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Abstract 98 

This study offers a novel description of the sinonasal microbiome, through an unsupervised machine 99 

learning approach combining dimensionality reduction and clustering. We apply our method to the 100 

International Sinonasal Microbiome Study (ISMS) dataset of 410 sinus swab samples. We propose three 101 

main sinonasal ‘microbiotypes’ or ‘states’: the first is Corynebacterium-dominated, the second is 102 

Staphylococcus-dominated, and the third dominated by the other core genera of the sinonasal microbiome 103 

(Streptococcus, Haemophilus, Moraxella, and Pseudomonas). The prevalence of the three microbiotypes 104 

studied did not differ between healthy and diseased sinuses, but differences in their distribution were 105 

evident based on geography. We also describe a potential reciprocal relationship between 106 

Corynebacterium species and Staphylococcus aureus, suggesting that a certain microbial equilibrium 107 

between various players is reached in the sinuses. We validate our approach by applying it to a separate 108 

16S rRNA gene sequence dataset of 97 sinus swabs from a different patient cohort. Sinonasal 109 

microbiotyping may prove useful in reducing the complexity of describing sinonasal microbiota. It may 110 

drive future studies aimed at modeling microbial interactions in the sinuses and in doing so may facilitate 111 

the development of a tailored patient-specific approach to the treatment of sinus disease in the future. 112 

Keywords 113 

microbiome, sinus, next-generation sequencing, 16S rRNA gene, chronic rhinosinusitis, microbiotype 114 
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MAIN TEXT 116 

Chronic rhinosinusitis (CRS) is a heterogenous, multi-factorial inflammatory disorder with a complex and 117 

incompletely understood aetiopathogenesis.1 A potential role of the sinonasal microbiome and its 118 

“dysbiosis” in CRS pathophysiology has recently gained increased interest. The nature of the microbial 119 

dysbiosis and its role in disease causation and progression however remains unclear, with conflicting 120 

findings from the small sinonasal microbiome studies published thus far. 121 

We recently reported the findings of our multi-national, multicenter “International Sinonasal Microbiome 122 

Study” or ISMS.2 This study, the largest and most diverse of its kind to date, attempted to address many 123 

of the limitations of the smaller previous studies, by standardizing collection, processing and analysis of 124 

the samples. Furthermore, its large sample size and multinational recruitment, meant that it was more 125 

likely to capture geographical and centre-based differences if present. A recent meta-analysis of published 126 

sinonasal 16S rRNA sequences revealed that the largest proportion of variance was attributed to 127 

differences between studies,3 highlighting a role for performing a large multi-centre study that employed 128 

a unified methodology. 129 

Contrary to the findings of previous studies, our international cohort showed no significant differences in 130 

alpha or beta diversity between the three groups of patients analyzed: healthy control patients without 131 

CRS and the two phenotypes of CRS patients, those with polyps (CRSwNP) and those without 132 

(CRSsNP). The study however revealed a potential grouping of samples as demonstrated on beta diversity 133 

exploratory analysis.2 Accordingly, we hypothesized that the bacteriology of the sinuses could be 134 

categorized into various clusters of similar compositions. We inquired whether these potential groups 135 

would aid in describing the sinonasal microbial composition of patients or associate with clinical features. 136 

Similar attempts performed on gut microbiota in healthy individuals were termed enterotyping.4 The 137 

clinical relevance of gut enterotypes remain the topic of research, and sometimes controversy. A previous 138 

exploration of clusters of sinus microbiota in patients was performed by Cope et al.5 in which the authors 139 
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reported four compositionally distinct sinonasal microbial community states; the largest group of patients 140 

were dominated by a continuum of Staphylococcaceae and Corynebacteriaceae demonstrating a 141 

reciprocal relationship.5 142 

In this manuscript, we attempt “microbiotyping” to explain interpatient heterogeneity of the bacterial 143 

communities in the paranasal sinuses, and are the first to describe “sinonasal microbiotypes” across the 144 

first large, multi-centre cohort of individuals with and without CRS. We model our analysis on previous 145 

attempts of enterotyping the gut microbiome. We then describe the composition of these microbiotypes, 146 

explore potential clinical associations and validate microbiotyping on a separate sinus microbiome 147 

dataset. 148 
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RESULTS 150 

Basic characteristics of the study cohort and beta diversity plots 151 

 152 

Figure 1: Beta diversity ordination plots. 153 

The main ISMS study cohort was described in our previous publication.2 In brief, 410 samples were 154 

included in the analysis collected from 13 centres representing 5 continents. These samples are distributed 155 
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along three diagnosis groups as follows: 99 CRSsNP patients, 172 CRSwNP patients, and 139 (non-CRS) 156 

