk
http://paperpile.com/b/NJF1Gg/W3pk
http://paperpile.com/b/NJF1Gg/4Tr4
http://paperpile.com/b/NJF1Gg/4Tr4
http://paperpile.com/b/NJF1Gg/4Tr4
http://paperpile.com/b/NJF1Gg/4Tr4
http://paperpile.com/b/NJF1Gg/4Tr4
http://paperpile.com/b/NJF1Gg/4Tr4
http://paperpile.com/b/NJF1Gg/4Tr4
http://dx.doi.org/10.18637/jss.v076.i01
http://paperpile.com/b/NJF1Gg/1Ncf
http://paperpile.com/b/NJF1Gg/1Ncf
http://paperpile.com/b/NJF1Gg/1Ncf
http://paperpile.com/b/NJF1Gg/1Ncf
http://paperpile.com/b/NJF1Gg/g3Bm
http://paperpile.com/b/NJF1Gg/g3Bm
http://paperpile.com/b/NJF1Gg/g3Bm
http://paperpile.com/b/NJF1Gg/g3Bm
http://paperpile.com/b/NJF1Gg/g3Bm
http://paperpile.com/b/NJF1Gg/g3Bm
http://paperpile.com/b/NJF1Gg/xLxH
http://paperpile.com/b/NJF1Gg/xLxH
http://paperpile.com/b/NJF1Gg/xLxH
http://paperpile.com/b/NJF1Gg/xLxH
http://paperpile.com/b/NJF1Gg/xLxH
http://dx.doi.org/10.1136/gutjnl-2018-317715
http://paperpile.com/b/NJF1Gg/YjeC
http://paperpile.com/b/NJF1Gg/YjeC
http://paperpile.com/b/NJF1Gg/YjeC
http://paperpile.com/b/NJF1Gg/YjeC
http://paperpile.com/b/NJF1Gg/YjeC
http://paperpile.com/b/NJF1Gg/YjeC
http://paperpile.com/b/NJF1Gg/P6W6
http://paperpile.com/b/NJF1Gg/P6W6
http://paperpile.com/b/NJF1Gg/P6W6
http://paperpile.com/b/NJF1Gg/P6W6
https://doi.org/10.1101/548453
http://creativecommons.org/licenses/by-nc/4.0/


America, 33 (8), 1288–1294. 

Lipsitch, M., & Samore, M. H. (2002). Antimicrobial use and antimicrobial resistance: a population 

perspective. Emerging Infectious Diseases, 8 (4), 347–354. 

Livermore, D. M., & Brown, D. F. (2001). Detection of beta-lactamase-mediated resistance. The 

Journal of Antimicrobial Chemotherapy, 48 Suppl 1 , 59–64. 

Masci, J. R. (2005). Mandell, Douglas, and Bennett’s Principles and Practice of Infectious 

Diseases, 6th Edition:Mandell, Douglas, and Bennett's Principles and Practice of Infectious 

Diseases, 6th Edition. Clinical Infectious Diseases: An Official Publication of the Infectious 

Diseases Society of America, 41 (2), 277–277. 

Masterton, R., Drusano, G., Paterson, D. L., & Park, G. (2003). Appropriate antimicrobial treatment 

in nosocomial infections—the clinical challenges. The Journal of Hospital Infection, 55 , 1–12. 

McLeod, D. C., Nahata, M. C., & Barson, W. J. (1985). Ceftriaxone: A Third-Generation 

Cephalosporin. Drug Intelligence & Clinical Pharmacy, 19 (12), 900–906. 

Meletiadis, J., Turlej-Rogacka, A., Lerner, A., Adler, A., Tacconelli, E., Mouton, J. W., & the 

SATURN Diagnostic Study Group. (2017). Amplification of Antimicrobial Resistance in Gut 

Flora of Patients Treated with Ceftriaxone. Antimicrobial Agents and Chemotherapy, 61 (11). 

https://doi.org/10.1128/AAC.00473-17 

Neu, H. C., & Fu, K. P. (1978). Cefuroxime, a Beta-Lactamase-Resistant Cephalosporin with a 

Broad Spectrum of Gram-Positive and -Negative Activity. Antimicrobial Agents and 

Chemotherapy, 13 (4), 657–664. 

