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Huge amounts of experimental data relating to the emergence of collective cell migration as
one proceeds from the behavioral dynamics of small cohorts of cells to the coordinated migratory
response of cells in extended tissues are now available. Integrating these findings into a mechanistic
picture of cell migration which is applicable across such a broad range of system sizes constitutes
a crucial step towards a better understanding of the basic factors that determine the emergence
of collective cell motion. Here we propose a cellular-automaton-based modeling framework, which
focuses on the integration of high-level cell functions and their concerted effect on cellular migration
patterns. In particular, we adopt a top-down approach to incorporate a coarse-grained description
of cell polarity and its response to mechanical cues, and address the impact of cell adhesion on
collective migration in cell groups. We demonstrate that the model faithfully reproduces typical cell
shapes and movements down to the level of single cells, and yet is computationally efficient enough
to allow for the simulation of (currently) up to O(104) cells. To develop a mechanistic picture that
illuminates the relationship between cell functions and collective migration, we present a detailed
study of small groups of cells in confined circular geometries, and discuss the emerging patterns of
collective motion in terms of specific cellular properties. Finally, we apply our computational model
at the level of extended tissues, and investigate stress and velocity distributions as well as front
morphologies in expanding cellular sheets.

Cell movements range from uncoordinated ruffling of
cell boundaries to the migration of single cells [1] to the
collective motions of cohesive cells groups [2]. Single-cell
migration enables cells to move towards and between tis-
sue compartments, a process that plays an important role
in the inflammation-induced migration of leukocytes [3].
One may distinguish between amoeboid and mesenchy-
mal migration, which are characterized by widely differ-
ent cell morphologies and adhesive interactions with their
respective environments [4, 5]. Cells may also form cohe-
sive clusters and mobilize as a collective [6–11]. This last
mode of cell migration is known to drive tissue remod-
elling during processes as embryonic morphogenesis [12]
and wound repair [13].

Despite this broad diversity of migration modes there
appears to be a general consensus that all require (to
varying degrees) the following factors: (i) Cell polar-
ization, cytoskeletal organization, and force generation
driven by the interplay between actin polymerization and
contraction of acto-myosin networks. (ii) Cell-cell cohe-
sion and coupling mediated by adherens-junction pro-
teins which are coupled to the cytoskeleton. (iii) Guid-
ance by chemical and physical signals. The basic func-
tionalities implemented by these different factors confers
on cells the ability to generate forces, adhere (differen-
tially) to each other and a substrate, and respond to me-
chanical and chemical signals. However, a fully mecha-
nistic understanding how these basic functionalities are
integrated into single cell migration and coordinated mul-
ticellular movement is still lacking.

Here, we present a computational model which en-
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ables us to study cell migration at various scales and
thus provides an integrative perspective on the basic cell
functions that enables the emergence of collective cell
migration. While a variety of very successful modeling
approaches has been used to describe single cell dynam-
ics [14–23] or the movements of extended tissues [24–
29], these models are hard to reconcile with each other.
Models that focus on single cells are typically difficult to
extend to larger cell numbers, largely due to their com-
putational complexity. On the other hand, approaches
which are designed to capture the dynamics at the scale
of entire tissues generally adopt a rather coarse-grained
point of view and are, therefore, difficult to transfer to
single cells or small cell cohorts. At present there are two
partly competing and partly complementary approaches
to bridge the gap between single cell migration and collec-
tive dynamics, namely phase-field models [17, 18, 30–33]
and cellular Potts models (CPM) [25, 26, 34–39] intro-
duced by Graner and Glazier [40].

