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Abstract 

Mutations that cause genetic diseases can be difficult to identify if the mutation does not affect 

the sequence of the protein, but the splice form of the transcript. However, the prediction of 

deleterious changes caused by genomic variants that affect splicing has been shown to be 

accurate using information theory-based methods. We made several such predictions of potential 

splicing changes that could be caused by SNPs which were found to cause natural and/or cryptic 

splice site strength changes. We evaluated a selected set of 22 SNPs that we predicted by 

information analysis to affect splicing, validated these with targeted expression analysis, and 

compared the results with genome-scale interpretation of RNAseq data from tumors. Abundance 

of natural and predicted splice isoforms were quantified by q-RT-PCR and with probeset 

intensities from exon microarrays using RNA isolated from HapMap lymphoblastoid cell lines 

containing the predicted deleterious variants. These SNPs reside within the following genes: 

XRCC4, IL19, C21orf2, UBASH3A, TTC3, PRAME, EMID1, ARFGAP3, GUSBP11 (F8), 

WBP2NL, LPP, IFI44L, CFLAR, FAM3B, CYB5R3, COL6A2, BCR, BACE2, CLDN14, 

TMPRSS3 and DERL3. 15 of these SNPs showed a significant change in the use of the affected 

splice site. Individuals homozygous for the stronger allele had higher transcription of the 

associated gene than individuals with the weaker allele in 3 of these SNPs. 13 SNPs had a direct 

effect on exon inclusion, while 10 altered cryptic site use. In 4 genes, individuals of the same 

genotype had high expression variability caused by alternate factors which masked potential 
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effects of the SNP. Targeted expression analyses for 8 SNPs in this study were confirmed by 

results of genome-wide information theory and expression analyses. 
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Introduction 

Accurate and comprehensive methods are needed for predicting impact of non-coding 

mutations, in particular splicing defects, which are prevalent in causing genetic disease 

(Krawczak et al. 1992; Teraoka et al. 1999; Ars et al. 2003). This class of mutations may account 

for as much as 62% of point mutations (López-Bigas et al. 2005). While bioinformatic 

approaches can identify potential splicing mutations, predicting the relative abundance of various 

transcripts has proven to be challenging because of the complexity of splice site recognition. 

The selection of splicing signals involves exon and intron sequences, complementarity 

with snRNAs, RNA secondary structure and competition between spliceosomal recognition sites 

(Berget 1995, Moore and Sharp 1993). U1 snRNP interacts with the donor (or 5’) splice site 

(Séraphin et al. 1988, Zhuang et al.1986) and U2 (and U6) snRNP with the acceptor and branch 

sites of pre-mRNA (Parker et al. 1987, Wu and Manley, 1989). Although both of the U1 and U2 

spliceosomal interactions involve base pairing to RNA, the majority of human splice donors (5') 

and acceptors (3') that are not precisely complementary to these sequences (Rogan et al. 2003).  
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Additional exonic and intronic cis-regulatory elements can promote or suppress splice 

site recognition through recruitment of trans-acting splicing factors. These factors contain RNA-

recognition motifs (RRM) and a carboxy-terminal domain enriched in Arg/Ser dipeptides (SR 

domain; Birney et al. 1993). SR proteins function in splice site communication by forming an 

intron bridge needed for exon recognition (Zuo and Maniatis 1996). Binding of RRMs in pre-

mRNA enhances exon recognition by promoting interactions with spliceosomal and other 

proteins (Fu and Maniatis 1992).  

Splicing mutations affect normal exon recognition by altering the strengths of natural 

donor or acceptor sites and proximate cryptic sites either independently or simultaneously. 

Weaker splice sites can reduce of kinetics of mRNA processing, leading to overall decrease in 

full length transcripts, increased exon skipping, cryptic splice site activation within exons or 

within adjacent introns, intron retention, and inclusion of cryptic, pseudo-exons (Buratti 2006; 

Talerico and Berget, 1990; Carothers et al. 1993). Aberrant mRNAs may alter the reading frame, 

resulting in unstable and degraded or truncated proteins. The kinetics of splicing at weaker 

cryptic sites is slower than at authentic splice sites (Domenjoud et al. 1993). Mutations 

strengthen cryptic sites either by increasing resemblance to consensus sequences (Nelson and 

Green 1990) or by modulating the levels of SR proteins contributing to splice site recognition 

(Cáceres et al. 1994; Mayeda and Krainer 1992). Splicing mutations at splicing regulatory 

elements (Dietz et al. 1993; Richard and Beckmann 1995) may also occur through disruption of 

trans-acting SR protein interactions (Staknis and Reed 1994) with distinct exonic and intronic 

cis-regulatory elements (Black 2003).  
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Information theory-based (IT-based) models of donor and acceptor mRNA splice sites 

reveal the effects of changes in strengths of individual sites (Rogan et al. 1998; Rogan et al. 

2003). This facilitates prediction of phenotypic severity (Rogan and Schneider 1995; von 

Kodolitsch et al. 1999; von Kodolitsch et al. 2006). The effects of splicing mutations can be 

predicted in silico by information theory (Rogan and Schneider 1995; Rogan et al. 1998; O’Neill 

et al. 1998; Allikmets et al. 1998; Kannabiran et al. 1998; Khan et al. 1998; von Kodolitsch 

1999; Vockley et al. 2000; Svojanovsky et al. 2000; Khan et al. 2002; Rogan et al. 2003; Lamba 

et al. 2003; Khan et al. 2004; von Kodolitsch et al. 2006, Viner et al. 2014; Dorman et al. 2014; 

Shirley et al. 2018) and predictions confirmed in vitro by experimental studies (Vockley et al. 

2000; Rogan et al. 2003; Lamba et al. 2003; Susani et al. 2004; Hobson et al. 2006). Strengths of 

one or more splice sites may be altered and, in some instances, concomitant with amino acid 

changes in coding sequences (Rogan et al. 1998). Information analysis has been a successful 

approach for recognizing non-deleterious variants (Rogan and Schneider 1995), and for 

distinguishing of milder from severe mutations (Rogan et al. 1998; von Kodolitsch et al. 1999).  