Paterson, D. L. (2000). Recommendation for treatment of severe infections caused by 

Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs). Clinical 

Microbiology and Infection: The Official Publication of the European Society of Clinical 

Microbiology and Infectious Diseases, 6 (9), 460–463. 

Paterson, D. L. (2006). Resistance in Gram-Negative Bacteria: Enterobacteriaceae. The American 

Journal of Medicine, 119(6), S20–S28. 

R Core Team. (2016). R: A Language and Environment for Statistical Computing. Vienna, Austria. 

 

20 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2019. ; https://doi.org/10.1101/548453doi: bioRxiv preprint 

http://paperpile.com/b/NJF1Gg/P6W6
http://paperpile.com/b/NJF1Gg/P6W6
http://paperpile.com/b/NJF1Gg/P6W6
http://paperpile.com/b/NJF1Gg/P6W6
http://paperpile.com/b/NJF1Gg/beLS
http://paperpile.com/b/NJF1Gg/beLS
http://paperpile.com/b/NJF1Gg/beLS
http://paperpile.com/b/NJF1Gg/beLS
http://paperpile.com/b/NJF1Gg/beLS
http://paperpile.com/b/NJF1Gg/beLS
http://paperpile.com/b/NJF1Gg/TlbO
http://paperpile.com/b/NJF1Gg/TlbO
http://paperpile.com/b/NJF1Gg/TlbO
http://paperpile.com/b/NJF1Gg/TlbO
http://paperpile.com/b/NJF1Gg/TlbO
http://paperpile.com/b/NJF1Gg/TlbO
http://paperpile.com/b/NJF1Gg/X480
http://paperpile.com/b/NJF1Gg/X480
http://paperpile.com/b/NJF1Gg/X480
http://paperpile.com/b/NJF1Gg/X480
http://paperpile.com/b/NJF1Gg/X480
http://paperpile.com/b/NJF1Gg/X480
http://paperpile.com/b/NJF1Gg/X480
http://paperpile.com/b/NJF1Gg/X480
http://paperpile.com/b/NJF1Gg/x58l
http://paperpile.com/b/NJF1Gg/x58l
http://paperpile.com/b/NJF1Gg/x58l
http://paperpile.com/b/NJF1Gg/x58l
http://paperpile.com/b/NJF1Gg/x58l
http://paperpile.com/b/NJF1Gg/x58l
http://paperpile.com/b/NJF1Gg/VDVr
http://paperpile.com/b/NJF1Gg/VDVr
http://paperpile.com/b/NJF1Gg/VDVr
http://paperpile.com/b/NJF1Gg/VDVr
http://paperpile.com/b/NJF1Gg/VDVr
http://paperpile.com/b/NJF1Gg/VDVr
http://paperpile.com/b/NJF1Gg/ehaM
http://paperpile.com/b/NJF1Gg/ehaM
http://paperpile.com/b/NJF1Gg/ehaM
http://paperpile.com/b/NJF1Gg/ehaM
http://paperpile.com/b/NJF1Gg/ehaM
http://paperpile.com/b/NJF1Gg/ehaM
http://paperpile.com/b/NJF1Gg/ehaM
http://paperpile.com/b/NJF1Gg/ehaM
http://dx.doi.org/10.1128/AAC.00473-17
http://paperpile.com/b/NJF1Gg/Wvk4
http://paperpile.com/b/NJF1Gg/Wvk4
http://paperpile.com/b/NJF1Gg/Wvk4
http://paperpile.com/b/NJF1Gg/Wvk4
http://paperpile.com/b/NJF1Gg/Wvk4
http://paperpile.com/b/NJF1Gg/Wvk4
http://paperpile.com/b/NJF1Gg/Wvk4
http://paperpile.com/b/NJF1Gg/Isst
http://paperpile.com/b/NJF1Gg/Isst
http://paperpile.com/b/NJF1Gg/Isst
http://paperpile.com/b/NJF1Gg/Isst
http://paperpile.com/b/NJF1Gg/Isst
http://paperpile.com/b/NJF1Gg/Isst
http://paperpile.com/b/NJF1Gg/Isst
http://paperpile.com/b/NJF1Gg/Isst
http://paperpile.com/b/NJF1Gg/YDfz
http://paperpile.com/b/NJF1Gg/YDfz
http://paperpile.com/b/NJF1Gg/YDfz
http://paperpile.com/b/NJF1Gg/YDfz
http://paperpile.com/b/NJF1Gg/YDfz
http://paperpile.com/b/NJF1Gg/YDfz
http://paperpile.com/b/NJF1Gg/xxKi
https://doi.org/10.1101/548453
http://creativecommons.org/licenses/by-nc/4.0/


