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Abstract: 

 Cells are non-equilibrium systems that 
rely on a continuous exchange of matter and 
energy with the environment to sustain their 
metabolic needs. The non-equilibrium nature of 
this system presents considerable challenges to 
developing a general theory describing its 
behavior; however, studies have demonstrated 
that when studied at appropriate spatiotemporal 
scales, the behavior of ensembles of non-
equilibrium systems can resemble that of system 
at equilibrium. Here we apply this principle to a 
population of cells within a cytomorphological 
state space and demonstrate that cellular 
transition dynamics within this space can be 
suitably described using equilibrium dynamics 
formalisms. We use this framework to map the 
effective energy landscape underlying the 
cytomorphological state space of a population of 
mouse embryonic fibroblasts (MEFs) and 
identify topographical non-uniformity in this 
space, indicating non-uniform occupation of 
cytomorphological states within an isogenic 
population. The introduction of exogenous 
apoptotic agents altered this energy landscape, 
inducing formation of additional energy minima 
that correlated directly with changes in 
sensitivity to apoptotic induction. The measured 
application of equilibrium dynamics formalism 
allows us to accurately capture and these 
findings suggest that though cells are complex 
non-equilibrium systems, the application of 
formalisms derived from equilibrium 
thermodynamics can provide insight into the 
basis of non-genetic heterogeneities as well as 
the relationship between morphological and 
functional heterogeneity.  

Main Text:  

 Cells are non-equilibrium systems that 
continuously exchange matter and energy with 
their environments, encapsulate a range of 
irreversible chemical reactions, and exhibit time-
dependent fluctuations in the concentration of 
their DNA, mRNA, proteins, and other 
biomolecules. Given the central importance of 
cells in biological systems, significant efforts 
over the years have been directed at developing 
theorems to describe this system; however, a 
unifying theory remains, at present, out of reach. 
In recent years, several studies have indicated 
that when viewed at appropriate spatiotemporal 
scales, the behavior of an ensemble of non-
equilibrium systems can at times be accurately 
approximated using equilibrium dynamics 
formalisms (1-4). Here, we demonstrate the 
applicability of this principle in a population of 
isogenic mouse embryonic fibroblasts (MEFs) 
and apply an equilibrium dynamics-based 
framework to uncover a new basis for functional 
heterogeneity within isogenic populations.                                       
  

 We begin by identifying an appropriate 
parameter space that would allow both for 
testing the applicability of an equilibrium 
dynamics framework and for tracking the 
relationship between state space dynamics and 
functional behavior in a population of living 
cells. The state space of a living cell can be 
defined using many different parameter sets. The 
set relating most directly to cellular function is 
the molecular microstate, which represents the 
sum of the epigenetic, transcriptomic, 
proteomic, and additional molecular states of the 
cell. The ensemble of these states define the 
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functional state of a cell; consequently, 
variability in the molecular microstate can lead 
directly to functional heterogeneity within 
isogenic populations. This phenomenon is 
known as non-genetic heterogeneity, wherein 
isogenic cells exhibit extensive functional 
variability; these non-genetic heterogeneities, 
play important roles across a diverse range of 
biological processes (5, 6). In mammalian cells, 
these include the selective differentiation of 
hematopoietic progenitor cells (7), while in 
bacterial cells, these include the appearance of 
subpopulations of “persister” cells that are 
preferentially able to survive antibiotic exposure 
(8). Non-genetic heterogeneities remain of 
central interest in cell biology, with many of the 
underlying laws governing this phenomenon 
remaining unknown. 

 In order to explore the applicability of 
equilibrium dynamics formalisms in studying 
non-genetic heterogeneity, we first identified 
methods for approximating the molecular state 
of living cells over an experimentally relevant 
time course. Whole-genome methods (e.g. 
transcriptomics, proteomics, ChiP-Seq) offer by 
far the most comprehensive catalogue of the 
microstate (9-14), but these methods are cell-
destructive in nature and of limited use in live 
cell experiments. Fluorescent reporters linked to 
mRNA and protein targets can be tracked over 
multi-hour time courses in living cells (15, 16); 
however, reporters are limited to a few target 
sequences at a time, offering a limited snapshot 
of the molecular microstate. Here we employ 
cytomorphology, as defined at the cell and 
organelle scale, as a proxy for the molecular 
microstate. Cytomorphology represents the sum 
of many thousands of molecular processes (17-
19), providing global cell state information that 
offers a compromise between experimental 
accessibility and a comprehensive catalog of the 
molecular microstate. Further underlining the 
link between the cytomorphological and 
functional states of the cell are numerous studies 
demonstrating that diseases such as cancers (20) 
and neurodegenerative disorders (21, 22) are 
characterized by concomitant functional and 
cytomorphological changes. By altering the 
scale at which we define cellular state, we 
developed methods that allowed us to track state 

