
1

1 Title: Speed, accuracy, sensitivity and quality control choices for detecting clinically 
2 relevant microbes in whole blood from patients
3
4 Short title: Detecting pathogens in clinically relevant samples
5
6 Authors: James Thornton Jr.2*, George S. Watts1*, Ken Youens-Clark2, Lee D. Cranmer3, and 
7 Bonnie L. Hurwitz2,4†

8
9 Affiliations:

10 1The University of Arizona Cancer Center and Department of Pharmacology, The University of 
11 Arizona, Tucson, AZ, USA
12 2Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, USA
13 3Department of Medicine at the University of Washington, Fred Hutchinson Cancer Research 
14 Center, and Seattle Cancer Care Alliance, Seattle, WA, USA
15 4BIO5 Institute, The University of Arizona, Tucson, AZ, USA
16 *These authors contributed equally to this work.
17 † To whom correspondence should be addressed
18
19 Corresponding author: bhurwitz@email.arizona.edu

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 14, 2019. ; https://doi.org/10.1101/549477doi: bioRxiv preprint 

mailto:bhurwitz@email.arizona.edu
https://doi.org/10.1101/549477
http://creativecommons.org/licenses/by/4.0/


1

20 ABSTRACT
21
22 Infections are a serious health concern worldwide, particularly in vulnerable populations 

23 such as the immunocompromised, elderly, and young. Advances in metagenomic sequencing 

24 availability, speed, and decreased cost offer the opportunity to supplement or replace culture-

25 based identification of pathogens with DNA sequence-based diagnostics. Adopting metagenomic 

26 analysis for clinical use requires that all aspects of the pipeline are optimized and tested, 

27 including data analysis. We tested the accuracy, sensitivity, and resource requirements of 

28 Centrifuge within the context of clinically relevant bacteria. Binary mixtures of bacteria showed 

29 Centrifuge reliably identified organisms down to 0.1% relative abundance. A staggered mock 

30 bacterial community showed Centrifuge outperformed CLARK while requiring less computing 

31 resources. Shotgun metagenomes obtained from whole blood in three febrile neutropenia patients 

32 showed Centrifuge could identify both bacteria and viruses as part of a culture-free workflow. 

33 Finally, Centrifuge results changed minimally by eliminating time-consuming read quality 

34 control and host screening steps.

35
36
37 AUTHOR SUMMARY
38
39 Immunocompromised patients, such as those with febrile neutropenia (FN), are 

40 susceptible to infections, yet cultures fail to identify causative organisms ~80% of the time. 

41 High-throughput metagenomic sequencing offers a promising approach for identifying pathogens 

42 in clinical samples. Mining through metagenomes can be difficult given the volume of reads, 

43 overwhelming human contamination, and lack of well-defined bioinformatics methods. The goal 

44 of our study was to assess Centrifuge, a leading tool for the identification and quantitation of 

45 microbes, and provide a streamlined bioinformatics workflow real-word data from FN patient 
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46 blood samples. To ensure the accuracy of the workflow we carefully examined each step using 

47 known bacterial mixtures that varied by genetic distance and abundance. We show that 

48 Centrifuge reliably identifies microbes present at just 1% relative abundance and requires 

49 substantially less computer time and resource than CLARK. Moreover, we found that Centrifuge 

50 results changed minimally by quality control and host-screening allowing for further reduction in 

51 compute time. Next, we leveraged Centrifuge to identify viruses and bacteria in blood draws for 

52 three FN patients, and confirmed suspected pathogens using genome coverage plots. We 

53 developed a web-based tool in iMicrobe and detailed protocols to promote re-use. 

54
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55 INTRODUCTION
56
57 The current gold standard for clinical diagnosis of infections relies on isolating organisms 

58 by culture-based methods followed by identification and drug resistance testing. Methods for 

59 identifying pathogens that rely on culture have several drawbacks including fastidious bacteria, 

60 the time required for growth in culture, and the difficulty targeting viruses, fungi, and parasites. 

61 Identifying pathogens directly from biological samples by DNA sequencing can overcome the 

62 above limitations of culture and may improve the rate and speed of diagnosis. For these reasons, 

63 metagenomic shotgun sequencing of pathogens has been referred to as the holy grail of infection 

64 diagnosis (Ecker et al., 2010). While culturing samples is the current standard for infection 

65 diagnosis, it can have a high failure rate in some scenarios. For example, a study examined the 

66 problem of culture-based diagnosis of infection in febrile neutropenia and found that only ~16% 

67 (609 of 3,756) febrile neutropenia patients were culture positive (van Walraven & Wong, 2014). 

68 Also, the hazard ratio of dying was nearly four-fold higher in culture-negative patients than for 

69 patients where no culture was taken (presumably due to lack of fever), indicating the high cost in 

70 lives when cultures fail. Therefore, we seek to apply metagenomic sequencing to overcome the 

71 low rate and time delay of culture-based diagnostic methods in clinical settings such as febrile 

72 neutropenia.