Recent genome wide association studies have associated common SNP variants with 

expression levels of linked genes (Stranger et al. 2007). Functional evaluation of SNPs can 

potentially accelerate recognition of allelic variants associated with inherited predisposition to 

disease. We are applying quantitative methods to prioritize such studies by inferring which SNPs 

impact gene expression levels and transcript structure. Models of nucleic acid binding sites based 

on information theory have successfully been used to detect cis-acting promoter modules in the 

genome (Vyhlidal et al. 2004; Bi and Rogan, 2004) and splicing signals in transcripts. In the 
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present study, we explicitly predict and validate SNPs that influence mRNA structure and levels 

of expression of the genes containing them. 

The robustness of information analysis in predicting splicing mutations for Mendelian 

disorders justifies the use of this approach to identify SNPs that are likely to have a measurable 

impact on mRNA splicing. Others have used exon microarrays to compare different cellular 

states and then confirm suggested abnormalities from the expression data using q-RT-PCR 

(Thorsen et al. 2008). We hypothesized that the predicted effect of SNPs on expression of the 

proximate exon would correspond to the expression of exon microarray probes of genotyped 

individuals in the HapMap cohort. We used the dose-dependent expression of the minor allele to 

qualify SNPs for subsequent information analysis consistent with alterations of mRNA splicing. 

These predicted mutations were then analyzed by q-RT-PCR to validate the accuracy of the 

bioinformatic predictions. 

We recently described several deleterious single nucleotide polymorphisms in dbSNP 

that affect splicing and at least one of these is common (Nalla and Rogan 2005). This analysis 

used the NCBI Entrez query engine which conservatively defines splicing-related SNPs as only 

those variants involving the dinucleotides immediately adjacent to exon boundaries. Given that 

constitutive splicing mutations can arise at other locations within pre-mRNA sequences and can 

involve cryptic splicing, we addressed whether other genomic variants might be a source of 

common mutation. To test the feasibility of this hypothesis, we used information analysis to 

examine the potential impact of SNPs mapped predominantly onto the genome sequences of 

chromosomes 21 and 22 on splicing. 

Materials and Methods 
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IT-based analysis. The protein-nucleic acid interactions intrinsic to splicing can be 

analyzed using information theory, which comprehensively and quantitatively models functional 

sequence variation based on a thermodynamic framework (Schneider 1997). Donor and acceptor 

splice site strength can be predicted by the use of IT-based weight matrices, which are derived 

from known functional sites (Rogan et al. 2003). The Automated Splice Site server (ASSA; 

https://splice.uwo.ca) is an online resource based on the April 2003 build of the genome to 

calculate splice site changes (Nalla and Rogan, 2005). The ASSA was scaled to carry out batch 

processing of multiple dbSNP entries.  

Creation of exon array database. The download and PLIER (Probe Logarithmic Intensity 

Error) normalization of the Affymetrix Human Exon 1.0 ST microarray data testing 176 

genotyped HapMap cell lines (Huang et al. 2007, Gene Expression Omnibus accession no. GSE 

7792) has been previously described (Nembaware et al. 2008). Probes which overlap SNPs were 

determined by intersecting dbSNP129 with probe coordinates (obtained from X:MAP [Yates et 

al. 2007]) using the Galaxy Browser [Giardine et al. 2005]), and were removed from analysis. 

A MySQL database was created and contains the PLIER normalized intensities, as well 

as CEPH and Yoruba genotypes for Phase I+II HapMap SNPs (downloaded Nov. 17
Th

 2008). 

Perl scripts were written to create tables which linked a SNP to its nearest like-stranded probeset 

(to within 500nt), and to associate probesets to the exons they may overlap (transcript and exon 

tables from Ensembl version 51). A MySQL query was used to create a table of the splicing 

index (SI; intensity of a probeset / gene intensity) of each probeset for each HapMap individual.  

A Perl script which queried the database was written to find significant SI changes of an 
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exonic probeset based on the genotype of a SNP it is associated to (SNP within natural 

donor/acceptor region of exon). Probesets displaying a stepwise change in mean SI (where mean 

SI of homozygous rare is < 90% of homozygous common with a simultaneous decrease in 

heterozygotes) were found with another script. Splicing Index boxplots were created using R, 

where the x and y-axis are genotype and SI, respectively (Supplemental Figure 1). This gives a 

visual representation of all 176 individuals (if genotyped), and allows one to quickly analyze the 

effect a SNP has on a particular probeset. 

SNPs of varying strength changes (≥ 0.5 bits) were chosen to be further analyzed by q-

RT-PCR. ΔRi < 1 bit were included to determine if these small changes lead to detectable 

changes in splicing. Additional SNPs tested for splicing effects were predicted in previous 

publications (Nalla & Rogan, 2005). 

Cell culture & RNA extraction. EBV-transformed lymphoblastoid cell lines of HapMap 

individuals with our SNPs of interest (homozygous common, heterozygous and homozygous rare 

when available) were ordered from the Coriell Cell Repositories (CEU: GM07000, GM07019, 

GM07022, GM07056, GM11992, GM11994, GM11995, GM12872. YRI: GM18855, GM18858, 

GM18859, GM18860, GM19092, GM19093, GM19094, GM19140, GM19159). Cells were 

grown in HyClone RPMI-1640 medium (15% FBS [HyClone], 1% L-Glutamine and 1% 

Penicillin:streptomycin [Invitrogen]; 37ºC, 5% CO2). RNA was extracted with Trizol LS 

(Invitrogen) from 10
6
 cells and treated with DNAase (20mM MgCl2 [Invitrogen], 2mM DTT 

[Sigma-Aldrich], 0.4U/uL RNasin [Promega], 10µg/mL DNase [Worthington Biochemical] in 1x 

TE buffer) at 37ºC for 15 minutes. The reaction was stopped with EDTA (0.05M; 2.5% v/v), and 

heated to 65ºC for 20 minutes, followed by ethanol precipitation (resuspended in 0.1% v/v 
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DEPC-treated 1x TE buffer). DNA was extracted using a Puregene Tissue Core Kit B (Qiagen). 