space occupancy in living cells and identify 
relationships between state space dynamics of 
the population as a whole and functional 
heterogeneity. 

 We began by developing a methodology 
to measure cytomorphological features and 
quantify state space occupancy in a population 
of cells. We chose mouse embryonic fibroblasts 
(MEFs) as our model population, as Wild-type 
MEFs (WT MEFs) exhibit native 
cytomorphological heterogeneity, rendering 
them ideal candidates for studying non-genetic 
heterogeneity in the context of 
cytomorphological variability. WT MEFs were 
harvested and grown in vitro before being 
chemically fixed and fluorescently labeled for 
three cytomorphological structures: the 
microtubule cytoskeleton (α-tubulin), nucleus 
(DAPI), and mitochondria (mtHsp70) (Fig. 1B). 
In numerous studies, morphological changes in 
these structures have been observed concomitant 
with changes in cellular function (23-25), 
suggesting potential links between 
cytomorphological and functional heterogeneity. 
Next, we developed image analysis algorithms 
to quantify 205 shape, size, and textural features 
(Table S3) in each cell, analyzing a 904-cell 
dataset. The distribution of cells in 
cytomorphological state space were visualized 
using Principal Component Analysis (PCA), a 
technique that converts high-dimensional 
datasets to lower-dimensional datasets by 
identifying linear combinations of features that 
represent the dataset with minimal loss of 
feature variance. These linear combinations are 
termed Principal Components (PCs) and are 
weighted for high-covariance features that 
together account for a large portion of 
population-wide variance. As discussed 
previously, many of our features exhibit high 
covariance (Fig. 1C); PCA allows for multiple 
co-varying features to be linearly combined into 
a single PC, thereby reducing the dimensionality 
of the dataset. In our dataset, PC1 was 
dominated by cell and nuclear morphometric 
features, while PC2 was dominated by cell and 
nuclear textural features, and PC3 dominated by 
nuclear textural and morphometric features 
(Table S4). Furthermore, plots of PC1, PC2, and 
PC3 (Fig, 1C, D), together accounting for 43.8% 
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of total variance, revealed that WT MEFs 
occupy a set of cytomorphological states lying 
along a continuum, rather than discrete subsets 
of states. 

 We next turned our attention to 
developing a dynamic map of transitions within 
state space by tracking cytomorphological 
changes in living cells. To achieve live cell 
imaging, we employed a lentivirus-based 
approach to introduce fluorescent reporters 
targeted to our structures of interest. Our 
lentivirus vector consisted of an EF1α promoter 
driving expression of fluorescent reporters 
localizing to the microtubule cytoskeleton 
(EGFP-tubulin), nucleus (mIFP-H2B), and 
mitochondria (tdTomato-mito-7) (Fig. 2A). 
Once transduced with this lentivirus, MEFs were 
imaged at 4h intervals over a 60h time course 
(Fig. 2B) and each cell’s location within state 
space calculated at each time point. New 
principal components (PCs) were calculated for 
living cells and a new cytomorphological state 
space constructed (Fig. S2); the topography of 
this space bears close resemblance to that 
observed for fixed cells (Fig. 1C). Next, 
cytomorphological state space transitions were 
plotted into a 60 x 60 bin representation of state 
space (Fig. 2C), where transition vectors were 
defined as originating at (PC1t, PC2 t) and 
terminating at (PC1t+4h, PC2 t+4h). This plot 
revealed non-uniform magnitudes of transition, 
with vectors originating more centrally in state 
space of smaller magnitude than those 
originating peripherally. To quantify this 
observation, we plotted a heat map of the mean 
magnitude of transition of vectors originating 
from each bin (Fig. 2D) and confirmed that the 
magnitude of transition varies as a function of 
space state. In biological terms, this indicates 
that the degree of cytomorphological change 
within a given time interval varies as a function 
of the cytomorphological state of a cell.               