73 The potential of metagenomic shotgun sequencing has been demonstrated in a broad 

74 range of infection scenarios including: leptospirosis  (Wilson et al., 2014), nosocomial 

75 transmission of a drug-resistant bacteria (Snitkin et al., 2012), foodborne illness (Ashton et al., 

76 2015), and infectious disease outbreaks (Quick et al., 2016). Despite successes using 

77 metagenomic shotgun sequencing to identify pathogens, routine application in clinical settings 

78 will require accurate, efficient classification, with minimized sample contamination. For 
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79 example, while a small group of studies have reported on high-throughput metagenomic 

80 sequencing for identifying pathogens from immunocompromised patients where samples were 

81 not enriched for microbes, resulting in less than 1% of reads being pathogen-specific (Naccache 

82 et al., 2014; Parize et al., 2017) and dramatically reducing the diagnostic possibilities from the 

83 data (Frey et al., 2014). To begin addressing these inefficiencies, we developed an approach to 

84 increase the proportion of pathogen-derived reads in samples and applied it to the patient 

85 samples reported here.

86 On the data analysis side, there are no standards for analysis of metagenomic data 

87 obtained from clinical samples; however, there have been recent innovations in taxonomic 

88 classification algorithms that make it possible to quantify microbial species directly from reads 

89 in metagenomic datasets rapidly. These algorithms use two main approaches to assign reads to 

90 species in a reference database including: (1) a mapping approach using a Burrows-Wheeler 

91 transform (Li & Durbin, 2009; M. Burrows, 1994) used by Centrifuge (Kim, Song, Breitwieser, 

92 & Salzberg, 2016) or (2) a pseudo-alignment approach based on discriminating k-mers used by 

93 CLARK (Ounit, Wanamaker, Close, & Lonardi, 2015a). These algorithms outperform local 

94 alignment methods concerning both speed and capacity and can, therefore, better handle the 

95 number of reads in metagenomes (Bazinet & Cummings, 2012; Ounit, Wanamaker, Close, & 

96 Lonardi, 2015b; Rosen, Reichenberger, & Rosenfeld, 2011; Wood & Salzberg, 2014). However, 

97 comparisons between these algorithmic approaches to determine the accuracy of taxonomic 

98 assignment in clinically relevant metagenomes are lacking.

99 Here we report the accuracy and sensitivity of Centrifuge utilizing defined clinically 

100 relevant samples, compare its performance to CLARK, and finally analyze datasets obtained 

101 from patients following depletion of human cells to enrich for pathogen DNA. Lastly, we test the 
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102 effect of excluding quality control and host-screening by alignment on the classification of reads 

103 by Centrifuge. This work provides a foundation for analysis of metagenomic data from clinical 

104 samples enriched for pathogens which use open-source software, requires a minimal 

105 computational resource, and provides rapid and accurate identification of pathogens. Our 

106 approach is freely available as web-based Apps in iMicrobe. Further, we provide the source code 

107 in GitHub: https://github.com/hurwitzlab/Centrifuge_HPC under the GNU open source license.

108
109 RESULTS
110
111 Centrifuge accuracy and sensitivity in controlled mixtures of bacteria
112
113 Because closely related clinically important bacteria can have diametric clinical 

114 consequences, (e.g., E. coli is a normal commensal while S. flexneri causes dysentery), we 

115 sought to test Centrifuge's appropriateness as a tool for analyzing clinically relevant bacterial 

116 sequence datasets. We tested the linearity and threshold for detection of Centrifuge using three 

117 sets of bacterial mixtures, selected to represent taxonomic distances from phylum to genus-level. 

118 We created dilution mixtures over a six-log range of relative abundance with each organism 

119 ranging from 0.1% to 99.9% of the mixture (Figure 1). Centrifuge correctly identified all four 

120 species in the mixtures and misidentified less than one percent of the reads in any of the 18 

121 combinations sequenced (false positives, Figure 1). Centrifuge was sensitive to the lowest 

122 relative abundance (0.1%) in four out of six opportunities, failing to detect the extremes in the E. 

123 coli/S. saprophyticus mixture. Reads matching phage present in the mixtures were classified and 

124 quantitated by Centrifuge separately from their host genomes. Because the phage relative 

125 abundance estimates were not included with their host, the bacteria present were underestimated 

126 so that the abundance estimates shown in Figure 1 do not add to 100%. The clearest example of 

127 phage matches affecting taxon-assignment is in the mixture composed of 99.9% S. pyogenes 
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128 with an estimated relative abundance of Streptococcus-specific phage at 10.14%. Despite the 

129 effect of phage matches, the coefficient of determination (R2) for the three mixtures was 0.90 for 

130 E. coli/S. flexneri, 0.99 for S. saprophyticus/S. pyogenes, and 0.96 for E. coli/S. saprophyticus. 

131 Importantly, Centrifuge was able to discriminate between organisms as difficult to discriminate 

132 as E. coli and S. flexneri.

133
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134
135
136 Fig 1. Linearity and threshold for detection of binary mixtures of bacteria using 

137 Centrifuge. The relative abundance of organisms calculated by Centrifuge is represented by 

138 circle size with actual values displayed above, values that are zero have no circle.

