
 

 

SCFAs-induced GLP-1 Secretion Links the Regulation of Gut Microbiome on 

Hepatic Lipogenesis in Chickens 

Jianmei Zhang1,3, Yin shuang Sun3, Liqin Zhao2, Tiantian Chen3, Meina Fan3, 

Hongchao Jiao1, Jingpeng Zhao1, Xiaojuan Wang1, Fuchang Li1,Haifang Li2*,  

Hai Lin1* 

 

 

1 College of Animal Science and Veterinary Medicine, Shandong Agricultural 

University, Shandong Key Lab for Animal Biotechnology and Disease Control, Tai’an, 

China, 2College of Life Sciences, Shandong Agricultural University 3Biological 

research institute, Shandong Baolai-leelai Bioengineering Co., Ltd, Shandong key 

Laboratory of Animal Microecological agents, Tai’an, China. 

* Corresponding author: hfli1228@163.com, hailin@sdau.edu.cn 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 14, 2019. ; https://doi.org/10.1101/549857doi: bioRxiv preprint 

https://doi.org/10.1101/549857


 

 

ABSTRACT  

Chickens represent a specific case in lipid metabolism that liver is the main site of 

lipid synthesis. As ovipara, their gut microbiota could be strongly influenced by 

environment and diets after hatching. The aim of this study is to elucidate the linkage 

of gut microbiota and fat synthesis in broilers. The broilers were subjected to dietary 

treatments of combined probiotics (Clostridium butyrate 4×108 cfu/kg, 

Bifidobacterium 2×108 cfu/kg, Lactobacillus plantarum 2×108 cfu/kg and 

Lactococcus faecalis 2×108 cfu/kg, PB) and guar gum (1 g/kg, GG). The result 

showed that dietary supplementation of PB and GG changed the cecal microbiota 

diversity, altered short chain fatty acids (SCFAs) contents, and suppressed lipogenesis 

in liver and abdominal fat tissues. In intestinal epithelial cells (IECs), acetate, 

propionate, and butyrate upregulated the expression of glucagon-like peptide-1 

(GLP-1) via MAPK pathways, especially via the ERK and p38 MAPK pathways. 

GLP-1 suppressed lipid accumulation in primary hepatocytes with the involvement of 

AMPK/ACC signaling. In conclusion, the result suggests that SCFAs-induced GLP-1 

secretion links the regulation of gut microbiome on hepatic lipogenesis in chickens. 

IMPORTANCE  

Intestinal microbes metabolize SCFAs and stimulate intestinal epithelium L cells 

to produce GLP-1. Recent evidence showed that GLP-1 reduced fat deposition by 

reducing appetite and increasing satiety. However, how SCFAs stimulate the secretion 

of GLP-1 and whether GLP-1 directly affects fat metabolism is not clear. Poultry 

adipocytes have limited ability to produce fat, and 90% of carcass fat is synthesized in 
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the liver. In addition, large intake of feeds easily leads to fatty liver diseases in 

chickens. The aim of this study is to investigate how SCFAs mediate secretion of 

GLP-1 and whether GLP-1 could directly affect hepatic deposition in broiler chickens. 

The hepatic lipogenesis regulated by the intestinal microbiota of chickens is of great 

significance to the study of intestinal microbiota and fat deposition in poultry, and this 

work could provide reference for intestinal microorganism and fat metabolism in 

mammals and humans. 

KEYWORDS: Gut microbiota; SCFAs; GLP-1; Hepatic lipogenesis; MAPK; AMPK; 

Chicken 

Introduction 

Gut microbiota plays an important role in the metabolism of the host and altered 

structure of gut microbiota can affect the energy metabolism (1-4). Gut microbiota 

can influence both energy balance (weight gain or loss) and energy store (fat mass) by 

its ability of secreting or altering the metabolites during fermentation (5, 6). The 

abundance and composition of the gut microbial population are influenced by diet, 

weight, and overall metabolic state of the host (7). Probiotics and prebiotics are 

usually used to modulate the gut microbiota towards a beneficial effect on host 

metabolism (8-11). 

The altered gut microbiota changes the end products of fermentation such as 

short chain fatty acids (SCFAs), which is suggested to be involved in the benefits of 

microbiota diversity on lipid metabolism (12). SCFAs produced by the gut microbiota 

in the colon enable the host to gain extra energy, resulting in obesity (13-18). On the 
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other hand, many reports demonstrate that SCFAs could reduce or reverse body 

weight gains and adiposity (19-22). In obese mice, oral administration of sodium 

butyrate decreased body weight, via increased energy expenditure and fat oxidation 

(19). Additionally, in mice fed high-fat diet (HFD), oral administration of acetate, 

propionate, and butyrate reduced body weight without changing food intake or levels 

of physical activity (22, 23). SCFAs can serve as signaling molecules via the pathway 

of specific G protein-coupled receptors GPR43 (FFAR2) and GPR41 (FFAR3) (24, 

25). FFAR2 and FFAR3 are demonstrated to be involved in the regulation of lipid and 

glucose metabolism (26, 27).  