 To further refine our dynamic map of 
cytomorphology space, we plotted the 
probability density function (pdf) of WT MEF 
state space occupancy (Fig. 2G) in a 10 x 10 bin 
representation of state space and identified a 
peak in the central (0, 0) region of this space. 
We then plotted the probability, over a 60h time 
course, that a cell occupying a bin would exit 

that bin by the next time point, (pexit) (Fig. 2H) 
and found that WT MEFs occupying more 
peripheral states had a higher probability of exit 
than those occupying more central states. The 
probability of staying within the same bin 
between consecutive time points (pstay), a 
measure of short-term occupancy, was also 
higher within these central bins (Fig. 2I). 
However, when we plotted the probability of a 
cell occupying the same bin as that occupied at 
the end of its time course (pend) (Fig. 2J), a rough 
measure of long-term occupancy, the mean 
probability fell by more than four-fold. These 
results suggest that WT MEF morphology space 
is energetically non-uniform and supports a 
directional bias towards the set of states 
surrounding (0, 0), but that entry into this space 
does not impose long-term occupancy. 
Interestingly, in PC space, the origin (0, 0) 
represents the mean value of contributing 
features, suggesting the possibility of a 
morphology-control mechanism acting to return 
cells to this morphological “mean.” 

 While these observations lay the 
groundwork for an empirical understanding of 
the dynamics of cytomorphology space, we 
wanted to investigate whether state space 
dynamics could be generalized into a framework 
describing the laws governing these transitions. 
In particular, we were interested in investigating 
the potential applicability of equilibrium 
dynamics formalisms and determining the 
accuracy with which the behavior of the system 
could be described using this approach. 

 Systems at equilibrium are, by 
definition, at steady state, where the distribution 
of state variables is invariant over all timescales. 
More rigorously, systems at equilibrium are also 
in detailed balance, where state transitions are 
accompanied by reciprocal transitions of equal 
magnitude in the reverse direction (26). 
Violations of detailed balance have been 
detected in some cellular processes (27, 28), 
raising the question of the degree to which 
equilibrium concepts may apply in living 
systems. 

 To assess the steady state characteristics 
of cytomorphology space, we identified two 
state variables describing the occupancy and 
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transition dynamics of MEFs within this state 
space. The first state variable, representing state 
space occupancy, measured distance of each cell 
from the origin (0, 0) in state space and 
calculated the mean distance at each time point 
(Fig. 2I, green). The second state variable, 
representing the dynamics of state space 
transitions, measured the mean magnitude of 
transition vectors at each time point (Fig. 2I, 
orange). At each time point, the mean distance 
from the origin as well as mean magnitude of 
transition of the population were compared to 
the mean distances and magnitudes observed at 
time !! (0h) using a two-sample t-test. The 
results indicated that both the mean distance 
from the origin (0, 0) and mean magnitude of 
transition were statistically invariant (α = 0.05) 
at time scales ranging from 4h to 52h, (Fig. 2J), 
indicating that cytomorphological state space is 
at steady state at the temporal resolution of our 
experiment. To test for detailed balance, we 
tabulated the frequency of state transitions 
between each pair of bins within our 10x10 
representation of state space (Fig. 2K, S3), 
where a binomial test (α = 0.05) revealed 
statistically insignificant variability in the rates 
of forward and reverse transitions between 
paired bins. The results of the steady state and 
detailed balance analyses indicated that the 
dynamical behavior of MEFs within 
cytomorphology space approximated those of a 
system at equilibrium.  

 To assess the applicability of an 
equilibrium dynamics approach to describing 
population-level transition dynamics of MEFs in 
cytomorphology space, we developed a 
framework based on an adaptation of Maxwell-
Boltzmann statistics. Maxwell-Boltzmann 
statistics are an equilibrium statistical 
mechanics-based formalism for describing state 
occupancies of a system in terms of a single-
valued state function that plays the role of a 
potential energy (26, 29). According to this 
formalism, the relative occupancies of the 
different energy states of a system are a function 
of differences in the energy levels of different 
states as well as the temperature (Tb) of the 
system. In classical statistical mechanics, the 
Maxwell-Boltzmann temperature (Tb) refers to 
the thermodynamic temperature of the system as 

