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Abstract  

In pharmaceutical research, high-content screening is an integral part of lead candidate 

development. Drug response in vitro over 40 parameters including biomarkers, signaling 

molecules, cell morphological changes, proliferation indexes and toxicity in a single sample 

could significantly enhance discovery of new therapeutics. As a proof of concept, we present a 

workflow for multidimensional Imaging Mass Cytometry™ (IMC™) and data processing with 

open source computational tools. CellProfiler was used to identify single cells through 

establishing cellular boundaries, followed by histoCAT™ (histology topography cytometry 

analysis toolbox) for extracting single-cell quantitative information visualized as t-SNE plots and 

heatmaps. Human breast cancer-derived cell lines SKBR3, HCC1143 and MCF-7 were screened 

for expression of cellular markers to generate digital images with a resolution comparable to 

conventional fluorescence microscopy. Predicted pharmacodynamic effects were measured in 

MCF-7 cells dosed with three target-specific compounds: growth stimulatory EGF, microtubule 

depolymerization agent nocodazole and genotoxic chemotherapeutic drug etoposide. We show 

strong pairwise correlation between nuclear markers pHistone3S28, Ki-67 and p4E-BP1T37/T46 in 

classified mitotic cells and anti-correlation with cell surface markers. Our study demonstrates 

that IMC data expands the number of measured parameters in single cells and brings higher-

dimension analysis to the field of cell-based screening in early lead compound discovery. 

 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 18, 2019. ; https://doi.org/10.1101/549592doi: bioRxiv preprint 

https://doi.org/10.1101/549592


3 
 

Introduction 

Discovery of new treatments in oncology research relies extensively on the use of human-

derived cell culture models [1]. High-content cell-based screens are widely applied in 

pharmaceutical drug development to prioritize lead molecules for animal testing [2]. These 

assays rely on the use of primary and cancer cell lines and mostly monitor cytotoxicity and 

proliferation. With the advent of sophisticated genomics and proteomics technologies for soluble 

proteins and mass cytometry for single cells, it is becoming possible to increase the 

multidimensionality of in vitro screens. Databases of genotypic and phenotypic profiles [3, 4, 5] 

across cancer drug panels have provided a comparative analysis between in vitro studies and 

clinical therapeutic responses in vivo [6]. One of these datasets developed and shared by the 

National Cancer Institute 60 (NCI-60) in the late 1980s was the first in vitro discovery screening 

tool for pharmacologic compounds inducing growth inhibition across 60 cancer cell lines [7]. 

Over the years several concerns were raised regarding the use of in vitro established human 

tumor-derived cell lines for drug testing. Concerns included genetic instability and 

dedifferentiation. However, the study of genetic mutations arising in immortalized cells remained 

a field of interest in drug discovery, providing knowledge on the dysregulation of cellular 

signaling pathways and the effects small-molecule inhibitors have on human tumor cell lines [8]. 

High-content imaging of cancer cell lines in response to drug treatment is a standard assay 

applied in preclinical studies for identification of different mechanisms of drug action [9, 10, 11, 

12]. The main criteria in every morphophenotypic screen for early drug discovery is the selection 

of biomarkers and detection modalities (antibodies, chemical and enzymatic probes, reporter 

detection tags). In the field of fluorescent cellular imaging microscopy, biomarker analysis in 

single cells is limited to 4–6 due to the overlapping spectra of fluorescent dyes [13]. Repetitive 
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rounds of staining using the same biological sample are required to achieve multiplexing [14].  

New imaging technologies are needed to significantly increase multiplicity in a single sample 

preparation experiment and perform replicate analyses [15]. High-content imaging assays 

applied to screening drug perturbations in heterogeneous cancer cell models could uncover 

additional modes of drug action and biomarkers for clinical trials [16].  

Imaging Mass Cytometry is an emerging and transformative technique in the field of digital 

histopathology applied to complex tissue sections [17, 18, 19]. The Hyperion™ Imaging System 

(Fluidigm®) can measure up to 40 parameters simultaneously in formalin-fixed, paraffin-

embedded (FFPE) and frozen human tissue sections with subcellular resolution [20]. Sample 

preparation is very similar to standard immunohistochemical protocols [17], where the tissue 

section on a slide is first deparaffinized and treated with an antigen retrieval buffer for antigen 

epitope exposure in the case of FFPE, then stained once with a mixture of isotopically pure 

metal-labeled antibodies specific to structural and cell type biomarkers. After drying and 

inserting the slide into the ablation chamber, regions of interest (ROIs) are chosen and recorded 

by a camera integrated with the Hyperion Tissue Imager. These ROIs are then ablated in 1 μm 

steps as the slide moves under the laser. Each laser pulse vaporizes a 1 μm2 area of the tissue and 

generates a plume of particles. The resulting particles are carried by a stream of helium/argon 

mixture into a CyTOF® instrument, an inductively coupled plasma time-of-flight mass 

cytometer, described elsewhere [18]. Data are stored as raw binary files of ion counts for each 

mass channel (parameter) per pixel. These files can be converted into a stack of single-parameter 

matrices (grayscale images), which are used to create merged multiparametric pseudocolor 

images and perform quantitative pixel- or segmentation-based analysis. Bodenmiller et al. are 

developing multivariate computational tools to visualize and analyze multiplexed images of 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 18, 2019. ; https://doi.org/10.1101/549592doi: bioRxiv preprint 

https://doi.org/10.1101/549592


5 
 

human tissue sections generated by IMC [21]. However, there is no single software package or 

analysis workflow that could currently be applied to answer specific biological questions. 