controls. Beta diversity ordination plots (of weighted UniFrac and Jensen-Shannon distances) are shown 157 

in Figure 1. The plots do not reveal any distinct grouping by disease state or by centre, but on visual 158 

inspection show a triangular arrangement suggesting that samples lie on a continuum between three 159 

distinct clusters, providing motivation for further analysis. 160 

Composition of the three sinonasal microbiotypes 161 

We applied our microbiotyping approach through the unsupervised dimensionality reduction and 162 

clustering method described in the Methods. The composition of the resulting “sinonasal microbiotypes” 163 

is found in Figure 2A. 164 

 165 

Figure 2: Microbiotyping the sinonasal microbiome. (A) Taxonomic composition of the three 166 

microbiotypes at the genus level. (B) Illustration of the assigned microbiotypes on the Jensen-Shannon 167 

PCoA biplot. Arrows were used to depict the projection of the genera onto the PCoA matrix. Each arrow 168 

is indicated by the color of the genus according to the Legend. (C) Histograms demonstrating the relative 169 
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abundance of Corynebacterium and Staphylococcus. (D) Distribution of staphylococcal species (mean 170 

relative abundance). (E) Subgroups of microbiotype 3 (hierarchical density-based clustering). 171 

Microbiotype 1 is dominated by Corynebacterium (mean relative abundance of 75.29%). Microbiotype 2 172 

is dominated by Staphylococcus (mean relative abundance of 74.96%). Microbiotype 3 contained samples 173 

that were mostly constituted of Streptococcus, Haemophilus, Moraxella, Pseudomonas and other genera. 174 

The Abundance/Prevalence tables for the microbiotypes is demonstrated in Supplementary Tables S1A, 175 

S1B and S1C. 176 

We used a PCoA biplot to project features (genera) onto the PCoA matrix.6 The 5 topmost abundant 177 

genera were overlaid on the PCoA plot as arrows, originating from the centre of the plot and pointing to 178 

the direction of the projected feature coordinates. (Figure 2B) Each arrow is indicated by the color of the 179 

genus according to the Legend in Figure 2A, and the length of each was normalized as a percentage of the 180 

longest arrow. The coloring of the samples in 2B in the PCoA scatter plot according to the microbiotype 181 

assignment is provided for additional illustration. (Figure 2B) We note that the biplot arrows show a 182 

quasi-orthogonal arrangement between the key genera that constitute the microbiome. 183 

The distributions of the relative adundances of Corynebacterium and Staphylococcus in all three 184 

microbiotypes were plotted in histograms (Figure 2C). It was noted that in microbiotype 1, most samples 185 

have a high abundance of Corynebacteria (i.e. Corynebacteria dominate), while Staphylococci appeared 186 

to dominate in microbiotype 2 in most samples. 187 

Dissection of “sinonasal microbiotype 3” 188 

We observed that Microbiotype 3 included various genera that did not cluster into the major two 189 

microbiotypes. It was also evident that this microbiotype is more heterogeneous. Applying the K-Means 190 

algorithm we showed poor clustering on only the first two and three Principal Components, since this 191 

group included multiple signatures with various dominant organisms. Accordingly, we employed the 192 
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hieararchical density-based clustering algorithm “hdbscan”7 on the full-dimensional OTU table. One 193 

advantage of this algorithm is that it can estimate the number of clusters, without a priori specification by 194 

the user. This algorithm also has the ability to detect “outliers” that fail to cluster with the rest of the 195 

groups and detaches them into a separate “Miscellaneous/Other” group. We ran this algorithm on samples 196 

in Microbiotype 3 and this revealed four clusters, each dominated by one of the genera of Streptococcus 197 

(21 samples), Haemophilus (16 samples), Moraxella (9 samples), and Pseudomonas (7 samples), with a 198 

mean relative abundance ranging from 73.49% to 95.5%. The fifth cluster was the assigned 199 

“Miscellaneous/Other” group (18 samples). We term these “sub-microbiotypes”: microbiotype 3S, 3H, 200 

3M, 3P, and 3O, respectively. (Figure 2E) 201 

Exploring microbiotypes at the species-level reveals potential antagonism between 202 

Corynebacterium species and Staphylococcus aureus 203 

At present, species level assignment is limited by the current technology of 16S-surveys, the current state 204 

of microbial databases in general, and by our chosen short-read sequencing methodology. However, 205 

species level associations hold clinical significance for sinus health, since Staphylococcus aureus has 206 

been traditionally associated with biofilm formation and superantigen elaboration, both of which are 207 

associated with more severe sinus disease and poorer response to treatment. Furthermore nasal carriage of 208 

methicillin-resistant Staphylococcus aureus (MRSA) is a global health concern with implications that 209 

extend far beyond the sinuses. Moreover, our new QIIME 2-based pipeline8 allows a higher “sub-OTU” 210 

resolution compared to older pipelines, offering an opportunity to resolve some taxa at species level when 211 

possible.9,10 212 

We explored taxonomy assignment at the species level, with a focus on Staphylococcal species. 213 