measured in Kelvins (K). This concept of 
temperature was adapted to our system by 
drawing parallels between particle velocity 
vectors and state space transition vectors (see 
Supplemental Material). This allowed us to 
calculate an effective temperature (TWT) of our 
system. The concept of energy state occupancies 
were similarly adapted by drawing parallels 
between particle occupancy of energetic states 
and cell occupancy of cytomorphological states, 
as measured by the probability density function 
(pdf, Fig. 2E). The combination of effective 
temperature and state space occupancy data 
were used to calculate the effective energy 
landscape underlying WT MEF cytomorphology 
space (Fig. 3B, see Supplemental Material for 
methods). This energy landscape was 
characterized by a global minimum surrounding 
(0, 0) and lacked any additional local maxima or 
minima. In an equilibrium system, the future 
behavior of the system can be predicted based 
on its current state, as the velocity field in state 
space is determined by the gradient of the 
potential energy landscape (Fig. 3A). To assess 
how predictive this effective energy landscape 
was of the experimentally observed transition 
vector field (Fig. 3C), we plotted the vector field 
predicted by the gradient of the energy 
landscape (Fig. 3D). By calculating the vector 
dot product of corresponding bins in the 
observed and predicted vector fields and then 
averaging the dot product across state space, we 
were able to quantify directional similarity 
between vector fields. Our results indicated that 
the experimentally observed transition vector 
field aligned more closely with the transition 
vector field predicted by our inferred effective 
energy landscape than with transition vector 
fields predicted from any of 100 scrambled 
iterations of the energy landscape, created by 
randomly distributing the original set of energy 
levels throughout state space (Fig. 3E, F, S4). 
Though cells are, unequivocally, non-
equilibrium systems, we demonstrate here that at 
appropriate spatiotemporal scales, equilibrium 
dynamics formalisms can succeed in describing 
the behavior of an ensemble of non-equilibrium 
cells.  

 Evidence shown here indicates that, 
within the context of specific parameter sets and 
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spatiotemporal resolutions, the measured 
application of this approach can successfully 
describe the ensemble behavior of a population 
of non-equilibrium single cells. The application 
of equilibrium dynamics formalisms to describe 
a population of non-equilibrium systems does 
not imply equilibrium behavior at the single cell 
level and whether this same equilibrium 
formalism can be applied to individual cells is a 
separate question that we do not address here. 

 Having developed a framework for 
mapping cytomorphology space and a formalism 
for describing the energy landscape underlying 
this space, we were now in a position to 
investigate potential relationships between 
cytomorphological and functional variability. 
Given the many available examples of 
concomitant functional and cytomorphological 
changes, we hypothesized that the heterogeneity 
observed in cytomorphology space might 
correspond directly to functional heterogeneity 
within the population. To test this hypothesis, 
we screened five apoptosis drugs for conditions 
producing a heterogeneous response in a 
population of isogenic WT MEFs. We found 
that camptothecin (2µM), a topoisomerase I 
inhibitor, produced such a response, with a 
proportion of cells undergoing apoptosis within 
96h of exposure, while others remained alive up 
to 21 days post-exposure (Fig. S5). The long 
duration over which some cells survived relative 
to the timescale of apoptosis suggests that the 
observed heterogeneity resulted from 
fundamentally different decisions in whether or 
not to undergo apoptosis, rather than from a 
simple delay in apoptosis. 

 Given many lines of evidence 
suggesting links between cytomorphology and 
cellular function, we investigated the possibility 
that intercellular variability in apoptotic 
response might be directly correlated with 
cytomorphological variability. To test this 
hypothesis, we transduced a population of MEFs 
with our cytomorphology-targeted fluorescent 
reporter lentivirus and imaged cells at 4h 
intervals, this time adding 2µM camptothecin at 
the 2h time point. Over the course of a 64h time 
course, we observed that 17 of 33 (52%) cells 
underwent apoptosis (Apoptosis[+]), while 16 of 
33 (47%) cells did not (Apoptosis[-]).  