In this proof-of-principle study, we set out to develop a comprehensive workflow for IMC data 

analysis based on recent advances in imaging algorithmic methods to visualize and measure 

multiple biomarkers in model cell lines cultured in chamber slides (Fig. 1). Several human breast 

cancer-derived cell lines, SKBR3, HCC1143 and MCF-7, were screened for expression of 

surface and intracellular markers. Predicted pharmacodynamic effects were studied in MCF-7 

cells dosed with three target-specific compounds: growth stimulatory epidermal growth factor 

(EGF), microtubule depolymerization agent nocodazole and genotoxic chemotherapeutic drug 

etoposide [22, 23]. Our method analysis workflow demonstrates the high multiplexing capability 

of IMC for in vitro research and offers quantitation of multiple biomarkers at subcellular 

resolution. Future improvements of the technology toward a higher acquisition speed of multiple 

samples will expand IMC applications as an imaging platform for in vitro cell-based drug 

screening. 
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Material and Methods 

Cell culture 

SKBR3 (HTB-30™), HCC1143 (CRL-2321™) and MCF-7 (HTB-22™) were purchased, tested 

for mycoplasma contamination and authenticated with short tandem repeat DNA profiling by 

American Tissue Culture Collection (ATCC®). Cells were cultured within 15 passages in their 

corresponding growth media supplemented with 10% bovine serum (HyClone™ Cosmic Calf™ 

Serum, Cat. No. SH30087.04) and penicillin/streptomycin (Thermo Fisher Scientific Cat. No. 

15140-122): McCoy’s 5a (ATCC 30-2007™) for SKBR3, RPMI-1640 (ATCC 30-2001™) for 

HCC1143 and DMEM (ATCC 30-2002™) for MCF-7 with 0.01 mg/mL insulin (Sigma-Aldrich® 

Cat. No. I9278).  Cells at 70–80% monolayer confluency were washed with Versene (Thermo 

Fisher Scientific Cat. No. 15040-066), detached with Trypsin-EDTA 0.25% (Thermo Fisher 

Scientific Cat. No. 25200-056), collected and counted. For each cell line, chamber slides 

(BioCoat™ Collagen I 8-Well Culture Slide, Corning® Cat. No. 354630) were used to seed cells 

at a concentration of 0.1e6/mL in 0.5 mL per chamber and grown in 37 °C, 5% CO2, 100% 

humidity for 48 hours prior to drug compound addition. Each breast cancer cell line was seeded 

using individual chamber slides to avoid any cell cross-contamination, and each IMC experiment 

was carried out independently. In chronological order, seeding of HCC1143 was the first sample 

preparation, then we run the second experiment using SKBR3, and last we used MCF-7 for the 

drug-treated cells in vitro study. 

 

In vitro drug treatment 

All chemical compounds were dissolved and aliquoted at the supplier’s recommended 

concentrations for long-term storage in 100% DMSO (Sigma-Aldrich Cat. No. 276855). Final 
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concentrations for each compound were selected from previously published data [32, 53, 54] by 

premixing the required initial drug stock volume with full growth media, then transferring 0.5 

mL volume to corresponding cell chambers (see Supplementary Table S1): 10 µM of etoposide 

(Cell Signaling Technology® Cat. No. 2200S); 0.5 µM of nocodazole (Sigma-Aldrich Cat. No. 

M1404); 10 ng/mL of human EGF (Sigma-Aldrich Cat. No. E9644); 2% DMSO in growth 

media. One chamber was left with fresh growth media as non-treated control. Cells were exposed 

to compounds for 48 hours at 37 °C, 5% CO2 and 100% humidity. Preparation of additional 

eight chamber sample slides to replicate our experiment for IMC analysis was not required due 

to the known in vitro predicted effect of the drugs we tested on this cell line. 

 

Immunocytochemistry and antibody validation 

Immunostaining of live cells was performed in chamber slides. Following drug treatment, fresh 

media in all chambers was supplemented with Cell-ID™ Intercalator-103Rh (Fluidigm Cat. No. 

201103A) at 1:500 for 15 minutes at 37 ºC, 5% CO2 for dead cell identification. The chamber 

slides were washed with DPBS (Thermo Fisher Scientific Cat. No. 14190-144) at room 

temperature (RT) for 5 minutes. Surface metal-labeled antibody cocktail (see Supplementary 

Table S2) was made in 0.5% BSA/DPBS from antibody stocks at a dilution of 1:100 for each. 