 

Retrieved from https://www.R-project.org/ 

Ruppé E, E. al. (n.d.). Relative fecal abundance of extended-spectrum-β-lactamase-producing 

Escherichia coli strains and their occurrence in urinary tract infections in wo... - PubMed - 

NCBI. Retrieved January 17, 2019, from https://www.ncbi.nlm.nih.gov/pubmed/23836184/ 

Schwaber, M. J., Navon-Venezia, S., Schwartz, D., & Carmeli, Y. (2005). High levels of 

antimicrobial coresistance among extended-spectrum-beta-lactamase-producing 

Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 49 (5), 2137–2139. 

Sorlózano, A., Gutiérrez, J., Romero, J. M., de Dios Luna, J., Damas, M., & Piédrola, G. (2007). 

Activity in vitro of twelve antibiotics against clinical isolates of extended-spectrum 

beta-lactamase producing Escherichia coli. Journal of Basic Microbiology, 47 (5), 413–416. 

Stein, R. R., Bucci, V., Toussaint, N. C., Buffie, C. G., Rätsch, G., Pamer, E. G., … Xavier, J. B. 

(2013). Ecological modeling from time-series inference: insight into dynamics and stability of 

intestinal microbiota. PLoS Computational Biology, 9 (12), e1003388. 

Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., … WHO 

Pathogens Priority List Working Group. (2018). Discovery, research, and development of new 

antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet 

Infectious Diseases, 18 (3), 318–327. 

Tedijanto, C., Olesen, S. W., Grad, Y. H., & Lipsitch, M. (2018). Estimating the proportion of 

bystander selection for antibiotic resistance among potentially pathogenic bacterial flora. 

Proceedings of the National Academy of Sciences of the United States of America, 115(51), 

E11988–E11995. 

Woerther, P.-L., Micol, J.-B., Angebault, C., Pasquier, F., Pilorge, S., Bourhis, J.-H., … Chachaty, 

E. (2015). Monitoring antibiotic-resistant enterobacteria faecal levels is helpful in predicting 

antibiotic susceptibility of bacteraemia isolates in patients with haematological malignancies. 

Journal of Medical Microbiology, 64 (7), 676–681. 

 

 

21 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2019. ; https://doi.org/10.1101/548453doi: bioRxiv preprint 