Building on and generalizing the CPM [40], we present
a cellular automaton model that is designed to capture
essential cellular features even in the context of the mi-
gration of single cells and of small sets of cells. At the
same time, it is computationally efficient for simulations
with very large cell numbers [currently up toO(104) cells]
thus permitting investigations of collective dynamics at
the scale of tissues. Our model reproduces the most per-
tinent features of cell migration even in the limiting case
of solitary cells, and is compatible with a wealth of ex-
perimental evidence derived from both small cell groups
and larger collectives made up of several thousand cells.
Specifically, studying the characteristics of single-cell tra-
jectories and of small cell groups confined to circular ter-
ritories, we demonstrate that persistency of movements is
significantly affected by cell stiffness and cell polarizabil-
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ity. Moreover, we investigate the dynamics of tissues in
the context of a typical wound-healing assay [6, 13, 41],
and show that it exhibits the X-shaped traction force
patterns observed experimentally [41] that we attribute
to the coupling between cell sheet expansion and cell den-
sity induced growth inhibition.

I. COMPUTATIONAL MODEL

We consider a cell α as a set of simply connected
grid sites D(α) = {xαj } on a two-dimensional (2D) lat-
tice (Fig. 1). Cell motion and cell shape changes cor-
respond to the annexation or loss of grid sites, and, as
for actual cells, involve protrusions (retractions) of cell
boundaries [42, 43]: In the computational model, these
processes are implemented as elementary protrusion and
retraction events, Tpro and Tret, corresponding to the in-
crease and decrease, respectively, of the number of lattice
elements within D(α) by takeover (surrender) of individ-
ual grid sites at the cell’s boundary B(α). The outcome
of takover attempts is determined on the basis of their
associated cost or payoff in some configuration energy
assigned by a Monte Carlo scheme. The key mechanical
structures driving all these processes include branched
actin networks and actin bundles, acto-myosin networks,
adherens junctions, and focal adhesions. In our formal-
ism, we model the effects of these structures in a coarse-
grained manner as follows.

As in the CPM, we assume that deformations of a cell’s
membrane and cortex are constrained by the elastic en-
ergy

Hcont = κP P
2
α(t) + κAA

2
α(t) , (1)

where κP and κA are cell-type specific stiffness parame-
ters for the perimeter Pα(t) and the area Aα(t) of a cell
α at time t, respectively. The ensuing contractile forces
are counteracted by outward pushing forces generated
by assembling and disassembling cytoskeletal structures
[14, 42]. To model these dynamic processes we general-
ize the CPM by introducing a time-dependent and spa-
tially resolved internal concentration field for each cell:
ρα(xn, t), which is intended to represent the density of
force-generating cytoskeletal structures. We assume that
for an elementary protrusion event the energy change is
given by the difference in this density between target site
xt and source site xs,

Hcyto = ρβ(xt, t)− ρα(xs, t) , (2)

where the amplitude of ρα encodes for the energy scale;
an analogous expression holds for elementary retraction
events.

Assembly and disassembly of cytoskeletal structures
are controlled by a myriad of accessory proteins [1, 43].
Since there are several biological factors which limit the
local density of actin filaments, we introduce cell-type
specific bounds for the cytoskeletal field: q ≤ ρ(xn, t) ≤
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FIG. 1. Illustration of the computational model with
the pertinent simulation steps. The scheme depicts three
cells (bounded by the red lines), each comprising a contigu-
ous set of grid sites (hexagons). Top left: The upper right
corner of the lower left cell (source cell) initiates a protrusion
event against a neighboring element in the right cell (target
cell), as indicated by the arrow, in an attempt to displace it.
The success of each such attempted elementary event depends
on the balance between contractile forces (Hcont), cytoskele-
tal forces (Hcyto), and cell adhesion (Hadh). Top right: If
the protrusion event is successful, the levels of regulatory fac-
tors are increased (decreased) in integer steps at all grid sides
inside the source (target) cell, that lie within a radius R of
the accepted protrusion event (as indicated by the plus and
minus signs). Bottom right: During the course of one MCS,
different levels of regulatory factors accumulate locally within
each cell, with positive levels of regulatory factors (green plus
signs) promoting a build-up of cytoskeletal structures, neg-
ative levels of regulatory factors (red minus signs) causing
degradation of cytoskeletal structures, and neutral levels of
regulatory factors (white zero signs) causing relaxation to-
wards a rest state, as indicated in the lower left image. The
color code indicates local levels of cytoskeletal structures, ρ.