Glucagon-like peptide-1 (GLP-1), a neuropeptide derived from the transcription 

product of the proglucagon gene secreted by the intestinal L cells, is involved in 

SCFAs-induced metabolism regulation. The activation of FFAR2 and FFAR3 by 

luminal SCFAs regulates GLP-1 secretion (28, 29). Intra-colonic infusion of 

propionate elevates GLP-1 levels in portal vein plasma in both rats and mice but not 

in the FFAR2−/− mice (30). FFAR2-deficient mice fed with a normal diet are obese, 

whereas mice overexpressing FFAR2 specifically in adipose tissue remain lean even 

fed a HFD (31). 

Different from rodents, the liver is the main site of de novo lipid synthesis in 

chicken (32, 33). The accumulation of triglycerides in liver easily leads to fatty liver 

syndrome in chickens (34). Moreover, the gut microbiota is mainly affected by rearing 

environment after hatching, making chicken an interesting model in gut microbiota 

research. Hence, we hypothesized that SCFAs or GLP-1 might be linkages between 
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gut microbiota and hepatic lipid metabolism in chickens.  

The aim of the present study was to demonstrate the link of SCFAs and GLP-1 

between gut microbiota and hepatic lipid metabolism. Broilers were fed with a diet 

supplemented with probiotics or guar gum to alter the animals’ gut microbiota 

structure and diversity. Then the cecal SCFAs contents and GLP-1 level were 

measured. The direct effect of SCFAs on GLP-1 secretion and the involved signalings 

were in vitro evaluated with primary intestinal epithelial cells (IECs). The regulation 

of GLP-1 on hepatic lipid metabolism and the underlying signaling pathway were 

determined with liraglutide in vitro cultured primary hepatocytes.  

Materials and Methods 

Animal experiment 

A total of 150 one-day-old broiler (Arbor Acres) chicks were randomly divided 

into 3 treatment groups, with 5 replicates per group and 10 chicks per replicate, and 

fed with one of the three diets: high fat basal diet (HFD, feed formula of HFD was 

listed in Table 1. Control), HFD supplemented with combined probiotics (PB, Animal 

bifidobacterium: 4 × 108 cfu/kg; Lactobacillus plantarum: 2 × 108 cfu/kg; 

Enterococcus faecalis: 2 × 108 cfu/kg; Clostridium butyrate: 2 × 108 cfu/kg), and HFD 

supplemented with 1g/kg guar gum (GG). Chicks were reared in an environmentally 

controlled room. Temperature and lighting were maintained in accordance with 

commercial conditions. The chickens had free access to feed and water during the 

whole experimental period. The composition and nutrient levels of the basal diet were 

listed in supplementary Table 1. All animal experiments were performed in 
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accordance with the “Guidelines for Experimental Animals” of the Ministry of 

Science and Technology (Beijing, PR China).  

At d 21 and d 42 of age, the feed intake and the individual body weight were 

recorded. The production parameters, including the average daily gain (ADG), 

average daily feed intake (ADFI) and feed conversion ratio (FCR), were calculated. 

Three chickens with similar body weights (193.0 ± 3.7 g) were selected from each pen, 

and 12 chickens were selected per group. The blood samples were drawn from the 

wing vein using heparinized syringes. Plasma samples were collected and centrifuged 

at 3,000×g for 10min and were stored at -80°C for further analysis of TG and TCH 

levels. Chickens were sacrificed immediately after the blood sample collection, the 

liver and abdominal fat pad were separated, harvested and weighed, liver and 

abdominal fat percentage was calculated (a proportion of total body weight). 

Approximately 1 g content of the cecum were collected, 1 g to 2 g tissue samples 

were collected from the duodenum, jejunum, ileum, cecum, colorectum, liver, and 

abdominal adipose. All the samples were snap-frozen in liquid nitrogen, and then 

stored at -80°C for subsequent analysis. 