139
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140 Comparing the accuracy of Centrifuge and CLARK with a bacterial mock community

141 Given Centrifuge’s performance on the binary mixtures, it was next compared to a 

142 leading algorithm of another class, CLARK with a more complex mock community of 20 

143 bacteria present in varying relative abundances. Both CLARK and Centrifuge identified the 20 

144 known bacterial species in the mock community; however, CLARK reported five false positives 

145 (two Shigella sp., two Staphylococcus sp. and Corynebacterium pseudotuberculosis) that were 

146 not present in the mock community. In contrast to CLARK, Centrifuge did not produce any false 

147 positives. To compare the two algorithms (Centrifuge and CLARK), we graphed the relative 

148 abundance of 20 organisms in a mock community against their known abundance and calculated 

149 R2 values (Figure 2). Centrifuge and CLARK had nearly identical R2 values of 0.98 and 0.97 

150 respectively. Overall, both tools tended to overestimate relative abundance values, especially the 

151 lowest abundances: most estimated abundances fell below the perfect fit represented by the 

152 dotted line in Figure 2. Importantly, both algorithms were able to identify the presence of all four 

153 organisms in the mock community with relative abundances of 0.01%.

154
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155
156
157 Fig 2. Centrifuge and CLARK relative abundance estimates versus expected for a mock 

158 community of 20 bacteria. Relative abundances estimated by CLARK and Centrifuge graphed 

159 against the expected values. The black dotted line represents perfect correlation with known 

160 relative abundances. The trendlines for CLARK and Centrifuge are shown in solid black lines.

161

162 Centrifuge requires less computational resources than CLARK

163 While CLARK had nearly identical accuracy in relative abundance estimates as 

164 Centrifuge (despite five positive identifications), there was a striking difference between the two 

165 classification algorithms in the computation resources and time required to analyze the data. 
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166 Relative to CLARK, Centrifuge required less than a tenth of the memory and a quarter of the 

167 runtime, while using half the number of central processing units (Table 1).

168

169 Table 1. Comparison of computational resources required by Centrifuge and CLARK to 

170 analyze the bacterial mock community dataset. CPU, central processing unit; GB, gigabyte; 

171 RAM, random access memory.

Program number of 
CPUs

RAM 
(GB)

Runtime 
(hr:min:sec)

Centrifuge 12 23 0:07:40

CLARK 28 297 0:38:40
172
173 Identification of pathogens in whole blood from febrile neutropenia patients.

174 Pathogens were enriched using a simple sample preparation method from whole blood 

175 samples drawn from three patients with febrile neutropenia, and the resulting metagenomic DNA 

176 sequenced. Table 2 shows the starting number of raw reads and the percent passing through each 

177 step from quality control, to host-screening by alignment, and finally Centrifuge analysis. The 

178 reads classified by Centrifuge identified three likely pathogens: Pseudomonas fluorescens with a 

179 relative abundance of 50.7% in patient 1, Human parvovirus with a relative abundance of 99.8% 

180 in patient 2, and Torque teno virus in patient 3 with a relative abundance of 62.8% (Figure 3). 

181 Comparing the percentages shown in Table 2 with the relative abundances calculated by 

182 Centrifuge for these organisms showed how the small genome sizes of the two viruses gave their 

183 genomes more weight in the relative abundance estimates. For example, Torque Teno Virus had 

184 an abundance estimate of 72.8% though only 9.4% of the total post-quality control reads mapped 

185 to this organism.
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186 Blood culture results for all three patients were negative, at the time of sample collection 

187 and in two subsequent blood cultures of each patient. Thus, the sequencing results were not 

188 compared to culture, the current gold standard. However, patient two did have a positive PCR 

189 test for human parvovirus in the month before and after the research sample was obtained, 

190 corroborating the results obtained with Centrifuge. Additional corroboration of the results comes 

191 from analysis of 12 samples obtained from two healthy volunteers over a six-week period in 

192 which none of the likely pathogens seen in the febrile neutropenia patients was observed (data 

193 not shown). While Pseudomonas fluorescens has been reported as a false positive in other 

194 studies, the fact that it did not appear in the healthy volunteer samples and is known to infect 

195 immunocompromised individuals (Wong et. al., 2011) suggests that it is not an artifact in patient 

196 1 (. We also identified human endogenous retrovirus K113 and Cutibacterium acnes (also known 

197 as Propionibacterium acnes) in patients 1 and 3, however these organisms were deemed to be 

198 contaminants: the virus is endogenous, C. acnes is a common contaminant of blood samples 

199 (Mollerup et al., 2016; Parize et al., 2017; Park et al., 2011), and both were present in the normal 

200 samples collected over 6 weeks. 

201
202
203
204
205
206
207
208
209
210

211

212
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213

214

215 Table 2.  Read counts following each step of the Centrifuge analysis of febrile neutropenia 

216 datasets. QC, quality control.

Centrifuge 
Pt

 
Raw

Readsa

 
Post
QCb

 
Human

(%)c

Unmapped
(%)d

Classified
(%)e

Unknown
(%)f

1 3,497,123 61.9 57.3 42.7 70.2 29.8

2 13,000,518 43.9 41.3 58.7 34.8 64.2

3 18,839,275 43.4 79.1 20.9 45.4 54.6

217 a Total reads generated from the sample.

218 b Percent of reads remaining after quality control.

219 c Percent of Post-QC reads that mapped to the human genome.

220 d Percent of Post-QC reads that did not map to the human genome.

221 e Percent of unmapped reads that were assigned a taxonomic classification by Centrifuge.

222 f Percentage of unmapped reads that were not assigned a taxonomic classification by Centrifuge.