Staphylococci were assigned to either Staphyloccocus aureus, Staphylococcus epidermidis or unclassified 214 

Staphylococcus. We found that almost all of the assigned Staphylococcus aureus species were clustered in 215 

Microbiotype 2, forming 47.81% mean relative abundance of this Microbiotype, compared to 1.36% and 216 

0.3% in Microbiotype 1 and Microbiotype 3 respectively. (Figure 2E) Differential abundance of both 217 
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Staphylococcus aureus and epidermidis between the disease groups was confirmed as statistically 218 

significant using ANCOM. 219 

In light of this finding, we hypothesized a reciprocal or antagonistic relationship between 220 

Corynebacterium sp. and Staphylococcus aureus and investigated this using SparCC. This confirmed a 221 

significant negative correlation between Corynebacterium genus and the species Staphylococcus aureus 222 

(SparCC correlation coefficient = -0.339, p = 0.001). Interestingly, Staphylococcus epidermidis positively 223 

correlated with Corynebacterium (SparCC correlation coefficient = 0.271, p = 0.001). These results 224 

should be interpreted cautiously in light of 16S-sequencing limitations. Nevertheless, they do appear to 225 

correlate to previous findings in the literature, including in vitro experiments11, a murine nasal bacterial 226 

interaction model12, and a survey of nasal vestibule swabs in healthy individuals13. These results suggest 227 

that a benign or probiotic role is played by both Corynebacterium spp. and Staphyloccocus epidermidis 228 

when interacting with Staphylococcus aureus. 229 

Prevalence and distribution of the microbiotypes in different diagnoses and centres 230 

 231 

Figure 3: Prevalence and distribution of the microbiotypes. 232 

Microbiotype 1 was assigned to 222 samples (54.1%), microbiotype 2 to 117 samples (28.5%), and 233 

microbiotype 3 to 71 samples (17.3%). The prevalence distribution of the sinonasal microbiotypes did not 234 
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appear to significantly differ by the disease state of the sinuses. (Figure 3) However, a Chi-Squared test 235 

on the contingency table by centre showed significantly different distributions by centre (FDR-corrected p 236 

< 0.001): there was a higher prevalence of microbiotype 2 in our European centre (Amsterdam), and a 237 

higher prevalence of microbiotype 1 in Asian and Australasian centres, with a much lower prevalence of 238 

microbiotype 3 in Asia. (Figure 3 and Table 1) 239 

Table 1: Distribution of microbiotypes by diagnosis and continent.  240 

variable value microbiotype_1 microbiotype_2 microbiotype_3 p value 

Diagnosis CRSsNP 56 (56.6%) 27 (27.3%) 16 (16.2%) 0.507 

 CRSwNP 85 (49.4%) 48 (27.9%) 39 (22.7%)  

 Control 81 (58.3%) 42 (30.2%) 16 (11.5%)  

Continent Asia 27 (69.2%) 11 (28.2%) 1 (2.6%) < 0.001 

 Australasia 67 (61.5%) 23 (21.1%) 19 (17.4%)  

 Europe 7 (18.4%) 22 (57.9%) 9 (23.7%)  

 North_America 89 (56.3%) 43 (27.2%) 26 (16.5%)  

 South_America 32 (48.5%) 18 (27.3%) 16 (24.2%)  

 241 

Associations of microbiotypes with clinical variables 242 

We then explore the distribution of the three microbiotypes among multiple clinical variables in Table 2. 243 

This shows no significant difference for some variables including asthma, aspirin sensitivity, GORD, 244 

diabetes mellitus, and current smoking status, (FDR-corrected p > 0.05; Chi-squared test). The cross 245 

tabulation however revealed a statistically significant association with “aspirin sensitivity” or aspirin-246 

exacerbated respiratory disease (AERD) (p = 0.02), although this did not persist after a Benjamini-247 

Hochberg correction (corrected p = 0.077). Patients who were aspirin-sensitive (or suffering from AERD) 248 

showed less prevalence of microbiotypes 1, 2 and a higher prevalence of microbiotype 3, compared to 249 

those who were not aspirin-sensitive. On the other hand, patients who were undergoing their “primary 250 
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surgery”, had a higher prevalence of microbiotype 1 and a lower prevalence of microbiotype 3, compared 251 

to those patients who had had previous surgeries, but these results were not statistically significant. 252 