Primary culture of chicken intestinal epithelial cells 

Specific pathogen-free (SPF) chicken eggs were purchased and incubated for 19 

days. The chicken embryonic was used for the isolation of primary duodenal intestinal 

epithelial cells (IECs). The isolation method was previously published and modified 

to meet our requirements (35-37). Gently extruded the duodenal mucosa and 

transferred to Hank’s Balanced Salt Solution (HBSS) (Solarbio, Beijing, China), 
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washed with HBSS to remove the mucus and intestinal content until the buffer 

remained clear. Thereafter, the material was digested with 0.05 mg/ml collagenaseI 

(MP Biomedicals, Santa Ana, California,USA) at 37 °C under steady agitation for 

20min. The material was filtered and larger pieces were discarded, and then 

centrifuged at 800rpm for 10min. The supernatant was discarded. Cell pellets were 

washed twice with Hank’s at 800rpm for 10min , cells were resuspended in DMEM- 

F12 (GIBCO, NewYork,USA) supplement with 10% FBS (Crystalgen, New York, 

USA), 1×107 cells/well were seeded in 6 well plates and incubated at 37℃ and 5% 

CO2. Only wells with over 80% cell confluency after two days of culturing were used 

for trials. 

IECs were rinsed with HBSS for 3 times, starved in non-serum DMEM-F12 

medium with 20 mM HEPES (Solarbio, Beijing,China) for 2 h. For dose-response of 

SCFAs on FFARs, chick intesitinal epithelial cells (IECs) were stimulated with 

acetate at different concentrations (0, 3, 30, 90 mM) for 24 hours. For time course 

effect analysis, chick gut epithelial cells were stimulated with acetate (3 mM) for 

various lengths of time (0, 6, 24, 48 h). After indicated, IECs were starved for 2 h, 

treated with or without 3mM acetate, 1 mM propionate and 1 mM butyrate 

respectively for 24h. Then IECs were rinsed with HBSS for 3 times and harvested for 

subsequent analysis. IECs were treated with SCFAs, with or without the MAPK 

inhibitors: the ERK-specific inhibitor (UO126,10 μM), JNK inhibitor (SP600125, 20 

μM), and p38 inhibitor (SB203580, 10μM), incubated at 37°C in a 5% CO2 

atmosphere for 2h, collect the cell supernatants and centrifuged for 10min at 3000rpm, 
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total GLP-1 levels in cell supernatants were measured using High Sensitivity GLP-1 

Active ELISA-Chemiluminescent (Merck Millipore, EZGLPHS-35K,Germany) 

according to the reports (38, 39). 

Primary culture of chicken hepatocytes  

Chicken embryonic hepatocytes were isolated and cultured following the method 

previously reported by Hahn et al (40, 41). In brief, hepatocytes were prepared from 

freshly dissected liver tissue of 17-d-old SPF chick embryo. Liver was collected and 

washed with salt solution (HBSS; Invitrogen，USA) for three times. During this 

process, gallbladder, sarcolemma and connective tissue were carefully removed. After 

that, liver was spliced into pieces (about 1 mm3). Collagenase -IV (Sigma, St. Louis, 

MO, USA) was added to HBSS at the final concentration of 0.01 mg/ml, digested at 

37°C for 5 min, gently blew it with the disposable pipette for 5 minutes to disperse the 

cells, filtered and centrifuged for 5 min at 1,000 rpm, the cells were collected and 

washed with HBSS for 3 times. Density gradient centrifugation was used to separate 

the hepatocytes from other cells, which was conducted in a layer with 60% Percoll 

(Sigma, St. Louis, MO, USA). The cell suspension was layered on the Percoll layer 

and centrifuged for 15 min at 3,000 rpm. Collected the cells and washed it three times 

with HBSS. The separated cells were counted and seeded at a density of 1×107 

cells/mL, cultured in William's E Medium (GIBCO, NewYork,USA) supplemented 

with 10% fetal bovine serum (FBS; crystalgen,USA) and 50U/mL penicillin(GIBCO, 

NewYork,USA), 50µg/mL of streptomycin (GIBCO, NewYork,USA).Cells were 

incubated in a humidified incubator (Thermo incubator, Forma, USA) at 37°C with 5% 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 14, 2019. ; https://doi.org/10.1101/549857doi: bioRxiv preprint 

https://doi.org/10.1101/549857


 

 

CO2 for 72 h. The medium was changed at 2 days intervals.  

The heptocytes were treated with 100nM chicken GLP-1 (chick GLP-1 sequence: 

HAEGTYTSDITSYLEGQAAKEFIAWLVNGRG, 42), synthesized by Mimotopes, 

Hangzhou, China) for 24h in the present of 200µM palmitic acid in the medium. As 

GLP-1 is easily to be degraded, the heptocytes were treated with 100nM LG (Selleck，

Houston,TX, USA) with or without the presence of 100nM exendin(Beyotime, 

Shanghai, China), the inhibitor of GLP-1R. The cells were harvested for further 

analysis.  

TG and TCH content measurements 

Triglyceride and total cholesterol content was determined with commercial kits 

(GPO-PAP and CHOD-PAP, Nanjing Jiancheng Biotechnology Institute, Nanjing, 

China). 