Cell monolayers were stained with 250 µL antibody mix for 120 minutes, RT. Following a 

washing step, cells were fixed with 250 µL freshly made 1.6% formaldehyde (Thermo Fisher 

Scientific Cat. No. 28906) in DPBS for 15 minutes at RT. After fixative removal, cells were 

permeabilized with fresh 0.3% Saponin/DPBS (Sigma-Aldrich Cat. No. S7900-25G) for 30 

minutes at RT, then blocked with 1% BSA/DPBS for 1 hour at 37 ºC. After blocking, cells were 

incubated overnight at 4 ºC in 250 µL freshly prepared cocktail of metal-labeled antibodies 
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targeting intracellular markers (see Supplementary Table S3) diluted 1:50 in 0.3% 

Saponin/DBPS. The following day cells were washed once with 0.5% BSA and stained with 250 

µL of nuclear Cell-ID Intercalator-Ir for 30 minutes (1:1000), RT. After the last wash, each 

chamber was filled with 250 µL deionized water for 5 minutes for salt removal. Chambers were 

detached from slides and left to dry at RT until IMC analysis. The commercial antibodies of our 

panels have been previously validated by immunocytochemistry applied to immunofluorescence 

analysis of adherent cells.  A similar sample preparation method was applied to the validation of 

these antibodies labeled with metals regarding their antigen specificity detected by IMC. The 

selection of titers tested for surface markers (1:100) and intracellular markers (1:50) refer to 

rigorous Quality Control antibody validation functional assays using single-cell suspension Mass 

Cytometry, which has the same single isotopic detection modalities of antigens as IMC. The list 

of antibodies used for each breast cancer cell line experiment is cross-referenced in 

Supplementary Tables S2 and S3. A total number of 14 antibodies were tested on HCC1143 cells, 

20 markers for SKBR3 and 25 for MCF-7.  The markers from each panel were selected based on 

their specificity to surface membrane, cytoplasmic and nuclear components of single cells, their 

previous applications in the context of breast cancer cell line studies, and their commercial 

availability. Expanding a panel to 37 markers requires additional custom labeling of target 

specific monoclonal antibodies with non-used metal isotopes. 

 

Data acquisition by IMC 

Samples were analyzed with the Hyperion Imaging System (Fluidigm). The dried slide was 

loaded into the imaging module, where an optical previewing of the ROIs was recorded for laser 

ablation. Areas of dimension 1000 x 1000 µm were acquired for HCC1143 and 1400 x 1400 µm 
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for SKBR3 cell lines experiments. Replicate ROIs of 1500 x 1500 µm size were collected for 

MCF-7 exposed to chemical compounds, and a single ROI was ablated for non-treated control 

and DMSO-treated cells. Each ROI sample acquisition took 4.5 hours at an ablation frequency of 

200Hz. The resulting data files were stored in MCD binary format.  Multicolor images were 

generated with open source ImageJ 1.51 software [55]. Zoom-in regions for each multicolor 

image were made by selecting and cropping areas of dimension 400 x 400 µm from the original 

picture without any change of the pixel size. The resolution of each IMC image shown is 1 µm 

for 1 pixel. 

 

Image analysis software tools 

For each recorded ROI, stacks of 16-bit and 32-bit single-channel TIFF files were exported from 

MCD binary files using MCD™ Viewer 1.0 (Fluidigm). Cell-based morphological segmentation 

was carried out with two image processing pipelines for 16-bit or 32-bit TIFF files and 

CellProfiler 2.2.0 (CP), a widely adopted software in the open source image analysis community 

which has been continually improved since its availability in 2005 to read and analyze cell 

images using advanced algorithms [56]. The 16-bit TIFF unstacked image format was used as 

input data in CellProfiler to run a segmentation pipeline with a set of sequential modules to 

generate and save an unsigned 16-bit integer single cell mask TIFF image. Inputs of 16-bit TIFF 

images with their corresponding segmentation mask were uploaded in histoCAT to open a 

session data analysis. Due to the high number of 29 single isotopic channel TIFF images for each 

replicate and drug treatment condition, histoCAT analysis was generated faster with a 16-bit 

format instead of a 32-bit image format which is bigger in size.  The 32-bit TIFF unstacked 

images were loaded in CellProfiler to run a segmentation and mean intensity multiparametric 
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measurement analysis of individual cells. The resulting outputs were exported and saved as 

SQLite single-cell object measurements database files directly compatible with CellProfiler 

Analyst for downstream computational analysis [37]. Spatial distribution maps, dimensionality 

reduction and unsupervised clustering for 16-bit single images were performed using the 

histoCAT 1.73 open source toolbox [21]. Supervised analysis by support vector machine learning 

classification on 32-bit datasets was processed with CellProfiler Analyst 2.2.1 [38]. Hierarchical 

clustering and correlation heat maps of classified cell populations were prepared using the web-

based tool Morpheus (GenePattern, Broad Institute) [39]. Clustering and visualization of 

different types of markers in classified populations of cells across all controls and drug 

treatments were performed with the free software environment R 3.5.3, the packages pheatmap 

1.0.12, igraph 1.2.4 and edgebundleR 0.1.4 [58]. 

 

Statistical analysis 

Data from non-treated control, DMSO-only and drug-treated cells were analyzed using a non-

parametric Mann-Whitney test with a two-tailed P value for every channel independently. 