Q. While the upper bound Q mainly reflects the lim-
ited availability of proteins, the lower bound q serves
to prevent cells from collapsing. Moreover, cytoskeletal
structures are known to respond to external mechanical
stimuli through feedback mechanisms involving regula-
tory cytoskeletal proteins[15, 16]. In our computational
model, we greatly simplify these complex processes by
subsuming them into a single integer variable F (xn, t)
which we will refer to as “regulatory factors”. If a protru-
sion or retraction event has been accepted at some source
site, then, in a process that could be called a mechan-
otransduction mechanism, F (xn, t) is within some radius
R accordingly altered up or down for the protruding and
the retracting cell, respectively. These regulatory fac-
tors in turn modulate the assembly and disassembly of
cytoskeletal structures. Specifically, we assume that pos-
itive levels, F (xn, t) > 0, promote assembly

ρ(xn, t+ ∆t) = ρ(xn, t) + µ [Q− ρ(xn, t)] , (3a)
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while negative values, F (xn, t) < 0, favor disassembly

ρ(xn, t+ ∆t) = ρ(xn, t) + µ [q − ρ(xn, t)] , (3b)

and neutral values, F (xn, t) = 0, favor relaxation towards
a rest state

ρ(xn, t+ ∆t) = ρ(xn, t) + µ [(Q+ q)/2− ρ(xn, t)] . (3c)

The parameter µ signifies the rate at which cytoskeletal
structures respond to the regulatory factors.

In addition to internal remodeling of the cytoskeleton,
adhesion of cells to neighboring cells and to the sub-
strate plays a key role in explaining migratory pheno-
types [2, 14]. From a mechanical point of view, the impli-
cations of cell adhesion are two-fold. First, cell adhesion
supports growth of cell-cell and cell-matrix contacts and
may thus be described in terms of effective surface ener-
gies. Secondly, once formed, adhesive bonds anchor the
cell to the substrate and to neighboring cells. During cell
migration, these anchoring points must continuously be
broken up and reassembled [44, 45] and, hence, provide
a constant source of dissipation. In our computational
model, the dissipative nature of cell-cell adhesions is ac-
counted for as follows: while the formation of new cell-cell
adhesions is favored by an energy benefit B, the rupture
of such cell-cell adhesions is accompanied by an energy
cost B + ∆B > B, where ∆B represents the dissipative
nature of cell-cell adhesions.

To model cell-substrate adhesion, we introduce a sec-
ond scalar field ϕ(x) whose value is taken to reflect the
density of substrate sites at which focal adhesions be-
tween cell and substrate can be formed. By allowing
ϕ(x) to take negative values, we can, moreover, define
lattice areas with cell-repelling properties, thus provid-
ing a natural means of implementing arbitrary substrate
micropatterns. Analogously to cell-cell contacts, we ac-
count for the dissipative nature of cell-substrate adhe-
sions by associating the breaking of such contacts with
an additional energy cost D.

In the description so far, the cells are arrested in the
cell cycle (mitostatic). To investigate the effect of cell
proliferation on tissue dynamics, we introduce a simpli-
fied three-state model of cell division. Cells start in a
quiescent state, where their properties remain constant
over time. The cell sizes fluctuate around an average
value determined by the cell properties and the local tis-
sue pressure. Upon exceeding a threshold size (A0) due
to size fluctuations, cells leave the quiescent state and
enter a growth state. The duration of the quiescent state
is thus a random variable whose average value depends
on the tissue pressure, where lower pressure leads to a
shorter quiescent state. During its subsequent determin-
istic growth state of duration Tg, the cell doubles all of
its cellular material and thus its preferred size. We model
this growth with a gradual decrease of the effective cell
contractility (κA and κP ). As there is no a priori rea-
son to assume that the cell’s migratory behavior should
depend on its size, we constrain the parameters accord-