Histological staining 

Paraffin-embedded liver and abdominal adipose tissues were sliced into 5 μm 

sections for hematoxylin and eosin stain (HE, Nanjing Jiancheng Bioengineering 

Institute, Nanjing, China). The histological features were observed and captured under 

a light microscope. 

Measurement of SCFA concents 

SCFA concentrations were determined using GC–MS assay. Cecal chyme was 

added to 2 mL of water with phosphoric acid, vortexed and homogenized for 2 min. 

Then, 2 mL of ether was added to the sample, which was rested for 10 min and 

centrifuged at 4000 rpm for 20 min at 4 °C. The ether phase was removed after 
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centrifugation, and then the extraction was repeated. The two extracts were combined, 

volatilized to 2 mL, and injected into the GCMS ISQ LT (Thermo Fisher, USA) and 

TRACE GCMS ISQ LT (Thermo Finnigan, USA) with the following conditions: 

column temperature: 100 °C (5 min)−5 °C/min−150 °C (0 min)–30 °C/min–240 °C 

(30 min); flow rate: 1 mL/min; split ratio: 75:1; carrier gas: helium; column: TG 

WAX 30 m×0.25 mm×0.25 μm; injector: 240 °C; mass spectrometry: EI source; 

bombardment voltage: 70 eV; single ion scanning mode: quantitative ions 60,73; ion 

source temperature: 200 °C; cable temperature: 250 °C; and quantitative analysis 

method: external standard curve method.  

Cell viability 

The cell viability under different treatments was determined by CCK-8 kit (Trans, 

China) at the wavelength of 450nm. 

Oil Red O Staining 

Cells were washed with cold phosphate buffered saline (PBS) and fixed in 10% 

paraformaldehyde for 30 min. Then the cells were stained for 30 min in a freshly 

diluted Oil Red O solution (Solarbio, Beijing, China). After rinsed in distilled water, 

the cells were counterstained for 2 min in Mayer’s Hematoxylin (Sigma-Aldrich, St. 

Louis, MO, USA).The image of each group was photographed. Subsequently, the 

stained lipid droplets were extracted with isopropanol for quantification by measuring 

its absorbance at 490 nm. 

RNA isolation and quantitative real-time PCR analysis 

Total RNA from cultured cells or intestinal tract, including the duodenum, 
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jejunum, ileum, cecum and colorectum, liver and abdominal adipose was prepared by 

the acid phenol method using Trizol reagent (Invitrogen, USA) according to the 

manufacturer’s instructions. And 1.0 μg total RNA was reverse-transcribed into cDNA 

using the transcriptor first-strand cDNA synthesis kit (Roche, China). qPCR was 

conducted using FastStart Universal SYBR Green Master (Rox) reagents (Roche). All 

the primers were designed by Primer 5, and standard curves and melting curves were 

performed to ensure the specificity and PCR efficiency. Relative mRNA expression of 

the target genes was evaluated using the comparative threshold cycle method (2−ΔΔCT). 

Each sample was amplified in triplicate, and GADPH was used as an internal control. 

Primers used for qRT-PCR were listed in Table 2. Thermal cycling was initiated with 

an activation step of 30s at 95°C, and this step was followed by 40 cycles of 95°C for 

5s and 60°C for 30s. 

Western blot analysis 

Total protein extracts from cultured cell lysates or tissue samples were prepared 

by homogenization in RIPA buffer (1% Nonidet P-40, 0.5% sodium deoxycholate, and 

0.1% sodium dodecyl sulfate in PBS) supplemented with protease inhibitor cocktail 

(Sigma-Aldrich, Oakville, Ontario, Canada) and phosphatase inhibitor cocktail (Fdbio 

science, China, Alkaline phosphatases, Acid phosphatases, Alkaline phosphatases, 

PTPs, Ser/Thr phosphatases, PP1, PP2A,PP2B, and PP2C). Cell and tissue 

homogenates were centrifuged at 12,000×g and 4°C for 10 min. The protein content 

of the supernatants was determined using the BCA protein assaykit (Beyotime). Total 

protein (30 μg) was separated by SDS-PAGE and transferred to PVDF membranes 
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(Millipore,Merck, Germany) using a transfer apparatus (BioRad, USA). The 

membranes were blocked with blocking buffer (Beyotime) at room temperature for 

1 h, then incubated with anti-phospho-P38 (#4511T,  anti-rabbit,  Cell  Signaling 