Statistical significance was defined as P <0.05. All statistical analysis was performed with 

GraphPad™ Prism® 7.04 software [57]. 
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Results 

Multiparametric characterization of breast cancer cell lines by IMC 

IMC analysis revealed heterogeneity in the expression of surface, intracellular and nuclear 

markers in human breast cancer cell lines cultured in chamber slides. As an example, we selected 

the SKBR3 cell line, which is characterized by an invasive phenotype and increased proliferation 

in vitro and is used as a model to delineate mechanisms of resistance to ErbB2-targeted clinical 

therapies [24, 25]. As seen in Fig. 2, the culture consists of mostly small and medium-size 

rounded epithelial cells and occasional large multinucleated cells. Most cells show high levels of 

the cytoskeletal marker pan-keratin. Human epidermal growth factor receptor 2 (HER2) and 

EGFR are seen at the surface membrane, while tumor suppressor and transcription factor p53 is 

localized in the nuclei. Presence of lysosomal organelles is outlined in the cytoplasm with an 

antibody targeting the lysosome-associated membrane protein 2 (LAMP-2), known as CD107b. 

Image resolution is similar to fluorescence microscopy. Ductal breast carcinoma-derived triple-

negative HCC1143 cell line was used to demonstrate mesenchymal morphology (Fig. 3) with 

high vimentin detection in the cytoplasm, nuclear localization of p53 and cytoplasmic 

distribution of the basal-like breast cancer marker cytokeratin 5 [26, 27]. The proliferation 

marker Ki-67 identifies cells in the active state of the cell cycle. Combination of multiple 

markers in an in vitro cell screening assay allows more precise analysis of cellular states of 

differentiation and invasiveness characteristic for breast cancer tumors.  
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In vitro drug effect profiling by IMC  

To evaluate how IMC may be translated into future applications in the field of cell-based drug 

screening, we initiated a limited drug treatment study using one model breast cancer cell line. 

The phenotypic and functional responses of wild-type p53-expressing MCF-7 cells to etoposide, 

nocodazole or EGF compounds were investigated. In preclinical in vitro drug screening, this 

model is considered to be reproducible, fast and inexpensive despite the lack of clinical 

correlation to drug response in vivo due to breast tumor heterogeneity [28]. To identify how these 

chemical compounds induce cytostatic and cytotoxic effects on this noninvasive luminal breast 

cancer cell line, we generated multiplexed pseudocolor images of affected cellular compartments 

(Fig. 4). For example, nuclear size and proliferative activity of each cell were analyzed using the 

nuclear intercalator-Ir stain (Cell-ID Intercalator-Ir), cell cycle-S phase marker (Cell-ID IdU), 

proliferation marker Ki-67, cell cycle regulatory proteins cyclin B1 and D3 and estrogen receptor 

alpha (ERα). Antibody against pH2A.XS139 was used as a nuclear marker for DNA double-strand 

breaks and pHistone3S28 for mitotic cells. Cytoskeletal markers pan-keratin and cytokeratin 19 

were used to follow changes in morphology and cell size. Drug response of MCF-7 morphology, 

adhesion and cell-to-cell interaction were visualized with surface membrane proteins, such as the 

membrane-bound mucin marker MUC-1 overexpressed in breast carcinoma [29], cell adhesion 

molecule EpCAM, integrin CD29, tetraspanin CD81, the low-expressed epidermal growth factor 

receptor EGFR, regulators of integrin-mediated cell adhesion CD98 and CD47 [30], and E-

cadherin as epithelial interaction protein (Supplementary Table S2).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 18, 2019. ; https://doi.org/10.1101/549592doi: bioRxiv preprint 

https://doi.org/10.1101/549592


13 
 

Long-term exposure of MCF-7 cells to EGF induced significant morphological changes and an 

increase in cell size. Lineage shift from a classic epithelial cobblestone monolayer to a more 

invasive mesenchymal type was observed. The presence of large spindle-shaped cells that 

seemed to lose contact with other cells and migrate into empty spaces may be related to an 

increase in cell motility (Fig. 4A). Activation of the EGFR signal transduction pathway by EGF 

is known to play a role in cellular motility and size increase in the tumor aggressiveness [31]. 

Screening of MCF-7 cells treated with etoposide, nocodazole or EGF shows multivariate 

phenotypic response profiles compared to non-treated and DMSO-treated controls 

(Supplementary Fig. S1). 

Treatment of MCF-7 cells with the antineoplastic agent nocodazole resulted in an increase in the 

population of pHistone3S28-positive cells with a mitotic index three-fold higher compared to 

DMSO-treated or non-treated control (Supplementary Table S4). Another cytostatic phenotype 

was observed after prolonged drug exposure: subpopulations of cyclin D3-positive and tetraploid 

cells exiting mitosis without cytokinesis as a result of microtubule disruption by nocodazole 

(Fig. 4B). Presence of cyclin D3-positive and tetraploid cells in the G1/S interphase confirms 

nocodazole effect on MCF-7 cell cycle [32].  

Incubation of MCF-7 with the anti-cancer agent etoposide shows inhibition of cell proliferation, 

elevated numbers of cells positive for nuclear pH2A.XS139 protein and compaction of the 

monolayer compared to EGF- or nocodazole-treated samples (Fig. 4C). Exposure of tumor-

derived cell lines to this inhibitor induces the formation of a stable covalent topoisomerase II-

cleaved DNA complex, which causes multiple breaks in double-stranded DNA. Etoposide 

treatment of MCF-7 activates phosphorylation of H2A.X, which is required for 

checkpoint-mediated cell cycle arrest, promotes DNA repair and maintains genomic stability. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 18, 2019. ; https://doi.org/10.1101/549592doi: bioRxiv preprint 

https://doi.org/10.1101/549592


14 
 

Thus, pH2A.XS139 is a sensitive biomarker for measuring levels of drug-induced double-stranded 

DNA breaks in cancer cells [33]. 