ingly; this is described in detail in the Supplemental Ma-
terial [46]. After having grown, the cells switch to the
deterministic division state of duration Td. Here, the
cells utilize their cytoskeleton for the separation of the
cellular material instead of migration, thus reducing cell
polarizability to zero: ∆Q → 0. At the end of the di-
vision state, each dividing cell splits into two identical
daughter cells. The daughter cells’ properties and pa-
rameters are identical to the mother cell’s initial values
in the quiescent state. For a detailed and more technical
description we refer the interested reader to the Supple-
mental Material [46].

II. RESULTS

A. Single-cell migration

To study the migration of single cells, we used a large
computational grid with 9 ·104 sites and periodic bound-
ary conditions. The average cytoskeletal density was
fixed at (q + Q)/2 = 225. We then investigated the im-
pact of varying cell perimeter stiffness κP and levels of
maximum cell polarity ∆Q ≡ Q − q on the cell’s migra-
tory patterns. To assess the statistics of the cell trajecto-
ries, we recorded the cell’s orientation v̂(t) ≡ v(t)/||v(t)||
(v: cell velocity) and (geometrical) center of mass po-
sition R(t) during a total simulation time of T = 104

Monte-Carlo steps (MCS). For each set of parameters,
we performed 100 independent simulations, from which
we computed the mean squared displacement, MSD(τ) ≡
〈[R(t + τ) − R(t)]2〉, and the normalized velocity auto-
correlation function, C(τ) ≡ 〈v̂(t+ τ) · v̂(t)〉, where 〈. . . 〉
denotes an average with respect to simulation time t as
well as over all 100 independent simulations.

These computer simulations show that the statistics of
the migratory patterns is well described by a persistent
random walk model [47, 48] with its two hallmarks: A
mean square displacement that exhibits a crossover from
ballistic to diffusive motion [Fig. 2], and on sufficiently
long time scales an exponential decay of the velocity au-
tocorrelation function C(τ) ∝ e−τ/τp [inset of Fig. 2].

The persistence time τp has a characteristic depen-
dence on the maximum cell polarity ∆Q. There is a
threshold value for ∆Q below which cells remain im-
mobile. Above this threshold, the persistence time τp
shows a marked increase with ∆Q [Fig. 3A]: cells with
larger ∆Q exhibit extended episodes of ballistic motion.
Likewise, persistence times increase as the cell membrane
and cortex become more compliant (as the value for the
perimeter stiffness κP is reduced). Interestingly, our sim-
ulations also show that there is a strong correlation be-
tween cell shape and the persistence time of the cell’s
trajectory [Fig. 3B]: While highly persistent trajectories
are observed for cells with crescent shapes, more erratic
cell motion is typically found for cells with more rounded
outlines. In other words, our computational model pre-
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FIG. 2. Mean-squared displacement (MSD) for single-cell
movements at different maximum cell polarity ∆Q (stiffness
parameters κP = 0.060, κA = 0.18; average cytoskeletal den-
sity (Q+q)/2 = 225; signaling radius R= 5; cell-substrate dis-
sipation D= 0; cell-substrate adhesion penalty ϕ= 0). Single
cells perform a persistent random walk, i.e. they move ballis-
tically (MSD∝ τ2) for τ� τp, and diffusively (MSD∝ τ) for
τ� τp. Inset: Normalized velocity auto-correlation function
for the same parameters as in the main figure.

dicts that cells which are able to polarize their cytoskele-
tal structures more strongly will adopt crescent shapes
and show a higher degree of persistent cell motion. It
would be interesting to test these predictions using phe-
notypic variations in cell shapes like those reported in
experiments with keratocytes [49].