223
224
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225
226
227
228 Fig 3. Identification and relative abundance of pathogens in febrile neutropenia samples. 

229 Circle size indicates the relative abundance of the respective organism, and actual abundance 

230 values are next to the circles. Organisms deemed endogenous or common contaminants are 

231 separated from the presumed pathogens by the horizontal line.

232

233 Genome coverage of suspected pathogens in febrile neutropenic patients

234 Reads from the three febrile neutropenia samples were aligned to the respective reference 

235 genomes of the suspected pathogens to determine average depth of coverage (Figure 4). When 

236 patient 1 reads were aligned to the Pseudomonas fluorescens genome, the average coverage was 

237 7.0. Patient 2 reads aligned to the Human Parvovirus B19 genome showed average coverage of 

238 5,180. Finally, patient 3 reads aligned to the Torque Teno Virus (TTV) genome showed high 

239 coverage (~8,000) for a ~500 base pair region of the genome.
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240

241
242
243 Fig 4. Genome coverage of suspected pathogens identified in febrile neutropenia patients 

244 by Centrifuge. Coverage by each base is graphed relative to the position in the three respective 

245 genomes of likely pathogens identified in three febrile neutropenia patients.
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246

247 Effect of quality controlling reads on computation time and Centrifuge’s accuracy

248 Sequencing reads are typically subjected to a series of quality control steps including 

249 trimming low-quality bases from reads, removing short reads, deduplication, and trimming ends 

250 with unbalanced nucleotide composition before downstream applications (e.g., variant calling, or 

251 sequence assembly). When quality control steps were performed before the Centrifuge analyses 

252 in Figures 2 and 3, they accounted for approximately half the compute time required to achieve 

253 results (data not shown). The fact that quality controls steps accounted for so much of the 

254 compute time, led to the question of what effect quality control had on the taxonomic 

255 classifications and relative abundance estimates made by Centrifuge. To answer this question, 

256 the mock bacterial community data was analyzed in Centrifuge with and without quality 

257 controlling the reads first. Results showed only one difference in taxonomic classification: a false 

258 positive (Bacillus thuringiensis) was identified with a relative abundance of 2.9% without quality 

259 control (Figure 5). Linear regression of the measured versus expected relative abundances 

260 showed that the R2 with quality control was 0.97 and without quality control was 0.97, further 

261 demonstrating how little effect there was on the Centrifuge results.

262
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263
264
265 Fig 5. Bacterial mock community taxonomic identification and relative abundance by 

266 Centrifuge with and without quality control of the input sequence reads. Organisms are 

267 ranked by their relative abundance which is indicated by the size of the circle. The false positive 

268 (Bacillus thuringiensis) identified from reads without quality control (QC) is shown at the 

269 bottom. 

270

271 Host read removal by alignment versus in Centrifuge

272 Host DNA contamination can contribute to a significant proportion, or even the vast 

273 majority, of reads in metagenomic datasets, and is often removed by mapping reads to the host 

274 genome (Schmieder & Edwards, 2011). In performing taxonomic classification of reads, 
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275 Centrifuge determines whether reads are of human origin (or other hosts), thus calling into 

276 question the necessity of aligning reads to the host genome and removing them, before analysis. 

277 Figure 6A shows the relative amount of reads that were classified as human, microbial, or 

278 unknown when the datasets were analyzed by Centrifuge without removing reads by alignment 

279 to the human genome before analysis. The relative proportion of host (human) reads in the data 

280 agreed well with the proportions found by alignment (see Table 2). While the proportion of host 

281 DNA was less than in prior studies, suggesting that the enrichment for pathogen DNA used in 

282 this study was successful, a significant proportion of the reads were still human.

283 Having established that a significant proportion of the reads in the datasets were of host 

284 origin by both alignment and Centrifuge, we compared three approaches for removing host reads 

285 in the febrile neutropenia patient data. These methods include (1) alignment to the human 

286 genome and removal of aligned reads from the dataset, (2) removing the human sequence from 

287 the reference database, and (3) using the "exclude TaxID" function in Centrifuge to exclude 

288 reads from classification whose best match was to the human genome. Overall, exclusion of the 

289 human genome from the reference database resulted in the highest number of reads classified to 

290 the presumed pathogens; however, the differences between the methods were relatively minor 

291 (Figure 6B). Patient 3, with a presumed pathogen of Torque Teno virus, showed the least effect 

292 on the number of reads classified, with less than a 411 read difference (<1%) between the 

293 number of reads classified between the three methods. In contrast, patient 2, with a presumed 

294 pathogen of Human Parvovirus B19, had 124,544 fewer reads classified (9.7%) when reads 

295 removed by alignment relative to the removal of reads that match the human genome from the 

296 database. Finally, patient 1, with a presumed pathogen of P. fluorescens, showed 26,836 fewer 
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297 reads classified (4.5%) when reads were removed by alignment relative to being present in the 

298 database.
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299
300
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301 Fig 6. Effect of mapping reads from patient samples against the human genome. A) Percent 

302 of reads classified as human, microbial, or unknown for each febrile neutropenia patient by 

303 Centrifuge. B) Number of reads classified in each presumed pathogen following three strategies 

304 for host screening: removal of the human genome from the reference database (Removed from 

305 DB, squares), excluding the human TaxID in Centrifuge (Exclude by TaxID, circles), and 

306 aligning against the human genome before analysis (Read Alignment, triangles).