 We hypothesized that the response of a 
cell might correlate directly with its 
cytomorphological state prior to apoptosis 
induction, but when the space states of 
Apoptosis[+] and [-] cells at time 0h were 
plotted (Fig. S6) and analyzed, they were found 
to be statistically indistinguishable (Fig. S7). 
Though the initial space state was non-
informative, an examination of the state 
transitions of each class of cell revealed 
characteristic differences in the dynamics of 
their state space transitions. The transition 
vectors of Apoptosis[+] cells (Fig. 4A, B)  were 
of larger-than-average magnitude relative to the 
total cell population (Fig. S8) and displayed a 
directional bias towards the (-30, 30) region of 
PC space (Fig. S9). In contrast, the transition 
vectors of Apoptosis[-] cells (Fig. 4G, H) were 
of smaller-than-average magnitude (Fig. S8) and 
displayed a directional bias towards the (30, 0) 
region of PC space (Fig. S9). Interestingly, both 
groups of cells were also found to populate the 
central (0,0) region of PC space. Plots of the 
probabilities of exit from each bin (pexit) (Fig. 
4D, J) revealed that both Apoptosis[+] and [-] 
cells exhibited higher probabilities of exit from 
peripheral states relative to central states. Plots 
of the probability of staying within the same bin 
during consecutive time points (pstay) (Fig. 4E, 
K), a measure of short-term occupancy, revealed 
a region of increased probability near (0, 0), in 
agreement with our model of an energetically 
favorable subspace surrounding this region. The 
pstay of corresponding bins differed by no more 
than 1.5-fold between Apoptosis[+] and [-] cells, 
but plots of the probability of a cell occupying 
the same bin as that occupied at the end of its 
time course (pend) (Fig. 4F, L), a measure of 
long-term occupancy, revealed that long-term 
occupancy in Apoptosis[+] and [-] cells was 
restricted to different, non-overlapping regions 
within PC space. Apoptosis[+] cells exhibited 
increased pend probabilities in the upper left (-30, 
30) region of PC space, whereas Apoptosis[-] 
cells exhibited increased pend probabilities in the 
central (0, 0) and far right (30, 0) regions of this 
space. These observations suggest that 
variability in the occupancy of Apoptosis [+] 
and [-] cells in WT MEF morphology space 
might contribute to functional divergence within 
the population. To statistically test this 
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hypothesis, we ran two-dimensional 
Kolmogorov-Smirnov significance tests (α = 
0.05) between pairs of corresponding probability 
plots (30) (Fig. 4M, S10), which revealed 
statistically significant differences between the 
pexit, pstay, and pend plots of WT, Apoptosis[+] 
and Apoptosis[-] cells. These results suggest that 
camptothecin treatment produces statistically 
significant changes in the dynamics of WT MEF 
morphology space and that these changes lead to 
morphological and functional divergence within 
an isogenic population. 

 To identify the underlying changes to 
cytomorphology space driving this behavior, we 
returned to our framework for calculating the 
effective energy landscape of a given state 
space. The transition vectors of camptothecin-
treated cells were, on average, of 36% smaller 
magnitude than those of untreated cells (Fig. 
S11). In a system defined by Maxwell-
Boltzmann statistics, smaller average 
displacements correspond to a lower effective 
temperature of the system. To test whether this 
“cooling” of morphology space could 
sufficiently explain observed changes in the 
probability density function (pdf) absent changes 
to the underlying energy landscape, we 
calculated the expected pdf of WT MEFs over a 
range of temperatures. We then ran a series of 
two-dimensional Kolmogorov-Smirnov (K-S) 
tests to quantify similarities between the 
observed and expected pdfs. A plot of K-S 
statistic values as a function of temperature (Fig. 
S12) revealed that similarities between the 
observed and expected pdfs were maximized at 
an effective temperature of 1.04TWT, suggesting 
that a change in temperature alone was 
insufficient to explain the observed change in 
the pdf and that camptothecin had fundamentally 
altered the underlying energy landscape. This 
new camptothecin-treated energy landscape was 
calculated (Fig. 4O) and the difference relative 
to the untreated energy landscaped plotted (Fig. 
4P). This plot revealed that camptothecin 
treatment produced new energy minima in the 
upper left (-30, 30) and far right (30, 0) regions 
of PC space while further deepening the existing 
minimum at (0, 0).  