Moreover, we investigated the influence of different sig-
naling radii R on the persistence of single cell trajecto-
ries. Since R controls the spatial organization of lamel-
lipodium formation, its value should strongly affect the
statistics of a cell’s trajectory [Fig. 3C]. Indeed, at small
values of R, we observe that the spatial coherence of cy-
toskeletal rearrangements is low, which frequently results
in the disruption of ballistic motion due to the forma-
tion of independent lamellipodia in spatially separate sec-
tors of the cell boundary [Fig. 3D, upper snapshot]. In
contrast, at larger values of R, we find that spatial co-
herence is restored, and the formation of one extended
lamellipodium across the cell’s leading edge maintains
a distinct front-rear axis of cell polarity [Fig. 3D, lower
snapshot].

B. Circular micropatterns

To assess the transition to collective cell motion, we
next studied the dynamics of small cell groups confined
to circular micropatterns [8, 9, 36, 50]. We implemented
these structures in silico by setting ϕ(x) = 0 inside a ra-
dius r0 and ϕ(x)→ −∞ outside. During each simulation
run, the number of cells was also kept constant by deac-
tivating cell division. We previously employed this setup
to compare our numerical results with actual experimen-
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FIG. 3. Cell shape and persistence of migration as a func-
tion of the polarization parameters. (A) Persistence times
of persistent random walks by single cells are plotted as a
function of maximum cell polarity ∆Q, and perimeter stiff-
ness κP (area stiffness κA = 0.18; average cytoskeletal density
(Q+ q)/2 = 225; signaling radius R = 5; cytoskeletal update
rate µ = 0.1). The persistence time of the random walk in-
creases with increasing cytoskeletal polarity and decreasing
perimeter elasticity. (B) Cytoskeletal polarity also controls
cell shapes, with crescent cell shapes (long persistence times)
being observed at large cytoskeletal polartities, and elongated
cell shapes (short persistence times) at small cytoskeletal po-
larities. (C) Persistence times of persistent random walks
by single cells as a function of the cell’s signaling radius at
different values for the cytoskeletal polarity (stiffness param-
eters κP = 0.060, κA = 0.18; average cytoskeletal density
(Q + q)/2 = 225; cytoskeletal update rate µ = 0.1). (D)
The signaling radius critically determines the synchronicity
of internal cytoskeletal remodeling processes. Small signaling
radii frequently lead to transient formation of mutually inde-
pendent lamellipodia at different places within the cell body,
thereby interrupting persistent motion (reducing persistence
times). Large signaling radii lead to structurally stable front-
rear polarization profiles across the entire cell body (long per-
sistence times). (B), (D) Color code: cell polarization; cf.
color bar in (D).

tal measurements, and found very good agreement [36].
Here, we generalize these studies and present a detailed
analysis of the statistical properties of the collective dy-
namics of cell groups in terms of the key parameters of
the computational model.

When adhesive groups of two or more motile cells
are confined on a circular island, they arrange them-
selves in a state of spontaneous collective migration which
manifests itself in the form of coordinated and highly
persistent cell rotations about the island’s midpoint x0

[8, 9, 36, 50]. The statistics of these states of rota-
tional motion provide insight into the influence of cel-
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lular properties on the group’s ability to coordinate cell
movements. To quantify cell rotations in a system of K
cells, we recorded the angular distance φα(t) of each cell
α over time and determined the average angular trajec-
tory Φ(t) ≡ K−1

∑
α φα(t) traversed by each cell. The

resulting random variables for the overall angular veloc-
ity of the cell assembly, ω(t) ≡ |Φ̇(t)|, and the average cell
perimeter P (t) ≡ K−1

∑
α Pα(t) were then used to char-

acterize the statistics of collective cell rotation: For each
specific choice of simulation parameters, we monitored
ω(t) and P (t) for a set of 10 statistically independent
systems, each of which was observed over T = 104 MCS.
From these data, we then computed the mean overall ro-
tation speed 〈ω〉, its variance σ2

ω, and the variance of the
cell perimeter, σ2

P .