307

308 DISCUSSION

309
310 Centrifuge accuracy of identification and quantitation with known samples

311 Immunocompromised patients, such as those with febrile neutropenia, are susceptible to 

312 infections. The current standard for identifying pathogens from clinical samples when infection 

313 is suspected can fail as much as ~80% of the time. Without diagnostic information, clinicians' 

314 first response is empirical antibiotic therapy in the hope that the organism is bacterial and 

315 covered by the antibiotic(s) given. Metagenomic sequencing of clinical samples offers an 

316 approach that bypasses the issues of culture, however, mining the resulting metagenomic 

317 sequence can be slow and error-prone given the volume of reads, host read contamination, and 

318 lack of well-defined bioinformatics methods. The goal of our study was to assess Centrifuge, a 

319 leading tool for identification and quantitation of metagenomic data, using clinically relevant 

320 datasets to establish its accuracy in microbial/viral identification and abundance estimates with 

321 an eye toward reducing compute time.

322 The first dataset used to assess Centrifuge was a series of binary bacterial mixtures 

323 chosen for their phylogenetic distance and mixed so that each pair was combined across six logs 

324 of relative abundance. Centrifuge was able to discriminate the most closely related pair of 
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325 bacteria, E. coli and S. flexneri, even when one of the organisms was present as 0.1% of the 

326 mixture. As the proportion of E. coli decreased, the relative abundance estimate diverged from 

327 expected, so that the E. coli estimate was 2.1% when E. coli was only 0.1% of the mixture. The 

328 same inaccuracy did not occur as the S. flexneri relative abundance decreased to 0.1%, 

329 suggesting Centrifuge misidentified a portion of the S. flexneri genome as E. coli but not the 

330 other way around. The difficulty classifying S. flexneri suggested by the fact that the false 

331 positive rate increased from 0% to 1%, the highest measured, as S. flexneri relative abundance 

332 increased. One likely cause for more relative matches to E. coli than S. flexneri is that E. coli 

333 strains and isolates represent the most substantial fraction of the Centrifuge reference database. 

334 False positive identification of E. coli using metagenomic methods has been previously 

335 observed. McIntyre et al. (2017) saw similar false positive identification of E. coli when using 

336 metagenomic classifiers on negative control sequences not belonging to any known 

337 organism(McIntyre et al., 2017). The researchers also speculated that the reason for the false 

338 positives is the overrepresentation of E. coli sequences in their reference dataset. Although 

339 Centrifuge uses a modified FM-index to condense closely related genomes, the total file size of 

340 basepairs maintained (unique + shared based on ≥ 99% identity) exceeds the relative file size of 

341 all other species (Kim et al., 2016) giving it a higher probability for matches. This result suggests 

342 that Centrifuge dampens the effect of multiple strains and isolate genomes using the modified 

343 FM-index, but the effect is still present for highly abundant strains. 

344 Centrifuge appears to be capable of detecting organisms even when they are present in 

345 minor abundance, regardless of the phylogenetic distances between them. Overall, Centrifuge 

346 read abundances closely match the expected relative abundance of bacterial mixtures for closely 

347 and distantly related species. Interestingly, phylogenetic distance did not predict the accuracy of 
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348 relative abundance estimates. A reasonable assumption would be that as phylogenetic distance 

349 increases, the number of discriminatory k-mers increase to allow for better read classification by 

350 Centrifuge. Instead, we observed high classification accuracy for the most closely related pair (E. 

351 coli/S. flexneri) from the same family. Less accuracy for the next pair (S. pyogenes/S. 

352 saprophyticus) where both organisms were gram-positive and from the same phylogenetic class. 

353 The highest accuracy for the most distant pair (E. coli/S. saprophyticus) where one organism was 

354 gram-negative and the other gram-positive and only shared phylogenetic kingdom. Interestingly, 

355 S. pyogenes is closely related to many Streptococcus genomes which may have limited the 

356 number of distinguishing k-mers to classify reads at the species rather than genus level (data not 

357 shown).

358 We compared Centrifuge's performance against another leading k-mer based taxonomic 

359 classifier, CLARK, in analyzing sequence data from a more complex community of 20 bacteria. 

360 The mock community was also mixed in varying relative abundances as with the binary 

361 mixtures, albeit, in a different range (~0.01-35%). Abundance calculations between the two 

362 algorithms were nearly identical across the relative abundance range; however, the processing 

363 time and computational resources for CLARK were greater (Table 1). Also, CLARK had a 

364 propensity for false positives, whereas Centrifuge did not. On the other hand, Centrifuge's results 

365 had to be processed to account for the strain and phage-specific data generated. Such processing 

366 would be a necessary part of adoption in a clinical setting, but Centrifuge's lack of false positives 

367 and speed suggests it may be a good starting point for such a tool.

368 Centrifuge identification and relative abundance estimates 

369 Centrifuge is unique from other taxonomic classifiers in that it provides Expectation – 

370 Maximization (EM) calculation to determine relative abundance, rather than just read 
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371 proportional classification. The EM calculation proves useful in determining relative abundance 

372 between organisms in samples with varying genome sizes. We demonstrated the benefit of 

373 calculating abundance using Centrifuge's EM algorithm in the analysis of the febrile neutropenia 

374 blood samples from patients 2 and 3 where viral matches were significantly underrepresented 

375 when using read proportional classifications.