Table 2: Distribution of microbiotypes by various clinical variables.  253 

variable value microbiotype_1 microbiotype_2 microbiotype_3 p value 

Asthma No 162 (56.4%) 81 (28.2%) 44 (15.3%) 0.906 

 Yes 55 (51.4%) 31 (29.0%) 21 (19.6%)  

Aspirin 

sensitivity 

No 202 (55.3%) 106 (29.0%) 57 (15.6%) 0.077 

 Yes 12 (48.0%) 5 (20.0%) 8 (32.0%)  

Diabetes No 189 (54.9%) 98 (28.5%) 57 (16.6%) 0.979 

 Yes 22 (55.0%) 11 (27.5%) 7 (17.5%)  

GORD No 177 (55.3%) 93 (29.1%) 50 (15.6%) 0.979 

 Yes 35 (55.6%) 17 (27.0%) 11 (17.5%)  

Current 

Smoker 

No 204 (54.4%) 110 (29.3%) 61 (16.3%) 0.077 

 Yes 15 (57.7%) 4 (15.4%) 7 (26.9%)  

Primary 

surgery 

No 92 (47.2%) 57 (29.2%) 46 (23.6%) 0.114 

 Yes 130 (60.5%) 60 (27.9%) 25 (11.6%)  

 254 

Validation of sinonasal microbiotyping on a separate dataset 255 

We validated our approach on a separate 16S dataset we called Dataset Two. As described in the Methods 256 

section, we validated this using an independent unsupervised approach and a semi-supervised approach 257 

guided by the Main Dataset. 258 
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The first unsupervised approach yielded three clusters similar to the microbiotypes described on the Main 259 

Dataset, with one cluster exhibiting high mean relative abundance of Corynebacteria, a second cluster 260 

exhibiting high mean relative abundance of Staphylococcus, and a third cluster with other dominant 261 

genera. Plotting the first two Principal Components (Figure 4A) resulting from PCoA on the JSD matrix 262 

revealed the same triangular distribution of samples observed in Figure 1. 263 

Prevalence of the microbiotypes in this dataset (using the unsupervised approach) was as follows: 264 

microbiotype 1 assigned 39.2% of samples, microbiotype 2 with 26.8% of samples, and microbiotype 3 265 

with 34.0%. 266 

The second semi-supervised approach yielded similar results (Figure 4; Supplementary Table), differing 267 

in the classification of only 3 samples (out of 97 samples; i.e. 3.09%). (See Supplementary Jupyter 268 

notebook) Two of these samples show Staphylococcus dominating the samples in combination with 269 

Haemophilus, with no overt dominance of one taxon over the other, making them more-or-less 270 

transitional samples between the signatures of microbiotypes 2 and 3. The third sample was dominated by 271 

Staphyloccocus and Corynebacterium, making it a transitional sample between microbiotype 1 and 272 

microbiotype 2, with Staphylococcal species assigned to epidermidis, making this more appropriately 273 

assigned to microbiotype 1. (see Supplementary Jupyter notebook) 274 

These results validate the microbiotyping approach and suggest that our approach and dataset could be 275 

used to guide classification of sinonasal samples sequenced in future separate studies. (Figure 4) 276 

Moreover, it points towards a potential clinical relevance of performing sinonasal microbiotyping. 277 
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 278 

Figure 4: Validation of microbiotyping approach on Dataset Two. 279 

  280 
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DISCUSSION 281 

We demonstrate that the microbiota of most sinus swab samples could be classified into distinct 282 

signatures or archetypes, which we have termed “sinonasal microbiotypes”. We observed three main 283 

microbiotypes: the most prevalent being a Corynebacterium-dominated microbiotype (microbiotype 1), 284 

then a Staphylococcus-dominated microbiotype (microbiotype 2), and microbiotype 3 which includes 285 

samples dominated by Streptococcus, Haemophilus, Moraxella, Pseudomonas, and other genera (3S, 3H, 286 

3M, 3P, and 3O respectively). 287 

As we have previously reported,2 the sinus microbiota are dominated by the genera Corynebacterium and 288 

Staphylococcus (microbiotypes 1 and 2). A similar clustering approach to the sinus microbiome was 289 

applied by Cope and colleagues, who utilized Dirichlet multinomial mixture models (DMMs),5 and 290 

reported that most samples in their study were occupied by a continuum of Staphylococcaceae and 291 

Corynebacteriaceae.5 It appears that, regardless the statistical or clustering methodology utilized, it is 292 

most likely that the sinonasal microbiome consists of core organisms2 that have a distinct co-occurrence 293 

pattern. This could be explored through a network analysis approach and should be a future area of study. 294 

Staphylococcus aureus has been perceived to be an important pathogen in sinus inflammatory disease. 295 