Design of real-time expression assay. Sequences were obtained from UCSC and 

Ensembl. DNA primers used to amplify a known splice form or one predicted by information 

analysis were designed using Primer Express (ABI). DNA primers were obtained from IDT 

(Coralville, IA, USA), and dissolved to 200 uM; sequences in Supplemental Table 1. Primers 

were designed to amplify the wildtype splice form, exon skipping (if a natural site is weakened), 

and cryptic site splice forms which were previously reported (UCSC mRNA and EST tracks) or 

those predicted by information analysis (where Ri cryptic site ≥ Ri weakened natural site). 

Two types of reference amplicons were used to quantify allele specific splice forms. 

These consisted of intrinsic products derived from constitutively spliced exons with the same 

gene and external genes with high uniformity of expression among HapMap cell lines. Reference 

primers internal to the genes of interest were designed 1-4 exons adjacent from the affected exon 

(without evidence of variation from the UCSC Genome Browser), placed upstream of the SNP of 

interest whenever possible. Two advantages to including an internal reference in the q-RT-PCR 

experiment include: potential detection of changes in total mRNA levels; and account for inter-

individual variation of expression. 

External reference genes were chosen based on consistent PLIER intensities with low 

coefficients of variation in expression among all 176 HapMap individuals. The following 

external controls were selected: exon 39 of SI (PLIER intensity 11.4 ± 1.7), exon 9 of FRMPD1 

(22 ± 2.81), exon 46 of DNAH1 (78.5 ± 9.54), exon 3 of CCDC137 (224 ± 25) and exon 25 of 

VPS39 (497 ± 76). The external reference chosen for an experiment was matched to the intensity 

of the probeset within the exon of interest. This decreased potential errors in CT values and 
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proved to be accurate and reproducible for most genes.  

Primers were placed over junctions of interest (whenever possible) to amplify a single 

splice form. Tm ranged from 58-65ºC, and amplicon lengths varied from 69-136nt. BLASTn 

(refseq_rna database) was used to reduce possible cross-hybridization. 

PCR and quantitative RT-PCR. M-MLV reverse transcriptase (Invitrogen) converted 1µg 

of DNase-treated RNA to cDNA with 20nt Oligo-dT (25µg/mL; IDT) and rRNAsin (Promega). 

Precipitated cDNA was resuspended in water at 20ng/µL of original RNA concentration. 

All designed primer sets were tested with conventional PCR to ensure a single product at 

the expected size. PCR reactions were prepared with 1.0M Betaine (Sigma-Aldrich), and were 

heated to 80ºC before adding Taq Polymerase (Invitrogen). Optimal Tm for each primer set was 

determined to obtain maximum yield.  

Quantitative PCR was performed on an Eppendorf Mastercycler ep Realplex 4, a Bio-

Rad CFX96, as well as a Stratagene Mx3005P. SYBR Green assays were performed using the 

KAPA SYBR FAST qPCR kit (Kapa Biosystems) in 10µL reactions using 200µM of each primer 

and 24ng total of cDNA per reaction. For some tests, SsoFast Eva Green supermix (Bio-Rad) 

was used with 500µM of each primer instead.  

When testing the effect of a SNP, all primers designed for that SNP as well as the gene 

internal reference and external reference, were run simultaneously. Ct values obtained from these 

experiments are normalized to its external reference using the Relative Expression Software Tool 

(REST; http://www.gene-quantification.de/rest.html; Phaffl et al. 2002).  

 Taqman Assay. Two dual-labeled Taqman probes were designed to detect the two splice 

forms of XRCC4 (6nt deletion). Probes were placed over the sequence junction of interest where 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2019. ; https://doi.org/10.1101/549089doi: bioRxiv preprint 

http://www.gene-quantification.de/rest.html
https://doi.org/10.1101/549089
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

 

variation would be near the probe middle (Supplemental Figure 1). The assay was performed on 

an ABI StepOne Real-Time PCR system using ABI Genotyping Master Mix. Experiment was run 

in 25µL reactions (300nM each primer, 400nM probe [5'-FAM or TET fluorophore with a 3' 

Black Hole quencher; IDT], and 80ng cDNA total). Probes were tested in separate reactions. 

Results 

Selection of candidate SNPs affecting splicing. Publically available exon microarray data 

was used to find exons affected by splice site strength-altering SNPs. A change in the mean SI of 

individuals of differing genotypes may suggest the possibility of altered splicing. A stepwise 

decrease (where the mean SI for the heterozygote is in between the two homozygotes) could 

reflect an increase in the allelic effect. There were 9328 HapMap-annotated SNPs within 

donor/acceptor regions of known exons which contained at least one probeset. Of 987 SNPs that 

are associated to exonic probesets which differ in mean SI between the homozygous common 

and rare HapMap individuals, 573 caused a decrease in natural site Ri. Leaky mutations 

(reduction in information content where final Ri ≥ Ri,minimum) comprise 40-60% of the total 

and also exhibit reduced SI values. These results indicate that the proposed approach will detect 

severe, as well as moderate, splicing mutations with reduced penetrance and milder phenotypes, 

consistent with our previous reports (von Kodolitsch et al. 1999; von Kodolitsch et al. 2006). 