 Though both Apoptosis[+] and [-] cells 
effectively occupied the same camptothecin-

treated energy landscape, we wanted to better 
understand whether specific features of this 
landscape explained their divergent behaviors. 
To do this, we separately calculated the effective 
temperatures of Apoptosis[+]and [-] cells and 
plotted their effective energy landscapes (Fig. 
S14, S15), along with their differences relative 
to the untreated energy landscape (Fig. 4Q, R). 
These plots revealed that divergent behaviors 
could be explained by spatially localized 
changes to the energy landscape. The effective 
energy landscape of Apoptosis[+] cells 
resembled that of untreated cells, with the 
exception of a new energy well in the upper left 
(-30, 30) region of PC space. This well 
coincided with the endpoint of 92% of 
Apoptosis[+] cells, indicating that this energy 
minimum acts as a “death” well into which 
apoptotic cells enter but cannot escape. In 
contrast, the energy landscape of Apoptosis[-] 
cells was characterized by a dramatic deepening 
in the far right (30, 0) region of PC space, 
accompanied by a second milder deepening in 
the central (0, 0) region. We hypothesized that 
these energy minima might act as protective 
barriers to apoptosis by hindering cell exit and 
minimizing the probability of cell entry into the 
(-30, 30) “death” well.  

 To test this possibility, we plotted the 
probability of apoptosis as a function of state 
space occupancy (Fig. 4N) and observed that 
entry at any point in the time series into states 
near (30, 0) corresponded to a 0% probability of 
apoptosis, whereas entry at any point in the time 
series into states in the (-30, 30) “death” well 
corresponded to a 100% probability of 
apoptosis. In between these two extremes were 
the central states surrounding (0, 0), where the 
probability of apoptosis was low, but nonzero. 
These findings support an interpretation where 
the addition of camptothecin produces three 
functionally distinct energy minima in WT MEF 
cytomorphology space: one acting as an 
irreversible “death” well into which cells enter 
and do not escape, and the other two acting as 
energetically favorable sub-regions that serve as 
protective barriers to apoptosis, one conferring 
absolute protection and the other conferring 
significant but incomplete protection.    
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 We present here evidence demonstrating 
that heterogeneity in the topography and 
dynamics of cytomorphology space can 
effectively explain observed functional 
heterogeneity within an isogenic population. The 
discovery that drug exposure fundamentally 
alters the energetics of cytomorphology space 
lends insight into the effects of exogenous 
agents on cellular function at both the single cell 
and population scales. These observations 
further our understanding of the mechanisms 
driving functional heterogeneity and present a 
theoretical framework to guide future studies. 
These results strongly indicate that 
cytomorphological heterogeneity may be a 
functionally consequential mode of non-genetic 
heterogeneity, sister to the more widely studied 
forms of transcriptional and epigenetic 
heterogeneity. 

 As the basic functional unit of all living 
organisms, cells are continuously engaged in 
active biochemical processes and, from a 
microstate perspective, are distinct non-
equilibrium systems. We demonstrate here that 
equilibrium-based formalisms can offer insight 
into the principles underlying non-genetic 
heterogeneity, suggesting that at coarse-grained 
scales, formalisms describing systems at 
equilibrium may be useful in describing and 
understanding the behaviors of non-equilibrium 
systems. If proven applicable in additional 
contexts, this principle may lead to the 
development of novel equilibrium statistical 
mechanics-based frameworks for studying an 
inherently non-equilibrium system, the cell. This 
approach has the potential to significantly 
further our understanding of biological systems, 
with recent work demonstrating promising 
applications of this approach (31). By 
illuminating the biophysical principles 
intertwining the molecular, morphological, and 
functional states of a cell, we hope to make 
progress in further uncovering the fundamental 
principles that govern all biological systems. 
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Fig. 1. Morphological heterogeneity in WT MEFs. (A) Relationships between cell states at different 
levels of description. (B) Fluorescence images of fixed WT MEFs. The microtubule cytoskeleton (α-
tubulin, green), mitochondria (mtHsp70, red), and nucleus (DAPI, blue) are labeled. Scale bar = 50µm. (C 
and D) Scatter plots of cell perimeter vs. cell area (C) and cell circularity vs. cell area (D) in a sample of 
fixed WT MEFs (n = 904). (E and F) Scatter plots of single-cell coordinates of fixed WT MEFs (n = 904) 
in PC1 vs. PC2 (E) and PC1 vs. PC2 vs. PC3 (F) space. 
 