Staphylococcus aureus biofilms may act as a nidus for recurrent infections14,15 and as a “nemesis” of 296 

otherwise-successful sinus surgery.16–18 Staphylococcus aureus is also a producer of exotoxins, which in 297 

some cases can serve as superantigens, and these have been previously described as playing an important 298 

role in the pathogenesis of CRSwNP.19 Pseudomonas aeruginosa biofilms are also virulent organisms that 299 

are difficult to eradicate from the sinuses, and have been associated with worse clinical outcomes.20 Both 300 

these organisms are important pathogens in the chronic mucociliary dysfunction exhibited in cystic 301 

fibrosis. However, methicillin-resistant Staphylococcus aureus (MRSA) is an important nasal colonizer 302 

that could asymptomatically colonize the nose. What determines the clinical course, between 303 

asymptomatic colonization versus symptomatic pathogenicity, remains an interesting topic of research. In 304 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 14, 2019. ; https://doi.org/10.1101/549311doi: bioRxiv preprint 

https://doi.org/10.1101/549311
http://creativecommons.org/licenses/by-nc-nd/4.0/


this study, we identified a potential reciprocal relationship between Staphylococcus aureus and 305 

Corynebacterium. Being aware of the challenges of compositional data analysis, we utilized for this 306 

purpose the specialized SparCC algorithm which infers correlations from compositional data.21 This 307 

finding needs to be supported by future co-culture experiments, but suggests that Corynebacterium sp. 308 

may be a “cornerstone” of sinus microbial health. It is important to note that our bioinformatic 309 

methodology has been intentionally designed to utilize state-of-the-art software methods at every step of 310 

the analysis pipeline, in order to maximise the resolution of taxonomy assignment.8,9,22 Nevertheless, our 311 

approach is still confined within the limitations of current 16S sequencing methodologies, and the 312 

confidence of assignment is reduced beyond the genus level. Our analysis pipeline could not delineate 313 

between different Corynebacterium at the species level and Staphylococcus aureus at the strain level. 314 

Hence functional difference between samples with same species remain to be determined using a 315 

functional metagenomics approach. A recent study suggest that by incorporating location information or 316 

“sample-level metadata” into species-level assignment accuracy could be improved.23 In our study, the 317 

differential relationships of both Staphylococcus aureus and epidermidis towards Corynebacteria 318 

(negative and positive associations, respectively) could be of clinical significance and is worthy of future 319 

investigation. We performed a post-hoc inspection of species-level assignment in Dataset Two, to 320 

investigate whether this finding will be reproducible in a separate dataset. This confirmed clustering of 321 

almost all Staphylococcus aureus species in microbiotype 2. (Supplementary Results in Jupyter 322 

Notebook) 323 

Interestingly, we found that the distribution of the sinonasal microbiotypes was not significantly dis-324 

similar amongst healthy controls and CRS patients. There appeared to be no significant associations with 325 

other clinical variables such as asthma and aspirin-sensitivity after controlling for multiple comparisons. 326 

(Table 2) The distribution of the microbiotypes however differed according to centre/location of 327 

collection. (Figure 3) As such, we cannot conclude based on our study that microbiotypes could function 328 

independently as a disease biomarker. Although not reaching statistical significance (chi squared p > 329 
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0.05) the prevalence of microbiotype 3 was higher in CRSsNP and CRSwNP, compared to controls. It 330 

could be the case that chronicity of inflammation -on its own- is not a determinant of a dysbiotic 331 

microbiome, but whether there is a clinically-evident “sinus infection” current at the time of sample 332 

collection. In this theory, stable chronic sinuses with no overt signs of acute or chronic infection, may 333 

remain similar to a “healthy sinus microbiome”. Only when the sinuses are clinically infected (as evident 334 

on clinical symptoms and endoscopic findings), the microbiota become disrupted and the dysbiosis 335 

exaggerated. It is important to note that Streptococcus, Haemophilus and Moraxella (represented here in 336 

microbiotype 3) have been traditionally implicated in acute infections of the upper respiratory tract 337 

including acute rhinosinusitis and acute otitis media. Unfortunately, information regarding acute 338 

exacerbations was not explored within this study. 339 

Regarding geographical differences: Asia and Australasia showed an over-representation of microbiotype 340 

1. Europe had a higher prevalence of microbiotype 2. Unfortunately, the study only included one 341 

European centre (Amsterdam) so it is difficult to be certain whether this finding generalizes to other 342 

locations in Europe. The driving factors for these geographical differences could be multiple, including 343 

but not limited to clinical practices such as local antibiotic prescriptions for CRS and timing of 344 

recruitment of patients for sinus surgery, as discussed previously.2 345 

We have adapted our methodology from the enterotyping approach taken by Arumugam et al.4 for 346 

classifying bacterial signatures of the gut microbiome. In their original manuscript, they described three 347 

different enterotypes in the gut dominated by Prevotella, Bacteroidetes, and Ruminococcus respectively.4 348 