These SNPs were analyzed by information theory to find those which caused a potential 

splice-affecting Ri change. Of the 9328 HapMap SNPs within the natural splice sites of exon 

probeset-containing exons, 112 (1.2%) and 235 (2.5%) were found on chromosome 21 and 22, 

respectively. Of those, 21 SNPs on chr21 (0.23% total, 18.8% of chr21) and 34 on chr22 (0.36% 
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of total, 14.5% of chr22) associated with a stepwise decrease in probeset intensity. 7 of the 21 

chr21 SNPs (33.3%) and 9 of the 34 chr22 SNPs (26.5%) caused information changes which 

satisfied either of the following criteria: a natural site ΔRi ≥ 0.5 bits, or a change in strength to a 

potential cryptic site(s) with an Ri comparable than the neighbouring natural site, or where 

mRNA/EST data supported cryptic site use. While a minimum ΔRi of 0.5 bits (1.4 fold) was 

chosen, the actual minimum change resulting in a detectable splicing effect is not known (ΔRi’s 

range from 0.5 to 7.8 bit). The 16 SNPs are listed in order of decreasing ΔRi: rs2075276 

(MGC16703), rs2838010 (FAM3B), rs3747107 (GUSBP11), rs2070573 (C21ORF2), rs17002806 

(WBP2NL), rs3950176 (EMID1), rs1018448 (ARFGAP3), rs6003906 (DERL3), rs2266988 

(PRAME), rs2072049 (PRAME), rs2285141 (CYB5R3), rs2252576 (BACE2), rs16802 (BCR), 

rs17357592 (COL6A2), rs16994182 (CLDN14), TMPRSS3 (rs8130564). 

 We report q-RT-PCR results for 13 out of the 16 SNPs (primers to test the affect of 

rs16994182, rs2075276 and rs3950176 were not suitable for q-RT-PCR, or gave ambiguous 

results), along with 8 other candidate SNPs found in previous publications (Nalla and Rogan, 

2005) and are not found in chromosomes 21 and 22; (rs1805377 [XRCC4], rs2243187 [IL19], 

rs2835585 [TTC3], rs2865655 [TTC3], rs1893592 [UBASH3A], rs743920 [EMID1], rs13076750 

[LPP] and rs1333973 [IFI44L] and rs10190751 [CFLAR]).  

Limitations in detecting altered splicing with exon microarrays. Detection of splice forms 

is limited by the probeset placement of the array, as they often avoid small alternative splicing 

events (see UCSC Genome Browser image in Supplemental Figure 1.6, 1.7 and 1.9). Even where 

genotype-directed SI changes are very distinct, some individuals with the common allele have 

equivalent SI values individuals with the rare allele (C21orf2 rs2070573; Suppl. Figure 1.1). 
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Limited availability of individuals with a particular genotype can be insufficient for statistical 

significance (rs2243187; Suppl. Figure 1.4). Although exon microarrays can be used to find 

potential alternate splicing and give support to our predictions, q-RT-PCR must be employed to 

confirm the splicing effect. 

Accuracy of predictions. There were 22 total SNPs chosen for analysis by q-RT-PCR. 

Primers were developed to amplify known and information-theory predicted splice forms. 15 out 

of 22 SNPs tested showed a measurable change in splicing consistent with information-theory 

predictions. Of these 15 sites, 10 lead to an increase in alternate splice site use (2 of which 

increased strength of cryptic site, 8 increased use of unaffected pre-existing site), 6 lead to a 

change in exon retention (5 increased exon skipping), 3 which increased the use of an alternative 

exon, and 4 which appears to decrease total mRNA levels of that gene. We did not detect altered 

splicing in 6 SNPs, 2 of which caused information changes > 1 bit. Three of the four SNPs where 

ΔRi < 1 were hampered by high variability of gene expression between individuals. 

Change in the information content of a splice site (a measure of binding affinity) was 

used to predict experimentally-derived change in splice isoform levels. In 12 out of the 15 SNPs 

which caused measurable effects, the change in splice site strength predicted by information 

theory were consistent with the changes measured by q-RT-PCR. The 3 exceptions are rs2070573 

(C21orf2), rs17002806 (WBP2NL), and rs2835585 (TTC3). Fold changes predicted to reduce 

strength > 100 fold were experimentally found to reduce expression by 38 to 58 fold. Predicted 

changes in strength below 8 fold were not consistently detectable on wildtype splicing, though 

changes in less abundant splice forms were regularly observed (i.e. rs2835585 altered exon 

skipping levels by ~3-9 fold, but the wildtype splice form predominated).  
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Experimental results are shown in Table 1, and are briefly described in the following 

sections. For detailed descriptions for each individual SNP, refer to Supplemental Figure 1, 

which provides a summary of the predicted and experimentally-derived splicing effects for each 

SNP, a UCSC Genome Browser image of the relevant region, and boxplots showing exon 

microarray expression levels of each allele based on the relevant probesets. 

SNPs affecting use of cryptic sites by weakening natural splice sites. When natural site 

strength is changed, the resulting mRNA splicing change depends on the strength and location of 

cryptic splice sites. We detected an increase in cryptic site use coinciding with a decrease in 

natural site strength caused by the following SNPs: rs1805377 (XRCC4 exon 8 acceptor; 11.5 

bits to 3.9 bits; 221-473 fold increase of 6nt downstream site detected by q-RT-PCR, complete 

discrimination in dual-labelled probe experiment); rs2243187 (IL19 exon 5 acceptor; 7.3 to -0.3 

bits; 1.8 fold increase of 3nt downstream site in heterozygote); rs3747107 (GUSBP11 acceptor of 

3’ terminal exon of mRNA splice form BX538181; 8.9 to 1.4 bits; 31 and 42.8 fold increase of 

114 and 118 nt upstream cryptic sites, respectively); rs17002806 (WBP2NL exon 6 donor; 10 to 

6.5 bits; 34 fold increase of 25nt downstream site use); rs6003906 (DERL3 exon 5 acceptor; 2.2 

to 0.3 bits; double appearance of AK125830 mRNA splice form using a 123nt downstream 

acceptor); and rs13076750 (LPP, acceptor of rare exon within intron 1; 9.3 to -1.6 bits; 16 fold 

increase of 7nt downstream cryptic acceptor). 