Figure 4 illustrates the characteristic properties of col-
lective cell rotations in systems containing K = 4 cells
and endowed with varying maximum cell polarity ∆Q
and varying cell contractility κP . Interestingly, the sta-
tistical measures shown in Fig. 4A do not separately de-
pend on cell contractility and maximum cell polarity,
but depend only on their ratio ∆Q/m, which we will
henceforth refer to as “specific polarity”. Overall, we ob-
served that upon increasing the specific polarity there
is a marked transition from a quiescent state to a state
where the cells are collectively moving. Below a threshold
value for the specific polarity [∆Q/m ≈ 1300 in Fig. 4],
the rotation speed 〈ω〉 [purple curves in Fig. 4A] equals
zero and the cells are immobile. In this regime, which
we term the “stagnation phase”, or S-phase, cytoskeletal
forces are too weak to initiate coherent cell rotation, and
the system’s dynamics is dominated by relatively strong
contractile forces which tend to arrest the system in a
“low energy” configuration. Beyond this threshold, we
identified three distinct phases of collective cell rotation.
In theR1-phase, we observed a steep increase in the aver-
age rotation speed and a local maximum in the cell shape
and rotation speed fluctuations; cf. green (σP ) and blue
(σω) curves in Fig. 4A. Now, cytoskeletal forces are suf-
ficiently large to establish actual membrane protrusions
against the contractile forces, and cells start to rotate
[Fig. 4B,C]. However, the contractile forces still domi-
nate such that cellular interfaces tend to straighten and
lamellipodium formation is sustained only over finite life
times. Thus, due to the dominance of contractile forces,
the systems frequently experience transient episodes of
stagnation and repeatedly change direction [Fig. 4B].

At intermediate values of the specific polarity (R2-
phase), the cellular systems reach a regime of enduring
rotational motion, where 〈ω〉 varies linearly with the spe-
cific local polarity, and where σP and σω exhibit a rather
broad minimum [Fig. 4A]. In this regime, a range of “op-
timal ratios” of cytoskeletal to contractile forces sustains
stable cell shapes and sets the stage for the formation of
extended lamellipodia and the establishment of perma-
nent front-rear polarizations of cells. As a result, per-
sistence times become very large, rendering cellular ro-
tations strictly unidirectional within the observed time
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FIG. 4. Phases of collective motion. (4 cell systems,
confinement radius r0 = 30.6; area stiffness κA = 0.18; av-
erage cytoskeletal density (Q + q)/2 = 225; signalling radius
R = 5; cytoskeletal update rate µ = 0.1; cell-cell adhesion
B = 0; cell-cell dissipation ∆B = 7; cell-substrate dissipa-
tion D = 0; cell-substrate adhesion penalty ϕ = 0 (r < r0),
ϕ → −∞ (r > r0)). (A) Characteristic observables of col-
lective cell rotation at different values of the cell perimeter
stiffness parameter κP : mean (〈ω〉)and standard deviation
(σω) of angular velocity of cell motion, and the standard de-
viation of the cell shape variability (σP ). The statistics of
collective cell motion depends only on the ratio of maximum
cell polarity, ∆Q, to cell contractility, κP (specific polarity).
(B) Representative angular trajectories and (C) cell shapes
(color code represents cell polarization; cf. Fig. 3D) for the
different parameter regimes as described in the main text.

window [Fig. 4B]. Finally, at large values of the specific
polarity (R3-phase), the system’s dynamics is dominated
by cytoskeletal forces and the rotational speed 〈ω〉 sat-
urates at some maximal value. Due to relatively small
contractile forces, cell shapes tend to become unstable,
as reflected in the growing variance of the cell perime-
ter σP [green curve in Fig. 4A]. These instabilities in cell
shape frequently lead to a loss of persistence in the rota-
tional motion of the cells [growing σω; blue curve in Fig.
4A].
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C. Tissue-level dynamics