Several papers have correlated gut enterotypes with various clinical variables.24,25 Despite this, 349 

enterotyping as an approach to population stratification has not been without its controversies. Several 350 

authors have criticized the definition of distinct clusters, since it neglects intra-cluster variation and 351 

gradients between clusters.26–29 We provide answers to previous critique28 to enterotyping as it applies to 352 

our study in Supplementary Table S2. It is important to note these valid criticisms to any community 353 

typing approach. In our experiment, the clusters or types lie on a continuum, with some samples falling in 354 
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the gradients between two, or perhaps even all three microbiotypes (see ordination plots). The histograms 355 

in Figure 2 also suggest this, but they do show most samples in each microbiotype feature a high relative 356 

abundance of a dominating genus in many samples. We investigated a simple dominance measure, the 357 

Berger-Parker (BP) alpha diversity index,30 in the combined datasets’ 507 samples. The Berger-Parker 358 

index simply reports the relative abundance of the most dominant taxon in a sample. This found that only 359 

24.9% of samples had a dominating taxon that only had a relative abundance of 50% or less. On the other 360 

hand, 51.9% of samples had the dominant taxon exhibiting a relative abundance of greater than 70% of 361 

the sample.(Supplementary Results in Jupyter notebook; Supplementary Figure S1) This shows that in 362 

most samples, there is one dominating organism. Based on these results, the microbiotyping approach is 363 

therefore proposed to reduce complexity about modeling bacterial interactions in the sinuses, and not to 364 

suggest that each type is a walled-off discrete cluster. Further investigations into the local substructures of 365 

each type will be required to further explore the roles and interactions of its constituent taxa. Another 366 

limitation of our description of microbiotypes is that they may as well describe different community 367 

“states” rather than community “types”, since we do not have longitudinal data to describe how these 368 

clusters behave with the passage of time and treatments. Hence, we could not confirm whether these are 369 

stable, consistent communities across time. It may well be that intermediate samples lying between two or 370 

more microbiotypes are representing a transitional state. An important future avenue of research is to 371 

conduct a longitudinal study to investigate the temporal stability of these clusters. 372 

We predict that ongoing sinonasal microbiome research and consequent large meta-analyses of 373 

microbiota studies, with novels tools (such as QIITA31) enabling such large-scale studies, will allow the 374 

refinement of these types and further clarify their clinical/microbiological utility. Our methodological 375 

approach to describe the microbiotypes is not exclusive, as alternative statistical or machine-learning 376 

approaches could be employed to investigate them. In light of this, we expect that international multi-377 

centre standardization and rationalization of the sinonasal microbiotypes would be possible in the future, 378 

similar to the recent proposed effort to standardize enterotyping of the gut microbiota by Costea et al.29 379 
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CONCLUSION 380 

We investigated the ISMS dataset through an approach modeled on human gut microbiome enterotyping 381 

and we found three major microbial community types or “microbiotypes” as clusters that lie on a 382 

continuum, based on an unsupervised machine learning approach that involved dimensionality reduction 383 

and clustering. Microbiotypes did not show an association with disease state or clinical variable, 384 

suggesting that they could not function as independent disease biomarkers. The description of these 385 

microbiotypes has also unveiled a potential reciprocal relationship between Staphyloccocus aureus and 386 

Corynebacterium spp. in the sinuses that requires further investigation in future studies. The findings 387 

were validated on a separate previously unpublished sinus bacterial 16S gene dataset. Microbiotypes are 388 

therefore proposed to reduce the complexity of modeling bacterial interactions in the sinuses, and in this 389 

sense hold microbiological and clinical relevance that could potentially influence medical and surgical 390 

treatment of CRS patients. 391 
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METHODS 393 

The “International Sinonasal Microbiome Study (ISMS)” dataset 394 

We perform the primary analysis on the dataset obtained from the “International Sinonasal Microbiome 395 

Study (ISMS)” project.2 In summary, this dataset is a multi-centre 16S-amplicon dataset which includes 396 

endoscopically-guided, guarded swabs collected from the sinuses (in particular the middle meatus / 397 

anterior ethmoid region) of 532 participants in 13 centres representing 5 continents. Details of sample 398 

collection, DNA extraction and sequencing methodologies are described in the original report.2 The 16S 399 

gene region sequenced was the V3–V4 hypervariable region, utilizing primers 400 

(CCTAYGGGRBGCASCAG forward primer) and (GGACTACNNGGGTATCTAAT reverse primer) 401 

according to protocols at the sequencing facility (the Australian Genome Research Facility; AGRF). 402 