Technology (CST), USA) , anti-P38 (#9212S, anti-rabbit, CST), anti-phospho-JNK 

(#4668S, anti-rabbit, CST), anti-JNK (#928, anti-rabbit, CST), anti-phospho-ERK 

(#9101S, anti-rabbit, CST), and anti-ERK (#9102S, anti-rabbit, CST), anti-p-ACC 

(anti-rabbit, CST), anti-ACC (anti-rabbit, CST), anti-p-AMPK (anti-rabbit, CST) and 

anti-AMPK (anti-rabbit, CST) primary antibodies overnight at 4°C, followed by 

incubation with the corresponding horseradish peroxidase-conjugated secondary 

antibody (Beyotime, Shanghai, China) at 4°C for 4h. Tubulin was used as an internal 

control for MAPK pathway assay, and β-actin was used as an internal control for 

other protein expression assays. The protein–antibody complexes were detected with 

the ECL Plus A and B (Beyotime, Shanghai, China), and the results were quantified 

using the Fusion FX software (Vilber, France). 

Statistical analysis  

The data were expressed as mean±SE and analyzed by one-way ANOVA with 

SAS software. Differences between means were evaluated using Duncan’s significant 

difference tests.p<0.05 was considered as statistically significant. 

Results 

PB and GG treatments suppressed lipid synthesis and accumulation in the liver and 

abdominal fat tissue 

The GG-chickens had the lowest plasma TG concentration while the control 
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birds had the highest one (P<0.05, Fig. 1a). Compared to the control, the plasma TCH 

content was decreased by both PB (p<0.01) and GG (p<0.05) treatments (Fig. 1b). 

Plasma activity of ALT was decreased in both PB- and GG-chickens compared to 

control (p<0.001) while AST was not changed (p>0.05, Fig. 1c,d).  

At d 21, the liver index was significant higher in the PB group compared with 

control (p<0.05, Fig. 2a). The abdominal fat index was significant lower in 

GG-chickens compared to the control (p<0.05, Fig. 2b). At d 42, compared with the 

control, the liver and abdominal fat index were decreased (p<0.05) by PB and GG 

treatments (Fig. 2a, b). Compared to control, chickens in PB and GG groups showed 

decreased TG content (p<0.05, Fig. 2 c) and alleviated fatty infliltration in liver both 

21 and 42 days of age (Fig. 2 d). The hepatic TCH contents, however, was not 

influenced by either dietary treatment (p>0.05, Fig 2 e). In liver, compared to control, 

the mRNA expression levels of fatty acid synthase (FAS), peroxisome 

proliferator-activated receptor-γ (PPARG), and sterol regulatory element-binding 

protein (SREBP)-1c were all down-regulated by GG treatment (p<0.05, Fig 2 f). ACC 

expression was highly suppressed in GG group compared with control (p<0.01).  

In abdominal fat tissue, the average adipocyte size was reduced in abdominal fat 

padin PB- and GG-chickens compared with control (Fig 2 g). The mRNA levels of 

ACC and FABP4 in GG-chickens were decreased compared to control (p<0.05, Fig 

1h ). In contrast, PB treatment increased PPARG while decreased FABP4 compared to 

control (p<0.05). 

PB and GG treatments changed the cecal microbiota diversity 
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Compared to the control group, GG did not change the relative abundances of 

Firmicutes and Bacteroidetes at the phylum level, while PB decreased the relative 

abundance of Firmicutes and increased the relative abundance of Bacteroidetes. There 

was a decrease in the relative abundances of Proteobacteria in both PB and GG 

groups. The minor taxonomic groups such as Actinobacteria and Verrucomicrobia 

showed the same trends in PB and GG treatments. In line with that at the phylum 

level, minor taxonomic groups of cecal microbiota in PB and GG groups presented 

the same trends and showed significant differences with that in control group. 

Compared with the control, the Escherichia-Shigella, Anaerotruncus, Akkermansia, 

Ruminococcaceae_uncultured, Subdoligranulum, Ruminococcaseae and Helicobacter 

presented much lower abundance in both PB and GG groups, while Bifidobacterium, 

Campylobacter and Lactobacillus were significantly higher in PB and GG groups. 

PB and GG treatments are associated with altered cecal SCFAs concentrations  

Compared to the control, cecal acetate concentrations were increased in both PB 

and GG groups (p<0.05, Fig. 4 a), while butyrate levels were only increased by GG 

treatment (p<0.05). The propionate content was not influenced by PB or GG treatment 

(P>0.05). The relative percentage of acetate was not changed by either dietary 

treatment, whereas the percentage of propionate was decreased in PB treatment, and 

the percentage of butyrate was increased in GG treatment, compared to control 

(p<0.05, Fig 4 b).  