 

High-dimensional phenotype analysis of in vitro drug response 

Multivariate phenotypic responses of MCF-7 cells following chemical perturbations were 

quantified with a set of available software tools. Unfortunately, there is no single software 

package for this type of analysis. Therefore, we employed a workflow that includes a wide 

variety of tools designed for cellular imaging. Hopefully, this work will underscore the need for 

software specifically developed for analysis of multiparametric data acquired by IMC. 

First, we used CellProfiler 2.2.0 (CP) to identify single cells through establishing nuclear and 

cellular boundaries [34]. Accuracy and robustness of cell segmentation was assessed by using 

Cell-ID Intercalator-Ir to identify cell nuclei and pan-keratin for cytoplasm (Fig. 5A, 

Supplementary Fig. S2A and S3). The segmentation masks were generated for each ROI, then 

exported for further downstream analysis of changes in MCF-7 cellular phenotypes in response 

to drug treatment. 

Second, to visualize and analyze data we used the open source platform histoCAT, which enables 

highly multiplexed, quantitative and detailed analysis of cell phenotypes, microenvironment 

interactions and tissue architecture [21]. The workflow of histoCAT consists of overlaying the 

segmentation masks previously generated by CP to extract single-cell level information.  

To evaluate the diversity of phenotypic profiles collected from drug-treated MCF-7 cells, we 

then selected and generated Z-score normalized mean intensities of pHistone3S28 and pH2AXS139 

as drug-sensitive protein markers. Spatial heat maps of both channels were displayed for various 

drug-treated MCF-7 ROIs using a 99th percentile cut-off (Figs 5B and 5C, Supplementary Fig. 
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S2B). This quantitative and visual approach allows us to compare at the same scale the spatial 

distribution of these parameters between ROIs. For example, pH2A.XS139 nuclear expression 

level in etoposide-treated MCF-7 cells is higher than in nocodazole or EGF-treated cells on 

average. Mitotic cell marker pHistone3S28 expression level in nocodazole-treated MCF-7 is two-

fold higher than those identified for other drugs. Related single-cell Z-score mean intensity 

values for nuclear markers (pHistone3S28, pH2A.XS139, Ki-67, p4EBP1T37/T46, p53, cyclin D3), 

surface markers (CD98, CD81, CD29, CD49e, CD47) and cell size parameters (area, perimeter, 

major and minor axis lengths) were exported from each drug treatment dataset to assess 

statistically significant changes of protein expression levels and cellular morphology (Fig. 5D 

and Supplementary Fig. S4). We can see differences between both controls and drug-treated 

samples in the expression of nuclear markers, with a co-increase of pH2A.XS139 and Ki-67 levels, 

and phosphorylation of the translation repression protein 4E-BP1 under etoposide treatment. This 

suggests the presence of a non-quiescent population of MCF-7 undergoing DNA repair and 

maintaining high proliferative activity. For nocodazole and EGF treatments, low Ki-67 levels 

may be related to the disruption of cell cycle and lineage shift induced in response to respective 

compound [35]. EGF treatment shows increased cell size and expression of adhesion surface 

markers compared to other conditions. These quantitative results are in agreement with 

multicolor images of treated cells.  

Finally, the heterogeneity of MCF-7 cell phenotypes was analyzed using the t-distributed 

stochastic neighbor embedding (t-SNE) algorithm, a data dimensionality reduction method based 

on the similarity of selected markers or cell types [36]. We processed replicates of ROI for each 

compound using Z-score-normalized protein markers and cell size parameters to generate two-

dimensional t-SNE plots. This visualization tool shows signal distribution of phosphoproteins, 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 18, 2019. ; https://doi.org/10.1101/549592doi: bioRxiv preprint 

https://doi.org/10.1101/549592


16 
 

size parameters and nuclear and cell surface membrane markers over the different ROIs (Fig. 6A 

and Supplementary Fig. S4). For example, the population of mitotic cells was grouped in a 

single region on the map with high expression levels of p4EBP1T37/T46, pHistone3S28 and Ki-67. 

The high level of pH2A.XS139 was detected in the region of etoposide-treated cells and correlates 

with the strong Ir-intercalator signal due to compaction of cellular DNA in response to the drug. 

Area plot reveals the presence of larger-size cells in EGF and nocodazole treatments, in line with 

EGF-induced lineage shift and cytokinesis inhibition by nocodazole (Fig. 6B).  