376 One drawback for clinical pathogen identification is that Centrifuge separates strain-level 

377 counts, splitting reads among closely related strains which required manually summing strain 

378 level abundances for reporting. Future iterations of Centrifuge could address this issue re-

379 analyzing the data with a reduced reference set of genomes based on the first round of analysis or 

380 a reduced reference database. Lastly, current reference databases do not account for all of the 

381 extant microbial/viral diversity that may be present in patients. However, this issue is being 

382 addressed over time with the exponential growth in the number of microbial draft genomes 

383 available (Land et al., 2015).

384

385 Genome coverage of presumptive pathogens identified in patient samples

386 We examined genome coverage statistics with the assumption that the genomes of the pathogens 

387 identified as the presumed cause of fever in the patients would be represented by consistent 

388 coverage, whereas uneven coverage could indicate insufficient evidence of organism presence. 

389 Parize et al. took a similar approach in which even distribution of contigs was used as part of the 

390 criteria to decide if a sample was deemed positive (Parize et al., 2017). Interestingly, the Torque 

391 Teno virus sequence found in patient 3 was observed to have high coverage of only a ~500 base 

392 pair untranslated region of the genome. This highly conserved region has been suggested to be 

393 critical for viral replication that may indicate an early replication event or the presence of 
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394 subviral particles, a characteristic that has previously observed in Torque Teno virus (de Villiers, 

395 Borkosky, Kimmel, Gunst, & Fei, 2011). The evidence for sub-viral particles provided by the 

396 coverage analysis is the first from an in vivo sample. Lastly, Torque Teno virus was identified in 

397 a cancer patient undergoing bone marrow ablation in preparation for a hematopoietic stem cell 

398 transplant as part of their cancer treatment. This finding highlights the possible value of the 

399 metagenomic sequencing approach as Torque Teno virus has been investigated as a predictive 

400 marker for post-transplant complications (Wohlfarth et al., 2018).

401

402 Quality control of reads before Centrifuge analysis

403 Although quality control of raw reads is imperative for variant calling and genome assembly and 

404 can speed up downstream taxonomic and functional analyses by reducing the total number of 

405 reads analyzed, it takes considerable computing time and resources. In this study, we observed 

406 limited benefits of quality control regarding accurately identifying and quantifying the 

407 abundance of the bacteria in the mock community. However, we did see an elimination of a 

408 single false positive organism estimated at 2.3% relative abundance with quality control. Quality 

409 controlling reads from the febrile neutropenia data revealed a bias toward removing viral reads 

410 (Supplemental Table 1). Users of Centrifuge may want to weigh the limited benefits of quality 

411 controlling their data before analysis in Centrifuge versus the bias toward the removal of viral 

412 reads and time required.

413

414 Host screening with Centrifuge

415 Despite the substantial enrichment for microbial/viral DNA that we achieved in this study (20-

416 58% non-human reads, Table 2) as compared to prior studies (1% of reads) (Naccache et al., 
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417 2014; Parize et al., 2017), a large proportion of reads were still identified as human. Screening 

418 host reads by alignment to the genome before analysis by Centrifuge appears to be unnecessary 

419 given Centrifuge's ability to classify reads to the host organism during analysis. For example, in 

420 patient 2 we were able to identify Human Parvovirus B19 when we used the "exclude TaxID" 

421 function for host screening. Because parvovirus virus integrated into the ancestral human 

422 genome during evolution (Liu et al., 2011), many Human Parvovirus B19 reads identified 

423 aligned to the human genome and were removed before analysis by Centrifuge. This method 

424 caused the largest reduction in the number of reads classified as Human Parvovirus B19 relative 

425 to the exclude TaxID method (Figure 6B).

426 In contrast, when the human genome was removed from the Centrifuge database, reads from the 

427 human genome derived from the ancestrally integrated parvovirus would have been misclassified 

428 as Human Parvovirus B19, with the effect that it could inflate the relative abundance estimate. 

429 The "exclude TaxID" method appears to offer a balance between the other two methods: it 

430 allows both endogenous host reads and actual organism reads to be appropriately classified while 

431 saving the time and computational cost of aligning reads to a host organism before analysis. 

432 Given that reference genomes can contain sequences of mixed origin due to horizontal gene 

433 transfer, endogenous and integrated microbes/viruses, and prophage in bacterial genomes, 

434 classifying reads to all available reference data and then utilizing exclude TaxID appears to be 

435 the best compromise of speed and specificity for eliminating host reads from results.

436

437

438 Conclusion
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439 In summary, our analyses suggest that Centrifuge, open-source software for fast taxonomic 

440 classification, provides accurate quantification of clinically relevant organisms/viruses in 

441 metagenomes using minimal compute time and resources. Centrifuge's ability to quickly assign 

442 taxonomy to reads, accurately represent the abundance of organisms such as viruses, and 

443 sidestep read quality control and host-screening make it a good candidate for classifying reads of 

444 clinically relevant organisms. To this end, we have made Centrifuge and the bubble plot software 

445 used in the study available as Apps in iMicrobe (http://imicrobe.us) for streamlined taxonomic 

446 analysis by the public.