PB and GG treatments upregulated the expression of FFARs and GLP-1R  

Comparing with control, the mRNA levels of FFAR2 and GLP-1R were 
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upregulated by GG treatment in ileum, ceacum and colonrectum (p<0.05), but not in 

cecum (P>0.05, Fig. 4 c, d, e). Except for FFAR3 mRNA level was increased by PB 

treatment in ceacum (p<0.05) (Fig. 4 d), no significant influence was observed for 

FFAR2, FFAR3, and GLP-1R mRNA levels in other tissues by PB treatment.  

SCFAs induced GLP-1 secretion via activating MAPK pathways in IECs 

Compared to the control, the expression levels of FFAR2, FFAR3, and GLP-1R 

were significantly upregulated by acetate (p<0.05, p<0.05, p<0.01), propionate 

(p<0.05, p<0.01, p<0.01), and butyrate (p<0.01, p<0.05, p<0.01; Fig. 5 a, b, c) in 

IECs. The GLP-1 content in culture medium was increased by acetate (p<0.001), 

propionate(p<0.05), and butyrate(p<0.05) treatment (Fig 5 d). The phosphorylation 

levels of ERK and p38 were all significantly increased (p<0.001) by acetate, 

propionate,and butyrate treatment (Fig 5 e, f, g, h). The phosphorylation of JNK was 

only significantly upregulated by butyrate (P<0.05).  

Compared to control, acetate treatment increased GLP-1 concentration (p<0.01), 

which was abolished in the presence of UO126 (p<0.01) and SB203580 (p<0.001), 

the inhibitor of ERK and p38, but not influenced by SP600125, the inhibitor of JNK 

(Fig 5 I). In contrast, the stimulating effect of propionate on GLP-1 secretion (p<0.05) 

was inhibited by UO126 (p<0.05), SB203580 (p<0.05), and SP600125 (p<0.001, Fig 

5 J). Similarly, UO126 (p<0.01) and SB203580 (p<0.001) arrested the stimulating 

effect of butyrate on GLP-1 secretion (p<0.01).Compared to control and butyrate 

treatment, however, SP600125 treatment increased and decreased, respectively, the 

GLP-1 secretion (p<0.05, Fig 5 K).  
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GLP-1 and its analogue liraglutide suppressed lipid accumulation through  

AMPK/ACC phospharalation in primary hepatocytes 

In primary hepatocytes,thelipid accumulation that stained with Oil Red O and 

quantitated using a spectrophotometer at 500nm and TG contents were decreased by 

GLP-1 treatment, compared to the control (p<0.01, Fig. 6 a,b). Compared to the 

control, phosphorylation levels of AMPK and ACC were increased by GLP-1 

(p<0.001, Fig 6 b).  

Liraglutide treatment decreased the Oil Red O and TG content in the primary 

hepatocytes, compared to control (p<0.01, Fig. 7 a,b). Liraglutide upregulated the 

transcription level of GLP-1R (p<0.01), while downregulated the mRNA levels of 

PPARG (p<0.05), FABP4 (p<0.05), LPL (p<0.05), and SREBP-1C (p<0.001)(Fig. 7 

c).  

Compared to control, liraglutide increased the phosphorylated AMPK (p<0.001) 

and ACC (p<0.001, Fig. 7 d), but had no influence on PPARG and CPT1 (p>0.05, Fig. 

7e). In Comparation with control, the decreased TG content caused by liraglutide was 

restored by exendin (9-39) (Fig. 7 f). In contrast, the phosphorylation level of AMPK 

in exendin (9-39)+liraglutide treatment had no difference compared with control or 

liraglutide treatment (p<0.05). The phosphorylation level of ACC, however, was not 

changed by liraglutide (p>0.05) (Fig. 7 g).  

Discussion 

In the present study, results showed that dietary supplementation of PB and GG 

changed the cecal microbiota structure and diversity, altered cecal SCFA 
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concentrations, and suppressed fat deposition in liver and abdominal fat tissues. 

Acetate, propionate, or butyrate could all upregulate the production of GLP-1 via 

MAPK pathways in IECs. GLP-1 suppressed lipid accumulation in primary 

hepatocytes with the involvement of AMPK pathway. These findings suggest that 

SCFAs-induced GLP-1 secretion links the regulation of gut microbiome on hepatic 

lipogenesis in chickens.  

Altered gut microbiota is associated with the increased SCFAs and decreased lipid 

accumulation 

Gut microbes have been shown to regulate host physiology, metabolism and 

energy storage (43-45). Altered gut microbial composition have been observed in 

animals and humans with metabolic syndrome (46, 47). John and Mullin (2016) 

indicated that obesity accompanies with the increase of Firmicutes and decrease of 

Bacteroidetes (48). Though large amounts of correlation research have been reported, 

the linkage of gut mcrobiome with metabolism still remains largely to be elucidated. 