There are pre-existing cryptic sites near and with greater predicted information content of 

weakened natural splice sites which were not recognized or was not significantly altered in use; 

rs1893592 (UBASH3A exon 10 donor; 9.1 to 4.3 bits) did not increase the use of 7.0 and 6.1 bit 

sites 29 and 555nt downstream of affected donor; rs17002806 (WBP2NL, described earlier) did 
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not activate a 5.7 bit site 67nt downstream; rs3747107 (GUSBP11) strengthened a cryptic site 2nt 

downstream (1.6 to 7.5 bits) but no product was detected; rs2835585 (TTC3 exon 3 acceptor; 6.4 

to 4.4 bits) did not activate two stronger cryptic sites (6.9 and 7.2 bits, 60 and 87nt upstream 

respectively); It is clear that cryptic splice sites proximate to weakened natural splice site are not 

guaranteed to be activated and thus emphasizes the need for wet-lab experiments to confirm 

these bioinformatic predictions. 

Mutations which affect the strength and use of cryptic Sites. An increase in the strength of 

a cryptic site may increase the use of that site. The following two SNPs were found to strengthen 

lesser used splice sites, increasing their use: rs2070573 (C21orf2 exon 6 extended form donor 

[mRNA BC031300]; 2.4 to 5.7 bits [natural 10.4 bits]; 4-22 fold increase in use, increased use 

supported by exon microarray [Supplemental Figure 1.1]); rs743920 (EMID1 exon 4, 6nt 

downstream of acceptor [mRNA AJ416090]; 10.5 to 12.4 bits [natural 6.4 bits]; 2.3-5.8 fold 

increase in site use). Despite the difference in strength (17 to 64 fold), the upstream 6.4 bit site 

was detected earlier by q-RT-PCR (3 cycles earlier or 8 fold in C/C individual). Recall both IL19 

and XRCC4 regions tested showed preference to the upstream acceptor as well, which is 

congruent with the processive mechanism of detecting acceptor splice sites (Robberson et al. 

1990).  

SNPs affecting exon retention. SNPs-directed increases in exon skipping were found to 

reduce natural site strength from 1.6 to 10.9 bits, and lead to increases in exon skipping ranging 

from 3 to 1911 fold between homozygotes of opposing genotypes. These SNPs include: 

rs2835585 (TTC3 exon 3 acceptor; 6.4 to 4.4 bits; 2-9 fold); rs1018448 (ARFGAP3 exon 12 

acceptor; 10.6 to 12.8 bits; 1.5-2.6 fold); rs1333973 (IFI44L exon 2 donor; 9.5 to 5.0 bits; ~15 
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fold); rs2266988 (PRAME exon 3 donor; 8.9 to 7.3 bits; 4.6-8.8 fold); rs13076750 (LPP exon 2a 

acceptor; 9.3 to -1.6 bits; 10.3-26.6 fold). Exon microarray probesets for ARFGAP3 exon 12 (ID 

3962628) and IFI44L exon 2 (probeset ID 2343480) show a decreasing trend suggesting 

increased exon skipping (Supplemental Figure 1.3 and 1.11, respectively). SI changes were not 

distinct for TTC3 (ID 3920395/6) PRAME (ID 3954440) and LPP (ID 2657307) boxplots and 

may be masked by increased cryptic site use (LPP) or large differences in the abundance of 

wildtype and exon skipping splice forms (PRAME, TTC3). 

SNPs which changed natural site strength but were not found to affect exon retention 

changed information content ranging from 3 to 4.8 bits. Skipping was not detected in weak 

homozygotes for rs1893592 (UBASH3A) and rs17002806 (WBP2NL), and was detected not 

altered by rs2835655 (TTC3 exon 39 donor; 12 to 9 bits). The SNP rs2243187 (IL19, described 

earlier) was found to decrease exon skipping (halved in heterozygote) while increasing the use of 

an alternate 3nt downstream acceptor. This is consistent with Rogan et al. (2003) where the 

creation of a strong splice site closely situated to a natural site was shown to facilitate an increase 

in exon skipping, an effect that the A-allele eliminates. 

SNPs which facilitate alternate exon use. Decreases in natural site strength may facilitate 

the use of alternative exons up or downstream of the affected exon. The CFLAR SNP rs10190751 

(acceptor; 9.9 to 17.4 bits; A>C) modulates the presence of the shorter c-FLIP(S) splice form 

(Ueffing et al. 2009). The use of this exon differed by 2
17

 fold between homozygotes tested. The 

exon microarray reflected this result (probeset ID 2522648; Supplemental Figure 1.2). The 

CFLAR (L) form uses an alternate downstream exon, found to be 2.4 fold higher in the weak 

homozygote (microarray support not available due to SNP overlap, see Methods). Two other 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2019. ; https://doi.org/10.1101/549089doi: bioRxiv preprint 

https://doi.org/10.1101/549089
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

17 

 

SNPs showing a probable increased preference for an alternate exon are rs3747107 (GUSBP11; 

Suppl. Figure 1.8) and rs2285141 (CYB5R3; Suppl. Figure 1.20), though neither exon microarray 

boxplot reflected this increase.  

Potential effects of SNPs on mRNA levels. A change in the strength of a natural site of an 

exon can affect the total quantity of the gene transcript. Of the 22 SNPs tested, 2 showed a direct 

correlation between a decrease in natural splice site strength, reduced amplification of the 

internal reference by q-RT-PCR (testing multiple individuals) and a general decreasing trend of 

total gene intensity (Core transcript clusters of exon microarray): rs2072049 (PRAME exon 6 

acceptor; 10.7 to 9.4 bits; 32-57% total mRNA compared to homozygous wild type genotype); 

rs1018448 (ARFGAP3; 12.8 to 10.6 bits; 31.9-68.5% compared to homozygous wild type 

genotype); In each case, genotypic differences in the exon microarray data follow the expected 

trend but are not large enough to be statistically significant. Due to the modest differences in the 

array data, additional individuals must be tested to confirm these effects. 