As an application of our computational model on the
tissue level we considered a setup in which an epithelial
cell sheet expands into free space. As in recent experi-
mental studies [6, 13, 27, 41], we confined cells laterally
between two fixed boundaries, where they proliferated
until they reached confluence; in the y-direction we im-
posed periodic boundary conditions. Then we removed
the boundaries and studied how the cell sheet expands.
In order to quantify tissue expansion we monitored cell
density and velocity, as well as mechanical stresses driv-
ing the expansion process. Figure 5 shows our results for
two representative parameter regimes that highlight the
difference between a dynamics dominated by cell motil-
ity in the absence of cell proliferation, and a contrasting
regime where low-motility cells grow and divide depend-
ing on the local cell density.

We first investigated how a densely packed pre-grown
tissue of mitostatic cells with high polarizability (large
∆Q) expands into cell-free space upon removal of the
confining boundaries at the lateral tissue edges [Fig. 5A].
As the cells migrate into the cell-free space, we observe a
strongly spatially heterogeneous decrease of the initially
high and uniform cell density and mechanical pressure in
the expanding monolayer [Fig. 5B,C]. This is quite dis-
tinct from the behavior of a homogeneous and ideally
elastic thin sheet, which would simply show a homoge-
neous relaxation in density as it relaxes towards its rest
state. Moreover, cell polarization and the ensuing ac-
tive cell migration leads to inhomogeneously distributed
traction stresses in the monolayer: After initial expan-
sion of the monolayer, facilitated by high mechanical
pressure, the cells at the monolayer edge begin to po-
larize outwards which enhances outward front migration.
These actively propagating cells pull on the trailing cells,
and thereby yield a trailing region with negative stress
[Fig. 5C]. Taken together, this gives rise to a charac-
teristic X-shaped pattern in the kymograph of the total
mechanical stresses 〈σxx〉y [Fig. 5C]. This profile closely
resembles the first period of mechanical waves observed
experimentally [41]. It illustrates how stress is trans-
ferred towards the center of the monolayer when cells are
highly motile and collectively contribute to tissue expan-
sion. At the end of the simulated time window, the cell
density exhibited a minimum in the center of the sheet
[Fig. 5C]. This is due to stretching of the central group of
cells caused by the equally strong traction forces exerted
by their migrating neighbours on both sides. Finally,
the simulations also showed that outward cell velocities
increased approximately linearly with distance from the
center, confirming that the entire cell sheet contributes
to the expansion in this configuration.

To explore the possible range of tissue dynamics and
expansion, we also investigated a qualitatively different
parameter regime where cells are less packed and can
also polarize less due to a narrower range of polarizabil-
ity [Fig. 5E,F]. Here, the expansion of the monolayer is

mainly driven by cell division and cells keep dividing un-
til they reach a homeostatic cell density. Even though
cells should typically exceed the threshold size and hence
enter growth phase at different times, we observe that
the cell sheet exhibits periodic ’bursts’ of growth coin-
ciding with the total duration of a complete cell cycle
(200 MCS) and alternating with cell migration [Fig. 5H].
These periodic ’bursts’ can be explained as follows: Ini-
tially, the slightly compressed monolayer expands to re-
lieve mechanical pressure. Due to this initial motion, the
cells at the monolayer edge begin to polarize outwards.
As in the previous case where cell proliferation is absent
[Fig. 5A-D], the polarized cells enhance outward front mi-
gration and stretch the cells in the bulk of the cell sheet.
For the same reasoning as before, we observe a typical
X-shaped stress pattern in the kymograph [Fig. 5G], al-
though less pronounced due to a lower polarizability of
the cells [cf. Fig. 5C]. Because a broad region of cells
in the monolayer bulk are stretched by the actively mi-
grating cell fronts, they exceed the threshold size and
begin growing approximately in phase. Once the me-
chanical pressure of the cell sheet is relieved, it will stop
expanding [Fig. 5H]. However, cell growth and division
once more lead to an increase of mechanical pressure (and
cell density) in the monolayer. This cycle of migration-
dominated monolayer expansion and cell-density depen-
dent cell growth and division results in a periodic reoc-
curence of the X-shaped stress pattern [Fig. 5G], closely
resembling the pattern observed in experiments [41].