 

Classification of drug-treated MCF-7 phenotypic changes by support vector machine 

learning 

Here we applied the support vector machine learning classification ruler termed Fast Gentle 

Boosting for accurate IMC dataset multiparametric analysis of nuclear states of compound-

treated MCF-7 cells [37]. This classifier was integrated into CellProfiler Analyst (CPA) and 

trained [38] to identify five different nuclear classes of MCF-7 cells: pHistone3S28-positive 

mitotic cells, pH2A.XS139 for cells undergoing DNA repair, p53 as tumor suppressor activation, 

cyclin D3 for G1/S transition in interphase and Ki-67 for proliferating cells. A composite image 

of all nuclear markers is shown in Fig. 7A. These single-cellular objects were then scored and 

classified for a supervised analysis of every protein marker and cell size parameter per specified 

nuclear subpopulation. Accuracy of image classification on each dataset of MCF-7 drug 

compound was evaluated by cross-validation between the true labeled cells as classification 

training set and the image full scoring as predicted label set for each nuclear class. Classification 

reports were displayed as confusion matrices where each value corresponds to average cross-

validation metrics between the trained (true label) and scored (predicted label) single-cell objects 
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for each nuclear class on a performance scale from 0 to 1 (Fig. 7B and Supplementary Fig. S6). 

As shown, classification of each nuclear class per drug compound dataset shows relatively good 

performance between 0.5 and 1. 

Raw mean intensity values of protein expression for each of the five nuclear markers were 

exported per classified MCF-7 population and compared to evaluate statistical significance (Fig. 

7C and Supplementary Fig. S7). Bar charts show various levels of protein markers among the 

five predicted classes of nuclear states, with higher protein detection in the corresponding class, 

except for the Ki-67 proliferative marker, which shows stronger detection in pHistone3S28 mitotic 

cells.   

Multiparametric MCF-7 drug compound data pre-labeled by nuclear classification were 

reprocessed using hierarchical clustering similarity heat maps. First, we computed pairwise 

similarities for each class of cells per drug exposure with Pearson correlation coefficient between 

each measured parameter. This method is applicable to non-normalized data and can be used 

when data measurements vary between samples. Similarity Pearson correlation heat maps were 

computed using the browser-based tool Morpheus [39]. The core interface in Morpheus is a 

graphical color heat map representing protein marker and size parameter measurements applied 

to each single-cell object. Determination of the Pearson correlation coefficient between each 

measured parameter generates a reorganized heat map of multiparametric similarity relationships 

for each classified MCF-7 drug dataset [40]. Using these hierarchical similarity clustering heat 

maps, we compared the grouping pattern of mitotic pHistone3S28-positive cells across the 

multiple ROIs of compound-treated MCF-7 (Fig. 8 and Supplementary Fig. S8). Naturally 

occurring isotopes of iridium, 191Ir and 193Ir, are present in the nuclear staining reagent Cell-ID 

Intercalator-Ir and are grouped consistently across all heat maps.  The two cytoskeleton 
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biomarkers pan-keratin and cytokeratin 19 strongly correlate as well, since anti-pan-keratin and 

anti-CK19 antibodies identify cytokeratin isoforms highly expressed in MCF-7. Size parameters 

including perimeter, area and axis length of each mitotic cell are grouped together after 

hierarchical clustering across all drug treatments.  

Cell surface protein markers (CD29, CD98, CD81, CD47, EpCAM and CD49e) generated a 

cluster with high correlation and redundancy in the pHistone3S28 mitotic cell subclass. However, 

EGF treatment influenced expression of these markers, and some level of dissimilarity occurred 

between the surface membrane cluster and two integrin-mediated regulators, CD98 and CD47. 

This is consistent with the fact that MCF-7 cells switch to a more mesenchymal phenotype after 

EGF treatment and higher motility, with a concomitant increase in the expression level of some 

adhesion proteins. 

The intracellular and nuclear biomarkers pHistone3S28, p4EBP1T37/T46 and Ki-67 for mitotic cells 

cluster together in all conditions, showing a specific phenotypic profile. By looking at the 

correlation between the mitotic marker pHistone3S28 and other markers, we see that p53, cyclin 

B1 and cleaved poly (ADP-ribose) (cPARP) show variations in their correlation similarities 

depending on the drug treatment. p53 and cPARP exhibit close relationships with other nuclear 

markers, since both bind to nuclear DNA to be functional. Cyclin B1 shows strong correlation 

with pHistone3S28 in cells from non-treated control and EGF-treated ROIs. This correlation is 

less pronounced in the case of etoposide and nocodazole.  

The clustering of different types of markers in the class of pHistone3S28 mitotic cells was 

measured by comparing the similarity level of each target-specific cluster across all controls and 

drug treatments. First, we reprocessed cell surface membrane CD markers for each treatment as a 

new hierarchical similarity heatmap by using Pearson correlation as distance metric and 
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complete linkage method (Fig. 9A). As expected, each individual cluster is aligned and identified 

around the matrix diagonal component. Both non-treated and DMSO controls group of protein 

markers show close similarities to each other, and low or negative correlation with drug-treated 

markers. We used a hierarchical visualization edge bundle circle plot diagram to highlight the 

positive intra and inter-similarities across surface membrane protein parameters (Fig. 9B). 

Visualization of the high pairwise correlations within each cluster is shown as edge connecting 

nodes, and bundled lines correspond to close inter-relationships between both control conditions. 