http://paperpile.com/b/NJF1Gg/xxKi
https://www.r-project.org/
http://paperpile.com/b/NJF1Gg/J5KU
http://paperpile.com/b/NJF1Gg/J5KU
http://paperpile.com/b/NJF1Gg/J5KU
https://www.ncbi.nlm.nih.gov/pubmed/23836184/
http://paperpile.com/b/NJF1Gg/hoVr
http://paperpile.com/b/NJF1Gg/hoVr
http://paperpile.com/b/NJF1Gg/hoVr
http://paperpile.com/b/NJF1Gg/hoVr
http://paperpile.com/b/NJF1Gg/hoVr
http://paperpile.com/b/NJF1Gg/hoVr
http://paperpile.com/b/NJF1Gg/hoVr
http://paperpile.com/b/NJF1Gg/baaW
http://paperpile.com/b/NJF1Gg/baaW
http://paperpile.com/b/NJF1Gg/baaW
http://paperpile.com/b/NJF1Gg/baaW
http://paperpile.com/b/NJF1Gg/baaW
http://paperpile.com/b/NJF1Gg/baaW
http://paperpile.com/b/NJF1Gg/baaW
http://paperpile.com/b/NJF1Gg/6F4q
http://paperpile.com/b/NJF1Gg/6F4q
http://paperpile.com/b/NJF1Gg/6F4q
http://paperpile.com/b/NJF1Gg/6F4q
http://paperpile.com/b/NJF1Gg/6F4q
http://paperpile.com/b/NJF1Gg/6F4q
http://paperpile.com/b/NJF1Gg/6F4q
http://paperpile.com/b/NJF1Gg/PSGq
http://paperpile.com/b/NJF1Gg/PSGq
http://paperpile.com/b/NJF1Gg/PSGq
http://paperpile.com/b/NJF1Gg/PSGq
http://paperpile.com/b/NJF1Gg/PSGq
http://paperpile.com/b/NJF1Gg/PSGq
http://paperpile.com/b/NJF1Gg/PSGq
http://paperpile.com/b/NJF1Gg/PSGq
http://paperpile.com/b/NJF1Gg/KY2M
http://paperpile.com/b/NJF1Gg/KY2M
http://paperpile.com/b/NJF1Gg/KY2M
http://paperpile.com/b/NJF1Gg/KY2M
http://paperpile.com/b/NJF1Gg/KY2M
http://paperpile.com/b/NJF1Gg/KY2M
http://paperpile.com/b/NJF1Gg/KY2M
http://paperpile.com/b/NJF1Gg/Rd9z
http://paperpile.com/b/NJF1Gg/Rd9z
http://paperpile.com/b/NJF1Gg/Rd9z
http://paperpile.com/b/NJF1Gg/Rd9z
http://paperpile.com/b/NJF1Gg/Rd9z
http://paperpile.com/b/NJF1Gg/Rd9z
http://paperpile.com/b/NJF1Gg/Rd9z
https://doi.org/10.1101/548453
http://creativecommons.org/licenses/by-nc/4.0/


 

Number of participating hospitals  3 (Serbia, Italy, Romania) 

Study duration  2 years (Jan 2011 - Dec 2012) 

Inclusion criteria  inpatients of medical & surgical wards, adults, 

non-pregnant, ESBL Enterobacteriaceae carriers 

(at admission) 

Number of patients followed up  133 (including 1 with a single swab taken) 

Intervals between rectal swabs  2 to 3 days 

qPCR targets  CTX-M (ESBL resistance gene), 16S rRNA (total 

bacterial load) 

Number of different antibiotics used  37 

Table 1 Summary of the study 

Table 2 Overview of antibiotic treatments showing the ten most used antibiotics of the study. (iv: 
intravenous, or: oral) 
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Figure 1 a ) Time series plots demonstrating the diverse range of dynamical patterns of CTX-M resistance 

gene abundance across the 133 included patients. The x-axis scale is identical across panels, the length of 

one week is given for scale in the top-left corner. Timelines are ordered by length. The y-axis scale differs 

between panels, with the space between vertical grey lines representing a 10-fold change in the absolute 

CTX-M gene abundance (measured in copy numbers). The left-hand side shows patients who received 

antibiotic treatment (n=114), and the two right-hand side columns are patients without antibiotic treatment 

(n=19). For clarity, we show only the twelve most frequently used antibiotics in distinct colours and other 

antibiotics in grey.   
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Figure 2 Variability of 16S abundance and CTX-M abundance for individual patients and comparison of 

within and between patient variation using a Bayesian hierarchical model. The upper part shows individual 

patient intercepts given as mean posterior estimates (colored dots) together with posterior predictions for 

each patient (grey bars show 80% central quantiles). The lower part shows the within-patient variation as 

simulated outcomes using the mean population intercept and variance (black bars), and the 

between-patient variation as the distribution of patient intercepts in coloured bars (thick bars and thin bars 