On a sidenote, the mentioned synchronization of the
cell division and cell migration phases by the determinis-
tic part of the cell cycle can be counteracted by introduc-
ing additional stochastic terms in the transition between
the different phases of the cell cycle.

III. CONCLUSION

In this work, we have proposed a generalization of
the cellular Potts model [40]. The model implements
a coarse-grained routine that captures the salient fea-
tures of cytoskeletal remodeling processes on sub-cellular
scales, while being computationally tractable enough to
allow for the simulation of entire tissues containing up to
O(104) cells. We have used the model to study the tran-
sition from single-cell to cohort cell migration in terms of
an interplay between pertinent cellular functions. Specif-
ically, we have demonstrated that our model consistently
reproduces the dynamics and morphology of motile cells
even down to the level of solitary cells. Our studies also
reveal that cytoskeletal forces (relative to cell contrac-
tility), as well as the spatial organization of the cells’
lamellipodia, significantly impact the persistency of cel-
lular trajectories, both in the context of single-cell mo-
tion and in cohesive cell groups restricted to circular mi-
cropatterns. On a more macroscopic level, our simulation
results suggest that the dynamics of expanding tissues
strongly depends on the specific properties of the con-
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FIG. 5. Expansion of a confluent epithelial cell sheet after removal of boundaries positioned at x = ±175 for two different
parameter settings. (A-D) Tissue expansion for a migration dominated setup without explicit cell growth and mitosis. (3300
cell system; stiffness parameters κP = 0.12, κA = 0.18; average cytoskeletal density (Q + q)/2 = 35; maximum cell polarity
∆Q = 30; signalling radius R = 2; cytoskeletal update rate µ = 0.1; cell-cell adhesion B = 7; cell-cell dissipation ∆B = 0;
cell-substrate dissipation D = 0; cell-substrate adhesion penalty ϕ = 0). (E-H) Tissue expansion at low density and cell
polarizability for a cell sheet comprised of dividing cells. (Initially 2500 cell system; stiffness parameters κP = 0.12, κA = 0.18;
average cytoskeletal density (Q + q)/2 = 35; maximum cell polarity ∆Q = 10; signalling radius R = 2; cytoskeletal update
rate µ = 0.1; cell-cell adhesion B = 7; cell-cell dissipation ∆B = 0; cell-substrate dissipation D = 0; cell-substrate adhesion
penalty ϕ = 0; growth time Tg = 180; division time Td = 20; size threshold for cell growth AT = 1Aref, where Aref is the size
of a solitary cell in equilibrium). (A,E) Snapshots of the density of cytoskeletal structures ρ. (B,F) Kymographs showing
the cell density averaged over the y-direction for and (top) final snapshots of the cell density profiles. (C,G) Kymographs
showing the component σxx of the stress tensor averaged over the y-direction and (top) final snapshots of the stress profiles.
(D,H) Kymographs showing the component vx of the cell velocities averaged over the y-direction and (top) final snapshot of
the velocity profiles.

stituent cells. While the advancing cell front attains a
“fingering morphology” when tissue expansion is driven
by growth of cell size at the tissue’s leading edge, smooth
epithelial borders emerges if the expansion is driven by
active cell migration throughout the tissue.

Taken together, our results further highlight the intri-
cacies of collective cell migration, which involves a mul-
titude of intra- and inter-cellular signaling mechanisms
operating at different scales in length and time. Estab-
lishing a comprehensive picture that incorporates and
elucidates the mechanistic basis of these phenomena re-
mains a pressing and challenging task. The multi-scale
modeling approach proposed here, provides a direct link

between sub-cellular processes and macroscopic dynamic
observables, and might thus offer a viable route in this
particular direction.
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