 Predicted deleterious SNP without detectable evidence of alternate splicing. There were 

6 SNPs in this study which were predicted to disrupt natural splice sites, but where there was no 

detectable effect on splicing. Potential causes include inter-individual expression variability, 

small (< 1 bit) strength changes, limitations to RT-PCR primer design, and the failure to correctly 

predict the SNP’s splicing effect due to limitations of the splicing models (for example, 

compensatory splicing regulatory enhancers). Splicing effects were not identified for 3 SNPs 

where the information change was <1 bit (2-fold). Genetic variability masked potential splicing 

effects of these SNPs: rs16802 (BCR exon 14 acceptor; 8.8 to 9.4 bits; individuals of like 

genotype varied by 8.3 fold), rs2252576 (of BACE2 exon 5 acceptor; 9.0 to 9.6 bits; 12 fold) and 
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rs8130564 (TMPRSS3 exon 5 acceptor; 6.3 to 6.8 bits; 112 fold). Various primer sets designed to 

detect an exon affected by the SNP rs17357592 where ΔRi ≤ 1 bit (COL6A2 exon 21 acceptor; 

8.4 to 7.8 bits) failed to give a single product. Interpreting the results from the SNP rs16994182 

(CLDN14 exon 2 donor; 8.6 to 8.1 bits) was complicated by the lack of an adequate internal 

reference primer set. As this gene consists of only 3 exons, any internal reference must cover the 

potentially affected second exon. Any difference detected by these primers could be caused by 

altered splicing, and therefore cannot account for any variation in expression between 

individuals. Therefore, the splicing differences detected by q-RT-PCR (Table 1) are not 

conclusive. 

 In one case, a large Ri change failed predictions. The donor of a rarely used exon in IVS1 

of FAM3B (mRNA AJ409094) is strengthened by rs2838010 (1.4 to 9.2 bits, A>T). This cryptic 

exon was not detected in any individual tested (including T/T). The microarray data supports this 

result (probeset ID 3922001; Supplemental Figure 1.16). Although it is likely that the T allele is 

required for the inclusion of this exon, additional factors (such as tissue type) are apparently also 

involved.  

Discussion 

Predicted deleterious SNP alleles that alter constitutive mRNA splicing are confirmed by 

expression and spliced EST data, and may be common in populations. The preponderance of 

leaky splicing mutations and cryptic splice sites, which often produce both normal and mutant 

transcripts, is consistent with balancing selection (Nuzhdin et al. 2004) or possibly with mutant 

loci that contribute to multifactorial disease. Minor SNP alleles are often present in > 1% of 

populations (Janosíková et al. 2005). This would be consistent with a bias against finding 
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mutations that abolish splice site recognition in dbSNP. Such mutations are more typical in rare 

Mendelian disorders (Rogan et al. 1998).  

We note that work described in this manuscript was performed several years ago (ca. 

2009), This study used the ASSA server to evaluate each mutation. It has been replaced by the 

ASSEDA (Automated Splice Site and Exon Definition Analyses; Mucaki et al. 2013) server 

which is now part of the MutationForecaster (http://www.mutationforecaster.com) interpretation 

system. The exon expression microarrays and quantitative RT-PCR results described confirm 

more recently developed approaches such as high-throughput transcriptome sequencing 

technology, RNAseq, in our laboratory and others (Viner et al. 2014; Dorman et al. 2014, Shirley 

et al. 2018).  

The ValidSpliceMut web-beacon (http://validsplicemut.cytognomix.com) is a splicing 

mutation variant database containing predicted and confirmed splice variants from the Cancer 

Genome Atlas (TCGA). These have been identified by the Shannon Pipeline (a high-throughput 

IT-based prediction tool based on ASSEDA), and validated by RNA-Seq data from matched 

tissues and tumors lacking these mutations (Shirley et al. 2018). The database reports whether a 

mutation was associated with an increase in exon skipping, cryptic site use, or intron inclusion 

RNAseq reads. Of the variants tested in this study, 8 were found in ValidSpliceMut (rs2070573 

[C21orf2], rs10190751 [CFLAR], rs13076750 [LPP], rs2072049 [PRAME], rs2835585 [TTC3], 

rs2835655 [TTC3], rs1893592 [UBASH3A] and rs1805377 [XRCC4]. Variants rs1893592, 

rs2070573, rs13076750 and rs10190751 were flagged due to intron inclusion, which is supported 

by q-RT-PCR results. An independent study focused on cryptic site activating mutations with the 
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same TCGA data (Jayasinghe et al. 2018) failed to identify rs2070573 as a splicing mutation 

(which strengthens a cryptic splice site 360nt downstream of exon 6 in C21orf2). Furthermore, 

neither study flagged two other cryptic site-strengthening SNPs described in this manuscript 

(rs743920 [EMID1] and rs2838010 [FAM3B]). Interestingly, rs2835585 and rs1805377 were 

flagged due to intron inclusion, however q-RT-PCR experiments instead showed increased exon 

skipping and cryptic site use, respectively. Aberrant splicing was not was detected 

experimentally for rs2835655 or rs2072049, however these SNPs were flagged due to increased 

intron inclusion. The design of the q-RT-PCR experiments associated with these SNPs were not 

optimized to detect this form of abnormal splicing. 

The splicing impact (and when known, the disease-association) of many of the discussed 

SNPs have been implicated subsequent to the development of this study. As previously 

mentioned, the CFLAR SNP rs10190751 is known to modulate the FLICE-inhibitory protein (c-

FLIP) from its S-form to its R-form, and the latter form has been linked to increased lymphoma 

risk (Ueffing et al. 2009). Furthermore, increased exon skipping due to the IFI44L SNP 

rs1333973 has been reported in RNAseq experiments (Zhao et al. 2013a) and this alternate splice 

form has been implicated in a reduction in antibody response to the measles vaccine 

(Haralambieva et al. 2017). The splicing impact of XRCC4 rs1805377 has been noted previously 

(Nalla and Rogan 2005), but to our knowledge has not previously been experimentally 

confirmed. This SNP has been implicated with an increased risk of gastric cancer (Chiu et al. 