Drug-treated clusters of proteins show poor or no interdependency. A similar visual workflow 

was applied to the multivariate analysis by pairwise Pearson correlation of specific nuclear 

markers and cytoplasmic markers types (Supplementary Fig. S9). 
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Discussion 

The goal of this study was to demonstrate a multidimensional IMC workflow and quantitative 

data processing using open source computational tools for in vitro drug response research. The 

multiplexed measurements acquired from a single image may provide a more informative and 

reliable screening of drug leads for further clinical development [41]. In this work, phenotypic 

features of tumor-derived cell lines such as SKBR3, HCC1143 and MCF-7, which recapitulate 

different subtypes found in breast tumors, were characterized. The wild-type p53-expressing 

MCF-7 epithelial cell line, a model of luminal breast adenocarcinoma, was selected for in vitro 

drug treatment and exposed for 48 hours to three classes of bioactive compounds: EGF, 

nocodazole and etoposide. The cells were stained with a mixture of metal-tagged antibodies 

against cell membrane, cytoplasmic and nuclei markers and subjected to IMC. The panel of 

metal tag antibodies used in our study was designed to minimize any potential spill over cross-

interference between neighbor isotopic mass channels [42, 43]. When analyzing our IMC data, 

we did not encounter strong and significant channel contamination from one metal labeled 

antibody to another.  The collected data allowed us to develop a workflow for cellular imaging 

analysis, which relies on established computational methods [44]. Multiplexed images of cell 

compartments give a detailed and broad visualization of biomarker localization and cell size 
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parameter changes. Cell-based morphological segmentation of generated digital images is a 

prerequisite to identify and export multiple features of interest at single-cell resolution. 

Exploratory downstream analysis was performed with the histoCAT platform to generate, 

normalize, measure and compare multiple images according to their multidimensional content in 

the form of spatial distribution heat maps, dimensionality reduction and unsupervised clustering. 

In this report, we also describe cell classification by machine learning to pre-label cells before 

measuring their multivariate similarities. Prior knowledge of different cellular states is important 

for the calculation of distance and similarity metrics between each marker in the evaluation of 

the heterogeneity of cells and the effects of different compounds on cancer cells [45]. In the 

example of pHistone3S28-positive mitotic cells, we generated a multivariate high-dimensional 

heat map that allows a comparative study of mechanisms of action of multiple drugs. Additional 

nuclear classes such as pH2A.XS139, p53, cyclin D3 and Ki-67 were analyzed using similar 

multiparametric clustering approaches (data not shown). The strategy could enable new ways to 

perform deep proteomic drug screening on different models for translational medicine and 

preclinical trials [46, 47]. 

Other in vitro assays using stem cells, or co-cultures of different cell types, could be studied by 

IMC as an additional approach to designing high-content analysis to investigate cell-to-cell 

interactions and signaling. A recent targeted therapy against cancer oncogenes described a 

cytotoxic small-molecule compound that activated the steroid receptor signaling pathways and 

led to cell stress and death [48]. IMC may assist researchers to better understand perturbations in 

this and other pathways through high-dimensional analysis. Three-dimensional tumor spheroids 

grown in vitro are more representative of the complexity of cancer tissue than two-dimensional 

cell cultures and can be analyzed by IMC through the preparation of sections of FFPE pelleted 
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spheroids [49]. We summarized in Table 1 several advantages and challenges during preparation 

on slide, staining procedure, acquisition by IMC and software data analysis for three different 

models of sample. IMC was useful in the biodistribution study of the platinum-containing anti-

cancer drug cisplatin in pancreatic adenocarcinoma xenograft model and could be applied to the 

emerging metal-containing chemotherapies and photodynamic therapies, which are considered as 

alternative approaches to classic compounds [50, 51]. Therefore, the goal for IMC in preclinical 

screening of metallodrugs will be to efficiently and effectively identify cellular responses of in 

vitro tumor-derived cell lines for lead optimization in target-based drug discovery [52]. A 

comparison of IMC performance metrics to other high content imaging system technologies in 

the field of single cell analysis is shown in Table 2.  

In conclusion, we demonstrate a comprehensive image analysis workflow for cell-based IMC 

data analysis of surface and intracellular markers in drug-treated cells. The correlation coefficient 

for pairs of multiple parameters and the similar distances among a collection of treatment 

profiles facilitate downstream analysis and allow for direct data visualization. Image-based cell 

profiling studies compute statistical estimates of the likelihood of equivalence between two drug-

induced profiles. Similarity measurements quantify proximity between profiles, since they detect 

deviations from one sample to another regardless of the absolute magnitude. This procedure is 

useful in finding relations and groups of samples that share common properties in high-content 

screening. Predicted pharmacodynamic effects were visualized and quantified in MCF-7 cells 

dosed with three target-specific compounds. Strong pairwise correlation between nuclear 

markers pHistone3S28, Ki-67 and p4E-BP1T37/T46 in mitotic cells and anti-correlation with cell 

surface markers CD29, CD98, CD81, CD47 and EpCAM was demonstrated.  
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Supporting Information 
 
Additional supporting information may be found online in the Supporting Information section at 
the end of the article. 
 
 
Figure S1. IMC multiplex image of MCF-7 non-treated and DMSO-treated control cells. 
  
Figure S2. Cell segmentation and single-marker distribution of MCF-7 non-treated and DMSO-
treated controls. 
 
Figure S3. Segmentation accuracy of nuclei and cytoplasmic contours of identified MCF-7 cells 
drug-treated using binary image overlap. 
 
Figure S4. Comparison of average Z-score expression level of p53, cyclin D3, CD47, CD49e 
and Cell-ID Intercalator-Ir between each control and drug treatment condition. 
 