447
448 Materials and Methods
449
450 These methods have been deposited into protocols.io under DOI: 

451 dx.doi.org/10.17504/protocols.io.wjdfci6

452
453 Ethics Statement

454 The Institutional Review Board at the University of Arizona (project #1505826794) approved the 

455 human subjects research. Informed consent was obtained from febrile neutropenia patients. 

456 Whole blood was collected from patients that developed febrile neutropenia during their 

457 treatment at the University of Arizona Cancer Center. Data obtained from the first three patients 

458 collected as part of a more extensive study were used here. All three patients were being treated 

459 for leukemia or lymphoma at the time of their febrile neutropenia diagnosis.

460
461 Binary mixtures of bacteria

462 The binary mixtures were described previously (Watts et al., 2017). Briefly, four species 

463 of bacteria were used to create three binary mixtures representing: (1) difficult to discriminate 

464 species with divergent clinical impact (Escherichia coli versus Shigella flexneri); (2) Gram-
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465 positive species (Staphylococcus saprophyticus versus Streptococcus pyogenes); and (3) Gram-

466 positive versus Gram-negative species (E. coli versus S. saprophyticus). DNA from the bacteria 

467 were purchased from the American Type Culture Collection (Manassas, Va, USA) and mixed in 

468 pairs so that each species represented 99.9, 99, 90, 50, 10, 1, and 0.1% of the total sample. 

469 Samples were sequenced as described below, and the sequence data deposited to the NCBI 

470 Sequence Read Archive under accessions: SRX3154186-SRX3154219 in project accession 

471 PRJNA401033.

472

473 Staggered mock bacterial community

474 The mock bacterial community (BEI Resources, Manassas, VA, USA, National Institute 

475 Allergy and Infectious Diseases, National Institutes of Health, as part of the Human Microbiome 

476 Project: Genomic DNA from Microbial Mock Community B (Staggered, High Concentration), 

477 v5.2H, for metagenomic shotgun sequencing, HM-277D) consisted of 20 bacterial species 

478 created as part of the Human Microbiome Project with specific staggered 16S rRNA gene 

479 abundances for each species. Using the 16S rRNA gene copy values, along with the known 16S 

480 rRNA gene copy number in each species’ genome, we calculated the number of genomes present 

481 for each species to provide an expected value for comparison to the relative abundances 

482 calculated by Centrifuge and CLARK from sequencing data. The mock community was 

483 sequenced as described below, and sequence data deposited to the NCBI Sequence Read Archive 

484 under accession: SRP115095 in project accession PRJNA397434.

485

486

487 Febrile neutropenia patient blood samples
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488 Approximately five milliliters of whole blood were collected (K2EDTA BD Vacutainer 

489 tubes, catalog #367863 BD Biosciences, San Jose, CA, USA) when blood cultures were ordered 

490 for each patient and transferred for processing within 2 hours of collection. Blood samples were 

491 diluted with an equal volume of sterile phosphate buffered saline, layered on Ficoll-Paque (GE 

492 HealthCare Life Sciences, Pittsburgh, PA, USA) and centrifuged for 20 minutes at 400 x g. 

493 Plasma was carefully drawn off, sacrificing some yield to prevent drawing up monocytes, and 

494 centrifuged three more times at 50, 100, and 150 x g for 5 minutes to further remove human 

495 cells. The plasma was passed through a five-micron filter and finally centrifuged at 4000 x g. 

496 DNA was isolated from any material sedimented during the final centrifugation with a UCP Pure 

497 Pathogen kit (Qiagen Inc., Germantown, MD, USA). Isolated DNA was quantitated on a 

498 NanoDrop ND-1000 spectrophotometer at 260 nanometers (Thermo Fisher Technologies Inc., 

499 Santa Clara, CA, USA), diluted to one nanogram/microliter, and ten nanograms used to prepare 

500 sequencing libraries as described below.  Sequence data for the three patient samples were 

501 deposited to the NCBI Sequence Read Archive in project accession PRJNA521396.

502

503 DNA library preparation and sequencing

504 DNA libraries were prepared and sequenced for all samples utilizing Ion Torrent reagents 

505 and the Ion Torrent Proton sequencer (Thermo Fisher Technologies Inc., Santa Clara, CA, USA). 

506 Ten nanograms of DNA was input to the Ion Xpress Plus Fragment Library Kit (manual 

507 #MAN0009847, revC). DNA was sheared using the Ion Shear enzymatic reaction for 12 min, 

508 and Ion Xpress barcode adapters were ligated following end repair. Resulting libraries were 

509 amplified using the manufacturer supplied library amplification primers and recommended 

510 conditions. Amplified libraries were size selected to approximately 200 base pairs using E-gel 
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511 SizeSelect Agarose cassettes (Invitrogen, Carlsbad, CA, USA) as outlined in the Ion Xpress 

512 manual and quantitated with the Ion Universal Library quantitation kit. Equimolar amounts of 

513 the library were templated with an Ion PI Template OT2 200 kit V3. The resulting templated 

514 beads were enriched with the Ion OneTouch ES system and quantitated with the Qubit Ion 

515 Sphere Quality Control kit on a Qubit 3.0 fluorimeter (Qubit, NY, NY, USA). Enriched 

516 templated beads were loaded onto an Ion PI V2 chip and sequenced according to the 

517 manufacturer's protocol using the Ion PI Sequencing 200 kit V3. Data were processed with Ion 

518 Torrent Server software v4.4.3 to produce data files in BAM format.

519

520 Read processing and quality control

521 Sequences were converted to FASTQ format from raw BAM files with bedtools’ 

522 bamtofastq (Quinlan & Hall, 2010)2.17.0, (Quinlan & Hall, 2010). FastQC (“Babraham 

523 Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data,” n.d.) 