2008), pancreatic cancer (Ding and Li, 2015) and risk of gliomas (Zhao et al. 2013b). Similarly, 

the potential impact of UBASH3A SNP rs1893592 has been previously recognized (Kim et al. 

2015) but not tested, and has been associated with arthritis (Liu et al. 2017) and type 1 diabetes 
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(Ge and Concannon, 2018). Hiller et al. (2006) described the 3nt deletion caused by IL19 

rs2243187, but did not describe the increase in exon skipping seen in this study. The SNP 

rs743920 (EMID1) was associated with change in allelic expression using EST data (Ge et al. 

2005; impact on splicing not described). Conversely, studies which linked TMPRSS3 variants to 

hearing loss did not find the SNP rs8130564 to be significant (Lee et al. 2013; Chung et al. 

2014). Interestingly, the BACE2 SNP rs2252576 (which was not found to alter splicing in this 

study) has been associated to Alzheimer's dementia in Down syndrome (Mok et al. 2014). 

The compound effects of splicing mutations have been previously described. Krawczak et 

al. selected 38 genes known to have single-nucleotide mutations within donor and acceptor sites 

(from HGMD, as of January 2006) which have been associated with various diseases (Krawczak 

et al. 2007). Using neural networks, 87.4% of the mutations found in splice sites (n=430) were 

reported to cause exon skipping or cryptic site use. Of these splice-altering mutations (n=376), 

56.9% were mutations in donor sites causing exon skipping, 13.6% resulted in the use of a 

cryptic donor site, 22.3% were acceptor site mutations leading exon skipping and 7.2% lead to 

cryptic acceptor use. Their data also suggested the possibility that exon skipping is less likely in 

the presence of nearby cryptic sites when a donor is weakened, but not acceptors. A region of 

only 50 bp surrounding the affected splice-sites was used to search for cryptic sites, and therefore 

there is a strong possibility that sites outside of this range may have been missed. 

Why are so few natural splice sites strengthened by SNP-induced information changes? 

Most such changes would be thought to be neutral mutations, which are ultimately lost by chance 

(Fisher 1930). Those variants which are retained are more likely to confer a selective advantage 

(Li 1967). Indeed, the minor allele in rs2266988, which strengthens a donor splice site by 2.3 bits 
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(29.9 fold) at the 5' end of the open reading frame in PRAME, occurs in 25% of the population 

(~50% in Europeans). We have shown a number of instances where apparently simple changes in 

strength of splice sites that would be expected to have little or no impact on splicing of the 

associated exon in fact alters the degree of exon skipping of that exon.  

SNPs producing significant changes in information at functional binding sites may be 

useful for selecting tag SNPs in disease association studies. Such an approach would be 

independent of measures of haplotype block (Zhang et al. 2002; Carlson et al. 2004; Pe'er and 

Beckmann 2004) or genotype diversity (Zhang et al. 2004), or proximity or correlations between 

neighboring SNPs. If SNP induced changes in individual information are associated with clinical 

phenotypes (because of their impact gene expression levels and transcript structure), the 

selection of these variants as tag SNPs should maximize statistical significance of the 

corresponding disease association. At a minimum, Bayesian strategies making use of this data 

may further refine of positions of candidate disease susceptibility loci. 

Considering the number of constitutive splicing mutations found, it is unlikely that 

sequence variation alone can account for the extensive heterogeneity in mRNA transcript 

structures, given the relatively high proportion of genes known to exhibit tissue-specific 

alternative splicing (Modreck and Lee 2002). Nevertheless, this study raises questions regarding 

the degree to which alternative splicing is the result of inter-individual genomic sequence 

differences rather than purely regulatory mechanisms. Because much of the information required 

for splice site recognition resides within neighboring introns, it would be prudent to consider 

contributions from intronic and exonic polymorphism that produce structural exon variation.  

While exon microarrays can be used to show alternate splicing differences based on 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2019. ; https://doi.org/10.1101/549089doi: bioRxiv preprint 

https://doi.org/10.1101/549089
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

23 

 

genotype, there are obvious limitations with this technology. Probesets were placed to detect 

wildtype splice forms with mRNA and EST support, but may not be adequately placed to detect 

rare splicing events that have not yet been reported or which have little evidence. Smaller 

nucleotide changes due to cryptic site use (XRCC4, EMID1) seemed to be explicitly avoided in 

these probesets, which could not detect the splicing change. Indeed, significant effort was 

required to design TaqMan assays that distinguished the isoforms generated by rs1805377 

(XRCC4).  While some genotype-specific differences in SI were quite significant (CFLAR, 

IFI44L), many showed only minor changes (ARFGAP3, LPP) and most had outlier individuals 

of one genotype with a comparable SI to the population of the second genotype (IL19).  

rs2835585 increased exon skipping in TTC3 nearly 10 fold but a resulting decrease in 

total wildtype splicing at the affected exon junction was undetectable, most likely due to the 

great difference in abundance between the wildtype and skipped splice isoforms. Whether or not 

this small increase would cross the threshold of allele-specific exon skipping that may contribute 

to disease predisposition and pathogenesis is in question. In the case of the E3 ubiquitin ligase, 

TTC3, the third exon does not include any definitively-assigned protein domain (Tsukahara et al. 

1996, Suizu et al. 2009). 