Figure S5.Unsupervised cluster identification by t-SNE of control and compound-treated MCF-
7. 
 
Figure S6. Fast Gentle Boosting classification matrices of stitched replicates of MCF-7 ROIs per 
control and drug compound. 
 
Figure S7. Comparative expression levels of protein markers Ki-67, cyclin D3, pH2A.XS139, p53 
and pHistone3S28 (rows) per nuclear class and drug treatment condition (column) of MCF-7 cells. 
 
Figure S8. Heat maps of Pearson correlation coefficients of multiple parameters for non-treated 
and DMSO-treated controls ROIs on mitotic pHistone3S28 cells. 
 
Figure S9. Graphical representations of Pearson correlation coefficients for nuclei markers (A) 
and cytoplasmic markers (B) across all controls and drug treatments in the classified population 
of mitotic pHistone3S28 MCF-7 cells. 
 
Table S1. List of chemical compounds used for MCF-7 cell treatment, 48 h exposure. 
 
Table S2. Metal-labeled antibody panel for cell surface markers. 
 
Table S3. Metal-labeled antibody panel for intracellular markers. 
 
Table S4. Mitotic index of compound-treated MCF-7 generated by support vector machine 
classification with Fast Gentle Boosting ruler. 
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Figure 1.  Image-based IMC data analysis workflow with open source software. 
 

Figure 2. IMC images of cellular and nuclear markers expressed by SKBR3 with zoom-in 

area. Cell-ID: nuclei labeled with Ir-intercalator. Zoom-in images are rendered with 

multiple combinations of protein markers detected in different cellular compartments. 

Scale bar = 100 µm. 

 

Figure 3. IMC images of cellular and nuclear markers expressed by HCC1143 with zoom-in 

areas (two ROI).  Cell-ID: nuclei labeled with Ir-intercalator. Each zoom-in composite 

image is rendered with a selection of different markers. Scale bar = 100 µm. 

 

Figure 4. Multiplexed IMC images of MCF-7 cells treated with different compounds. 

 (A) EGF, (B) nocodazole, (C) etoposide. Composite images of 1500 x 1500 µm size (scale 

bar = 160 µm) with 400 x 400 µm zoom-in areas (scale bar = 100 µm).  Columns images 

correspond to the same combination of proteins detected per drug treatment (row). 

 

Figure 5. Image processing by cell-based segmentation and spatial parametric distribution 

across ROIs of drug-treated MCF-7 cells. (A) Cell and nuclear masks overlaid on color 

IMC images. Scale bar = 100 µm. Zoom-in areas of selected parameters visualized by Z-

score normalized color heat maps for (B) pHistone3S28 (C) pH2A.XS139. Scale bar = 10 µm. 

(C) Z-score mean intensity levels of nuclear markers (top), surface markers (middle) and 

cellular size parameters (bottom) for control and drug treatment conditions. Data are 

presented as mean ± SEM. ****P < 0.0001 (unpaired t-test).  
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Figure 6. Unsupervised cluster identification by t-SNE of control and compound-treated 

MCF-7. (A) Combined colored t-SNE maps of individual cells (EGF, green; etoposide, 

black; nocodazole, purple), DMSO (red) and non-treated control (blue). (B) t-SNE maps 

colored according to the expression level of nuclear markers and cell size (area).   

 

Figure 7. Support vector machine learning classification and multiparametric hierarchical 

similarity clustering of drug-treated MCF-7. 

(A) 6-plex color image of nocodazole-treated cells generated by CPA Image Viewer. Scale 

bar = 160 µm. (B) Normalized confusion matrix of six different cell nuclear phenotypes. (C) 

Protein expression levels of nuclear markers used for cell classification of MCF-7 treated 

with nocodazole. Graphs represent the non-normalized mean intensity (+SD) of nuclear 

proteins within each assigned category. P < 0.05 and P < 0.0001 (unpaired t-test) are 

included.  

 

Figure 8. Hierarchical clustering heat maps of Pearson coefficients of multiple parameters 

for drug-treated pHistone3
S28

-positive cells. Clusters of cells are highlighted according to 

cells size parameters (black), CD surface markers (blue), Cell-ID Intercalator-Ir isotopes 

(green), pan-keratin and CK19 markers (orange) and nuclear markers (yellow). 

 

Figure 9. Comparative analysis of multiparametric pairwise correlations between surface 

membrane markers expressed by MCF-7 pHistone3S28 positive mitotic cells across controls 

and drug treatments. (A) Hierarchical similarity heatmap of CD98, CD29, EpCAM, CD81, 

CD47 and CD49e protein markers. Individual clusters are highlighted around the diagonal 

component for each condition (Non-treated, blue; DMSO, red; EGF, green; etoposide, 
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black; nocodazole, purple). (B) Hierarchical edge bundle visual graph showing connecting 

edges between parametric nodes. Bundled lines between nodes correspond to positive 

pairwise correlations with a cut-off value > 0.3. The bundled interconnections show 

similarities of surface membrane phenotyping profiles between non-treated and DMSO 

controls. 

 

Table 1. Key similarities and differences of biological samples processing used for IMC. 

 

Table 2. Performance comparison of IMC to other high-content single cell imaging 

technologies. 
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