524 v0.11.5, (“Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput 

525 Sequence Data,” n.d.) was used to generate sequence quality reports. FastX toolkit (Gordon & 

526 Hannon, 2010)v.0.0.14, (Gordon & Hannon, 2010) was used to perform quality control measures 

527 on FASTQ data including quality filtering, trimming, setting a minimum read length, and 

528 removal of duplicate reads. Files were converted to FASTA with FastX. Data files before and 

529 after QC were used as input to Centrifuge when testing the effect of quality control; otherwise, 

530 all files were quality controlled before analysis. 

531

532 Removing host contamination by aligning to the human genome
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533 To remove host (human) reads, FASTQ read files were mapped to HG38 (Genome 

534 reference consortium human genome build38) using Bowtie2 (Langmead & Salzberg, 2012) 

535 using the --very-sensitive option. Human reads were removed by alignment from patient data 

536 before the analysis in Centrifuge except when testing the effect of host screening by other 

537 methods. 

538

539 Centrifuge and CLARK read classification

540 CLARK v1.1.3 (Ounit et al., 2015a) was used to classify reads to known taxa using the 

541 default CLARK database and parameters. Centrifuge v1.0.3-beta (Kim et al., 2016) was used to 

542 classify reads to known taxa with a custom database generated from 23,276 complete archaeal, 

543 bacterial, and viral genomes downloaded from Refseq in July 2017 using the centrifuge-

544 download and centrifuge-build scripts respectively. The custom database is available at 

545 https://github.com/hurwitzlab/NeutropenicFever.

546

547 Binary mixture Centrifuge results filtering 

548 Centrifuge abundance report results were filtered to only include organisms at the species 

549 or strain-level with a minimum of 0.1% of total reads classified and at least 0.05% abundance as 

550 calculated by Centrifuge. These settings were chosen based on the known abundances used in the 

551 mixtures. False positive was calculated by summing the relative abundances of any organism 

552 identified by Centrifuge that was not added to the mixture. Centrifuge reports read-matches to 

553 phage separately from their host species; however, no phage or prophage passed the above 

554 filters, so there was no effect on the relative abundance calculations for the binary mixtures. The 
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555 coefficient of determination (R2) was calculated based on the log of both relative abundance 

556 estimates at each known dilution.

557

558 Mock community Centrifuge results filtering

559  Centrifuge abundance report results were filtered to only include organisms at the 

560 species or strain-level with a minimum of at least 0.005% abundance as calculated by Centrifuge 

561 and no minimum number of reads. These settings were chosen based on the known abundances 

562 calculated for the mock community which was lower than the bacterial mixtures (0.01%). In the 

563 case of the mock community, two species-specific phages were identified that passed the filters 

564 (Pseudomonas phage with relative abundance 1.5%, and Staphylococcus phage with relative 

565 abundance 0.8%). The matches to these phages were included when calculating relative 

566 abundances for the 20 organisms, but not included in the figure. The coefficient of determination 

567 (R2) was calculated based on the log of the relative abundance estimates for all 20 species.

568

569

570 Febrile Neutropenia Centrifuge results filtering

571 Centrifuge abundance report results were filtered to only include organisms at the species 

572 or strain-level with a minimum of 1% of total reads classified and at least 5% abundance as 

573 calculated by Centrifuge. Similarly to the bacterial mixtures, no phage or prophage passed the 

574 filters above, so there was no effect on relative abundance calculations.

575

576 Genome coverage of suspected pathogens from febrile neutropenia patient samples
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577 To determine genome coverage, we used Bowtie2 (Langmead & Salzberg, 2012) to map 

578 FASTQ reads (with option --very-sensitive) to reference genomes for the organisms identified by 

579 Centrifuge (Pseudomonas fluorescens accession: NC_012660.1, Human Parvovirus B19 

580 accession: NC_000883.2, Torque Teno Virus accession: NC_015783.1). Resulting BAM files 

581 were then analyzed utilizing Samtools’ (v1.3.1, (Li et al., 2009) depth tool to generate coverage 

582 values and visualized in R v3.1.1 (R scripts are available here: 

583 https://github.com/hurwitzlab/NeutropenicFever ).

584

585 Software availability

586 To improve access to Centrifuge and the bubble chart visualizations used in this 

587 manuscript, both tools have been made available on iMicrobe (https://www.imicrobe.us). As a 

588 starting point, researchers may run centrifuge-0.0.6u1 followed by centrifuge-bubble-0.0.5u1 to 

589 reproduce the bacterial mixing results in the manuscript using the sample data provided. Source 

590 code for running centrifuge on a high-performance compute cluster is available in Github at 

591 https://github.com/hurwitzlab/Centrifuge_HPC and analyses, scripts and visualizations are also 

592 archived at https://github.com/hurwitzlab/NeutropenicFever.

593
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