Sequencing was done on the Illumina MiSeq platform (Illumina Inc., San Diego, CA) with 300-base-pairs 403 

paired-end Illumina chemistry 404 

Bioinformatics pipeline 405 

Details of the bioinformatic pipeline is detailed in the original report.2 In summary, we utilized a QIIME 406 

2-based pipeline.8 Forward and reverse fastq reads were joined32, quality-filtered,33, abundance-filtered34, 407 

then denoised using deblur9 through QIIME 2-based plugins. This yielded a final feature table of high-408 

quality, high-resolution Amplicon Sequence Variants (ASVs). Taxonomy assignment and phylogenetic 409 

tree generation35 was done against the Greengenes36 database; and taxonomy was assigned using the 410 

QIIME 2 BLAST assigner.22 A rarefaction minimum depth cut-off was chosen at 400 and this yielded 410 411 

samples out of the original 532 for downstream analysis. The same pipeline was then applied on DataSet 412 

Two for purposes of validation of microbiotyping. We chose to reproduce exactly all the original pipeline 413 

steps on DataSet Two, despite being a completely separate dataset, to reduce bias. 414 
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Delineating the microbiotypes of the sinonasal microbiome 415 

Our approach was guided by the “enterotyping” method described by Arumugam et al.4 with adaptations. 416 

We constructed a sample distance matrix using the Jensen-Shannon distance (JSD) metric, as used in the 417 

original “enterotypes” paper.4 The Jensen-Shannon distances were calculated between samples in the 418 

genus-level-assigned table in a pairwise fashion using the JSD function in the R package “philentropy” 419 

with a log (log10) base. Following this, Principal Coordinate analysis (PCoA) was done on the distance 420 

matrix for dimensionality reduction and visualization. Clustering was then performed using a standard K-421 

means clustering algorithm, as implemented in the machine learning Python package scikit-learn (version 422 

0.20.1);37) on the first two principal components (PCs) obtained from the PCoA, with the number of 423 

clusters (k) chosen at 3 based on visual inspection of the beta diversity PCoA plots. Average silhouette 424 

scores, as implemented in scikit-learn, for the range (k = 2 - 8) were calculated to assess clustering 425 

quality, and this revealed the highest silhouette scores: 0.61 and 0.6 for [k=4] and [k=3] respectively. The 426 

three resulting clusters were defined as the three sinonasal microbiotypes. For further exploration of the 427 

subgroups that constitute microbiotype 3, we used the hierarchical density-based clustering algorithm 428 

“hdbscan”7 on the full-dimensional feature table. Genera were projected onto the PCoA matrix using a 429 

biplot approach6, as implemented in scikit-bio’s function “pcoa_biplot”. Genera were represented in the 430 

biplot figure as arrows, originating from the centre of the plot pointing to the direction of the projected 431 

feature coordinates, and the lengths normalized as a percentage of the longest arrow. We utilized 432 

“Analysis of Compositions of Microbiomes (ANCOM)”38 for identifying differentially-abundant taxa. 433 

Taxa genus level and Staphylococcus species level co-occurrence/correlation analysis were done after 434 

taxonomy assignment using SparCC algorithm,21 in the fast implementation in FastSpar.39 435 

Validating microbiotypes on a second sinonasal microbiome dataset 436 

To infer whether our classification could be generalizable to other sinonasal microbiome samples not 437 

included in this study, we sought to validate our microbiotyping approach on a separate, previously-438 

unpublished, 16S dataset. This dataset includes sinonasal microbiome swabs collected from private and 439 
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public patients attending the Otolaryngology Department (University of Adelaide) to have surgery done 440 

by the authors P.J.W., A.J.P. or the Otorhinolaryngology Service at the Queen Elizabeth Hospital in 441 

Adelaide, South Australia. Similar to the main dataset, these included CRS patients who underwent 442 

endoscopic sinus surgery for this sinus disease, and non-CRS control patients who underwent other 443 

otolaryngological procedures, such as tonsillectomy, septoplasty or skullbase tumour resection. Sample 444 

collection, and processing were done in a standardized fashion similar to that has been described in the 445 

ISMS main dataset, except that DNA extraction was carried out using the PowerLyzer Power-Soil DNA 446 

kit (MoBio Laboratories, Salona Beach, CA) as previously described40, rather than the Qiagen DNeasy kit 447 

(Qiagen, Hilden, Germany). Similar to the ISMS samples, library preparation and 16S sequencing were 448 

done at the Australian Genome Research Facility (AGRF) on the Illumina MiSeq platform (Illumina Inc., 449 