Fig. 2. State space dynamics of living cells approximate a system at equilibrium.  
(A) Schematic of the fluorescent reporter lentivirus cassette. (B) Fluorescence images of a WT MEF 
expressing the lentivirus fluorescent reporter. From left to right: mIFP-H2B (nucleus), tdTomato-mito 
(mitochondria), EGFP-tubulin (microtubule cytoskeleton), composite. Scale bar = 50µm. (C) 
Experimentally observed transition vectors of WT MEFs over a 60h time course. Vectors originate at 
(PC1t, PC2t) and terminate at (PC1t+4h, PC2t+4h). (D) Heat map of the mean magnitude of transition 
vectors originating from each bin of a 60x60 bin representation of state space (E through H) Heat maps 
of the pdf (E), pexit (F), pstay (G), and pend (H) of WT MEFs. (I) The distance from the origin of the mean 
(PC1, PC2) coordinate (green) and the mean transition vector magnitude from (PC1t, PC2t) to (PC1t+4h, 
PC2t+4h) (orange) of individual WT MEFs (n = 68). (J) Steady-state analysis. Two-sample t-test 
comparing, at each time point, relative to t = 0h, the distance from the origin of the mean (PC1, PC2) 
coordinate (green) and the mean transition vector magnitude from (PC1t, PC2t) to (PC1t+4h, PC2t+4h) 
(orange). Significance values are shown in dashed lines. (K) Detailed balance analysis. Heat map of the 
binomial statistics-based probability of the observed ratio of forward and reverse transitions occurring by 
random chance. Transitions between adjacent bins are shown; a full transition map can be found in the 
Supplemental Material (Fig. S3). 
 
Fig. 3. The gradient of an inferred effective energy landscape can predict experimentally observed 
transition dynamics. 
(A) Example of an energy landscape, formed by taking the inverse of a 2D Gaussian with µx = 0, µy = 0, 
σx = 1, and σy = 1(left) and the transition vector field (right) predicted by the gradient of that landscape. 
(B) Heat map (left) and surface plot (right) of the inferred effective energy landscape of WT MEF 
cytomorphology space. Energy values are scaled to a range of [-0.4, 0]. (C through E) State dynamics can 
be predicted from the gradient of the inferred effective energy landscape. Experimentally observed 
transition vectors (C), vectors derived from the gradient of the inferred effective energy landscape (D), 
and vectors derived from a scrambled energy landscape (E). Vectors are unit normalized. (F) Histogram 
of the mean dot product of the observed vectors (C) and vectors derived from 100 iterations of the 
scrambled landscape. The mean dot product of (C) and (D) is indicated by a red dashed line, indicating 
that the transition vector field predicted by the gradient of the inferred effective energy landscape is 
significantly predictive of experimentally observed transition dynamics.  
 
Fig. 4. Morphology space state variability corresponds to variability in apoptosis response. (A and 
G) Experimentally observed transition vectors of Apoptosis[+] (A) and Apoptosis[-] (G) cells overs a 64h 
time course. Vectors originate at (PC1t, PC2t) and terminate at (PC1t+4h, PC2t+4h). (B and H) Single-cell 
mean transition vectors and mean (PC1, PC2) coordinates of Apoptosis[+] (B) and Apoptosis[-] (H) cells 
over a 64h time course. Radii of circles are scaled to the (PC1, PC2) coordinate variance over a 64h time 
course. (C through F, I through L) Heat maps of the pdf (C, I), pexit (D, J), pstay (E, K), and pend (F, L) of 
Apoptosis[+] (C through F) and Apoptosis[-] (I through L) cells. (M) Bar plot of Kolmogorov-Smirnov 
significance values comparing the probability distributions of WT, Apoptosis[+], and Apoptosis[-] cells. 
The K-S significance value at α = 0.05 is indicated by a dashed line and statistically significant values are 
indicated by asterisks. (N) Heat map of the probability of apoptosis given occupancy of a particular state 
space bin at any point during the 64h time series. (O) Inferred effective energy landscape of 
camptothecin-treated WT MEFs. (P through R) Differences between the effective energy landscapes of 
WT and camptothecin-treated (P), Apoptosis[+] (Q), and Apoptosis[-] (R) cells. 
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