This study indicated that both PB and GG could change the cecal microbiota 

structure and diversity. In line with previous studies in human and rodents (13, 49), 

the decreased proportion of phylum Firmicutes and increased proportion of phylum 

Bacteroidetes were observed in PB group. At the genus level, the relative abundance 

of Lactobacillus, Bifidobacteria and Campylobacter were increased in both PB and 

GG groups. Lactobacilli and Bifidobacteriawere indicated to produce SCFAs during 

the fermentation of carbohydrates (50, 51). Meimandipour et al. (2010) showed that 

Lactobacillus salivarius and L. agilis increased propionate and butyrate contents in 
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cecum of chickens (52). In this study, supplementation with PB and GG also leads to 

increased ceacal contents of acetate and butyrate, but not with propionate. This is 

partially in agreement with studies that Lactobacillus and Bifidobacterium increased 

the commensal metabolite butyrate (53).  

Meanwhile, decreased hepatic and plasma TG and TCH concentrations, and 

reduced abdominal fat ratio were observed in PB- and GG-treated chickens. Similar 

effects associated with probiotics and guar gum were observed in mammals. Wang et 

al. (2017) demonstrated that probiotic Lactobacillus johnsonii lowered fat deposition 

by improving lipid metabolism in broilers (54). Guar gum can be digested and 

produce SCFAs in the hindgut (22, 55), prevent and reverse body weight gain in 

rodents and humans (56, 57). den Besten et al. (2015) showed guar gum protects 

against HFD-induced obesity via the same signaling cascade as SCFAs (22). Other 

works demonstrated that increased circulating SCFAs are associated with reduced 

adipocyte lipolysis and adipogenesis (12, 58). Dietary supplementation of acetate, 

propionate, and butyrate inhibits lipolysis and de novo lipogenesis and protects 

against HFD-induced obesity (19, 20, 59). One main finding of this study is that liver 

is also a vital target of gut microbiota regulation on fat metabolism in chickens, in 

which SCFAs may be linkages.  

SCFAs induce the secretion of GLP-1 via MAPK pathways 

Although the intracellular mechanism is not fully understood, luminal SCFAs are 

expected to stimulate FFAR2 and/or FFAR3 located on the colonic L cells and induce 

glucagon like peptide-1(GLP-1) release in mammals (28). In the present study, the 
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increased contents of SCFAs were accompanied with higher expression levels of 

FFARs and GLP-1R in chicken intestines. Hudson et al. (2012) showed that FFAR2 

and FFAR3 respond to acetate and butyrate at the same level, while FFAR3 was more 

sensitive to propionate than FFAR2 in mouse (60). A slightly different nature from 

that in mice, our results showed that both chicken FFAR2 and FFAR3 responded to 

propionate and butyrate, while FFAR3 was a little more sensitive than FFAR2 in vitro. 

But FFAR2 was much more sensitive to acetate than FFAR3 in primary IECs. 

In primary cultured IECs, our results showed that all three SCFAs increased the 

release of GLP-1. It has been demonstrated that luminal and especially vascular 

infusion of acetate and butyrate significantly increase colonic GLP-1 secretion, while 

propionate has no influence on GLP-1 secretion whether administered luminally or 

vascularly in rat (61). In contrast, although the effect of propionate on GLP-1 

secretion is the weakest, it could significantly promote the secretion of GLP-1 in IECs 

in the present study. Meanwhile, GLP-1 secretion showed a 3-fold increase by acetate 

and 2-fold increase by butyrate respectively. FFAR2 activation is suggested to 

predominate over FFAR3 signaling induced by SCFAs with regards to increased gut 

hormone release (29, 62). Tolhurst et al. (2012) reported that SCFAs stimulate GLP-1 

secretion via FFAR2 in mixed colonic cultures in mice (29). It suggests that the 

different GLP-1 secretion may be related to the different activation of FFAR2 under 

stimulation of acetate, propionate and butyrate. We found that acetate had the 

strongest stimulating effect on FFAR2, followed by butyrate acid (p<0.01) and 

propionate (p<0.05) in IECs in this study. 
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FFAR2 and FFAR3 are G protein coupled receptors (GPCRs). In human and 

rodents, the coupling of FFAR2 and FFAR3 to ERK1/2 was confirmed under the 

stimulation of SCFAs in CHO-K1 cells (63-65). Yonezawa et al. (2007) showed that 

all three SCFAs rapidly and selectively activated p38 MAPK in MCF-7 cells (66). 

JNK can also be activated by acetate, propionate or butyrate in HEK293 cells, but has 

rarely been studied due to its lower activation level compared to ERK (65). It is well 

known that ERK is a major regulator of cell proliferation, whereas JNK and 

p38MAPK are involved in stress signaling and many inflammatory processes (67). 