This study describes the prediction of validation of natural and cryptic splice site 

alterations caused by common SNPs. Individual information represents a continuous phenotypic 

measure that is well suited to the analysis of contributions of multiple, incompletely penetrant 

SNPs in different genes from the same individual, as typically seen in genetically complex 

diseases. This technique has complemented efforts to identify disease-associated protein coding 

(and non-coding) mutations in a comprehensive, high-throughput variant interpretation study of 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2019. ; https://doi.org/10.1101/549089doi: bioRxiv preprint 

https://doi.org/10.1101/549089
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

24 

 

breast cancer patient gDNA (Caminsky et al. 2016; Mucaki et al. 2016).  

The Veridical and Shannon pipeline software has been developed to perform and 

validated large-scale analysis of potential splicing variants in complete genomes using RNAseq 

data (Viner et al. 2014). These resources have been used to evaluate millions of variants in 

TCGA cancer patient genomes (Shirley et al. 2018). For the SNPs described in this paper, 

targeted functional splicing analyses, for the most part, reproduce the results of our multi- 

genome-wide surveys of sequence variations affecting mRNA splicing. This concordance 

increases confidence that these publicly (https://ValidSpliceMut.cytognomix.com) and 

commercially (https://MutationForecaster.com) available resources can help to identify 

mutations contributing to patient clinical phenotypes.  
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Table 1: Summary of q-RT-PCR Results 

Summary of q-RT-PCR Results 
SNP Effects (Increase/Decrease in fold change of 

homozygotes) 

Gene rsID 
Splice 

Type 

Information Change 

(∆Ri) (n –natural, c–

cryptic site) 

Fold 

Change 

Natural 

Site 

Cryptic 

Site 

Exon 

Skipping 

Alternate 

Exon 

Total 

mRNA 

In-

Frame 

XRCC4 1805377 

A 11.5 (G) -> 3.9 (A) (n) 194 38.4 47.3 - - n/a
b
 Y 

A 11.3 (G) -> 11.4 (A)     (n) 1.1       

IL19 2243187 A 7.3 (G) -> -0.3 (A) (n) 194 1.8
a
 1.8

a
 2.1

a
 - n/a

b
 Y 

C21orf2 2070573 D 2.4 (A) -> 5.7 (C) (c) 9.9 NC 22.6 - - n/a
b
 Y 

TTC3 2835655 D 12.0 (G) -> 9.0 (A) (n) 8.0 1.5 - 1.3
c
 - 1.5 - 

TTC3
d
 2835585 A 6.4 (T) -> 4.4 (A) (n) 4.0 NC - 8.8 - n/a

b
 Y 

WBP2NL 17002806 D 9.2 (G) -> 6.0 (A) (n) 9.2 23.8 34+
f
 - - n/a

b
 N 

GUSBP11 3747107 A 8.9 (C) -> 1.4 (G) (n) 181 98.3 31/42.8
j
 - 1.6 n/a

b
 Y/N

e
 

PRAME
g
 2266988 D 8.9 (G) -> 7.3 (A) (n) 3.0 NC - 8.8 - n/a

b
 N 

PRAME
g
 2072049 A 10.7 (G) -> 9.4 (T) (n) 2.5 2.6

a
 - - - 3.1

a
 - 

UBASH3A 1893592 D 9.1 (A) -> 4.3 (C) (n) 27.9 3.0 2.0/1.7
k
 N/A

i
 - 1.4 Y 

DERL3 6003906 A 2.2 (A) -> 0.3 (T) (n) 3.7 NC 2.0 - - n/a
b
 N 

ARFGAP3 1018448 A 12.8 (C) -> 10.6 (A) (n) 4.6 2.2 - 1.4 - 2.0 Y 
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CFLAR 10190751 A 17.4 (G) -> 9.9 (A) (n) 181 100000+ - - 2.1 n/a
b
 Y 

IFI44L 1333973 D 9.1 (A) -> 4.6 (T) (n) 22.6 15.4 - 15.6 - 3.9 N 

LPP 13076750 A 9.3 (G) -> -1.6 (A) (n) 1910 5000+ 15.8 26.6 - - Y 

EMID1 743920 A 10.5 (C) -> 12.4 (G) (c) 3.7 n/a
b
 5.8 - - n/a

b
 - 

CLDN14 16994182 D 8.6 (C) -> 8.1 (G) (n) 1.4 5.9 - 2.1 - n/a
b
 Y 

BCR 16802 A 8.8 (A) -> 9.4 (G) (n) 1.5 NC
h
 - - - n/a

b
 - 

TMPRSS3 8130564 A 6.3 (T) -> 6.8 (C) (n) 1.4 NC
h
 - - - n/a

b
 - 

BACE2 2252576 A 9.0 (C) -> 9.6 (T) (n) 1.5 NC
h
 - - - n/a

b
 - 

CYB5R3 2285141 A 6.1 (G) -> 5.0 (T) (n) 2.1 NC - - 1.8 n/a
b
 - 

FAM3B 2838010 D 1.4 (A) -> 9.2 (T) (c) 223.0 - - - N/A
i
 n/a

b
 Y 

Red text indicates a decrease in the abundance of a particular splice form, while green text indicates an increase in abundance. A – 

Acceptor Splice Site Affected; D – Donor Splice Site Affected; NC - Not detectable (abolished). 
a
 Values from comparing 

heterozygote with homozygote common. 
b 

No allele specific difference in expression and splicing. 
c
 Change in splicing likely related 

to change in RNA level. 
d
 Intron 2-3 inclusion of TTC3 amplified by PCR, but no allele specific change detected. 

e
 mRNA in-frame 

when alternate exon is used, and out of frame due to cryptic site use. 
f
 This splice form not at detectable levels in homozygote. 

g
 

PRAME is a special case where two SNPs affect splicing of two separate exons. 
h
 High variation between individuals of the same 

genotype found by q-RT-PCR. 
i
 Splice form not detected by PCR. 

j
 Cryptic acceptor 114nt upstream of affected site / cryptic acceptor 

118nt upstream of affected site. 
k
 Cryptic donor 555nt downstream of affected site / cryptic donor 29nt downstream of affected site. 
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