San Diego, CA, USA) with the 300-base-pairs paired-end chemistry. Libraries were generated by 450 

amplifying (341F–806R) primers against the V3–V4 hypervariable region of the 16S gene 451 

(CCTAYGGGRBGCASCAG forward primer; GGACTACNNGGGTATCTAAT reverse primer).41 PCR 452 

was done using AmpliTaq Gold 360 master mix (Life Technologies, Mulgrave, Australia) following a 453 

two-stage PCR protocol (29 cycles for the first stage; and 8 cycles for the second, indexing stage). 454 

Sequencing was done over two MiSeq runs in January 2015. We termed this dataset in this manuscript 455 

“Dataset Two”. This dataset comprises samples collected from 129 participants. Rarefaction at a cutoff of 456 

400 reads was performed, to match what was performed for the main dataset, and samples with read 457 

number less than 400 were excluded; this yielded a final feature table containing 97 samples, representing 458 

33 CRSsNP patients, 35 CRSwNP patients, and 29 controls. 459 

We took two separate approaches to validation. The first approach is to replicate the previously-described 460 

unsupervised K-means microbiotyping methodology independently on samples in Dataset Two. We call 461 

this first approach the “unsupervised approach”. The second approach is to use the K-means model that 462 

was fitted on the samples from the Main Dataset to predict labels (i.e. microbiotypes) of the samples in 463 
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Dataset Two. As such, the Main Dataset is used as a “training dataset” in the language of machine 464 

learning. We called the second approach the “semi-supervised approach”. 465 

Statistical Analysis 466 

All frontend analyses were done using the Jupyter notebook frontend42 and utilizing the assistance of 467 

packages from the Scientific Python43 stack (numpy, scipy, pandas, statsmodels), scikit-learn37, scikit-bio 468 

(https://github.com/biocore/scikit-bio) and omicexperiment 469 

(https://www.github.com/bassio/omicexperiment). 470 
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Supplementary Figures 472 

 473 

Figure S1: Cumulative distribution function of the Berger-Parker Index in the combined datasets. 474 
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Supplementary Tables 476 

Table S1A: Predominant taxa of microbiotype 1.  477 

genus Mean Relative Abundance (%) Prevalence (%) 

Corynebacterium 75.29 100 

Staphylococcus 10.69 76.58 

Alloiococcus 2.79 28.83 

Moraxella 2.31 9.91 

unidentified 

(Enterobacteriaceae) 

1.41 15.32 

unidentified (Neisseriaceae) 1.18 20.72 

Streptococcus 1 21.62 

Haemophilus 0.56 9.91 

unidentified (Moraxellaceae) 0.44 2.7 

Ralstonia 0.34 10.36 
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Table S1B: Predominant taxa of microbiotype 2.  479 

genus Mean Relative Abundance (%) Prevalence (%) 

Staphylococcus 74.96 100 

Corynebacterium 9.87 64.1 

Streptococcus 3.22 25.64 

unidentified 

(Enterobacteriaceae) 

1.82 15.38 

Haemophilus 1.41 10.26 

Moraxella 1.27 5.13 

Ralstonia 1.19 11.97 

Pseudomonas 1.05 6.84 

Parvimonas 0.72 0.85 

unidentified (Neisseriaceae) 0.61 7.69 
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Table S1C: Predominant taxa of microbiotype 3.  481 

genus Mean Relative Abundance (%) Prevalence (%) 

Haemophilus 23.78 40.85 

Streptococcus 23.22 46.48 

Moraxella 12.11 19.72 

Pseudomonas 9.17 15.49 

unidentified 

(Enterobacteriaceae) 

5.74 9.86 

Serratia 5.7 8.45 

Klebsiella 2.75 4.23 

Corynebacterium 2.56 46.48 

Prevotella 1.44 12.68 

Acinetobacter 1.38 1.41 
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Table S2: Addressing previous criticism to gut enterotyping.  483 

Critique Answer 

Discrete clusters or a 

multi-dimensional 

gradient? 

We acknowledge the a proportion of samples fall in the gradient between the 

proposed microbiotypes. Berger-Parker index investigation showed that most 

samples had one dominating taxon. 

Do discrete clusters link 

to human disease? 

No. We report that we could not find an association between the microbiotype 

and chronic sinusitis disease status. 

Is sampling frame or 

selection bias affecting 

results? 

No; Multi-centre international study with consecutive sampling methodology. 

We also validate on a separate dataset. 

Use inappropriate 

visualization such as 

“star-burst plots”? 

We did not use inappropriate visualizations. 

Use a supervized 

approach “between-

class analysis”? 

We use an unsupervised clustering and dimensionality reduction approach. 

Is an individual’s 

microbiotype stable 

over time? 

Answer unknown; Future longitudinal studies required. 
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