show the 80% and 95% central quantiles, respectively).  
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Figure 3 Association of antibiotic use with change in relative resistance (abundance of CTX-M divided by 

abundance of 16S rRNA). The upper panels show the change in relative resistance between all 

neighbouring timepoints (black dots), dashed horizontal lines in grey indicate the region of no change. Pairs 

of violin scatter plots (with the mean values shown as red bars) contrast different treatment that occurred 

between those timepoints, ‘Yes’ indicates treatment with specified antibiotics and ‘No’ means other or no 

treatment. The lower three panels show the distribution of mean differences of the change in relative 

resistance between treatment groups generated through treatment-label permutation (areas in darker grey 

show 80% central quantiles). The distributions are overlaid with the observed difference (red vertical line). 

Subplot a ) compares treatment with any antibiotic versus no antibiotic. Subplot b) compares treatment with 

antibiotics with expected activity against most ESBL-producers (doxycycline, ertapenem, meropenem, 

tigecycline, colistin, augmentin, ampicillin-sulbactam, piperacillin-tazobactam, amikacin, gentamicin, 

ciprofloxacin, imipenem) with all other treatment, including no treatment. Finally, in subplot c) we consider 

antibiotics with broad-spectrum activity but mostly lack of activity against ESBL producing strains 

(amikacin, amoxicillin, ampicillin, cefepime, cefotaxime, ceftazidime, ceftriaxone, cefuroxime, levofloxacin, 

ofloxacin, sulfamethoxazole-trimethoprim).     
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Figure 4 Estimated effects of different antibiotics on within-host dynamics from a multivariable model. The 

bars show estimated daily effects of individual antibiotics on the absolute CTX-M abundance (red) and 16S 

rRNA abundance (light blue) indicating the 80% and 95% highest posterior density intervals (thick and thin 

horizontal bars, respectively). The model also gives the antibiotic effect on the CTX-M / 16S relative 

resistance shown as arrows on the right-hand side. Arrows are in grey for antibiotics with mean effect 

estimates between -10% and +10%, otherwise they are coloured red (positive selection) and green 

(negative selection).   
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Figure 5 Simulated predictions of CTX-M carriage duration under different alternative antibiotic treatments. 

The upper panel shows model predictions with parameter uncertainty, but assuming deterministic 

dynamics. The lower panel shows the predictions with parameter uncertainty as well as Markov process 

uncertainty. The darker grey areas shows the 50% credible intervals and the white lines show the median 

predictions. Both panels compare the same treatments. Each density distribution is overlaid with the 

density line of the no treatment case (dotted line) and its median prediction (dotted vertical line). We 

compare predictions for treatment with augmentin (18 days) and ceftriaxone (14 days), and each in 

combination treatment with ciprofloxacin. We also compare treatment with ceftriaxone plus amikacin (7 

days), meropenem (14 days), and piperacillin-tazobactam (8 days). Finally, we compare a normal course of 

meropenem (14 days) with a shortened course (5 days).   
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Supplementary Figure 1 Autocorrelation and sources of variability in qPCR time series data. First-order 

autocorrelation averaged across all patients with more than five time points for 16S (a) and CTX-M (b ) 

abundance data (red vertical line). This is compared to a histogram of the mean autocorrelation from 10,000 

replicates of simulated serially uncorrelated “white noise” time series, simulated using the same number of 

observations per patient as in the real data and the same per patient mean and variance as in the observed 

CTX-M and 16S rRNA data. The shift toward negative autocorrelation in the simulations is an artefact due to 

short time series, what is of interest is the position of the observed value relative to the simulated 

distribution. Both CTX-M and 16S data show a clear autocorrelation signal, though autocorrelation is 

substantially stronger for the CTX-M data. Panel  (c ) shows Bayesian estimates of the sources of variability 

in the measurements, given as proportion of total variability.    
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Supplementary Figure 2  Variability in replicate qPCR runs. The standard deviation of repeat qPCR 

machine runs versus their mean for 16S (red) and CTX-M (turquoise). The red line represents a smooth 

spline fit to the data with five degrees of freedom.   
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