Does MAPK pathway participate in the SCFAs mediated GLP-1 secretion and involve 

in lipid metabolism? Our present study showed that ERK were stimulated by acetate 

for 3.5 fold, propionate for 3 fold, and butyrate for 2.5 fold, compared to control. In 

contrast, significant JNK activation was only detected under butyrate treatment. This 

result was in agreement with the study that ERK1/2 phosphorylation level mediated 

by GPR43 and GPR41 were extremely higher with over 3-4 fold to the control, while 

activation of JNK1/3 was weak (65). The activated p38MAPK was observed in all 

three SCFAs treatments, which was disagree with the work in parental HEK293 cells, 

where the activation of p38MAPK was weak under both FFAR2 and FFAR3 

stimulators (65). Additionally, in consistent with highly activated ERK and p38MAPK 

under the stimulation of all three SCFAs, the GLP-1 secretions were reduced to the 

basal level by inhibitors of ERK1/2 and p38MAPK. In contrast, the acetate mediated 

GLP-1 secretion is not sensitive under the inhibitor of JNK. These fingdings suggest  

that ERK and p38MAPK pathways are mainly involved in SCFAs-induced GLP-1 
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secretion in chickens, which are different from that in mammals. 

GLP-1 and its analog Liraglutide decrease hepatic fat synthesis through 

phosphorylation of AMPK and ACC  

SCFAs have been shown to stimulate the gut hormone GLP-1 release (22), and 

result in a reduced body weight gain and decreased fat deposition (29, 58, 68). Their 

main targets are adipose tissue. In this study, we found that both GLP-1 and 

liraglutide could decrease lipid accumulation in the primary cultured chicken 

hepatocytes, indicating liver was also a target for GLP-1. Studies demonstrate that 

treatment with GLP-1 improves liver histology and reduces body weight in animal 

models of NASH (69, 70). It is suggested that GLP-1 reduces body weight gain and 

fat deposition by suppressed food intake (68, 71). In ob/ob mice, 60 days of treatment 

with GLP-1R agonist significantly reduced weight gain and hepatic lipid content, 

suggesting that GLP-1 has a direct effect on hepatocyte fat metabolism in liver and 

the GLP-1-treated hepatocytes showed elevated cAMP production as well as reduced 

mRNA expression of genes associated with fatty acid synthesis (72). Our study 

showed that GLP-1 and its analog liraglutide significantly increased the 

phosphorylation of AMPK and ACC (acetyl-CoA carboxylase), whereas had no effect 

on PPARG and carnitine palmityl transferase I (CPT1) at the protein level in chicken 

primary hepatocytes. AMPK plays a key role in regulating energy metabolism. 

Activated AMPK can phosphorylate and inactivate ACC which leads to a decrease in 

fatty acid synthesis (73, 74), as well as down-regulates transcription factors and 

enzymes associated with lipid metabolism, such as SREBP-1c and FAS (75, 76). 
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Additionally, our results showed that liraglutide reduced the key regulators of de-novo 

lipogenesis, such as PPARG, SREBP-1C and LPL at the transcription level. This 

indicates that the decreased lipid accumulation is due to the inactivation of ACC 

which phosphorylated by p-AMPK and the decreased gene expression related to 

de-novo lipogenesis. 

In conclusion, the changed gut microbiota diversity is associated with the altered 

SCFAs in chicken. SCFAs induce GLP-1 secretion in IECs via MAPK pathways. 

GLP-1 reduced hepatic fat synthesis by activating AMPK/ACC pathway. The result 

suggests that SCFAs-induced GLP-1 secretion links the regulation of gut microbiome 

on hepatic lipogenesis in chickens. 
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Table 1 Composition and nutrient levels of the experimental diets (on an air-dry basis) 

Ingredients (%) 0-3 W 3-6 W 
Corn   52.05 54.66 
Soybean meal 38.02 32.81 
Soybean oil  5.79 8.5 
Maifan stone powde 0.99 1.13 
CaHPO 4  2.02 1.87 
NaCl  0.32 0.29 
Lysine 0.1 0.12 
Methionine  0.2 0.18 
Choline chloride  0.26 0.2 
Premix* 0.25 0.25 

Calculated nutrient content 
Crude protein 21 19 
Crude fat  8 10.7 
Metabolizable energy，kcal/kg 3100 3300 
Calcium  0.9 0.9 
Available phosphorus 0.45 0.42 
Nacl 0.35 0.32 
Digestible lysine 1.2 1.096 
Digestible methionine  0.48 0.44 
Digestible methionine and 
cysteine 0.791 0.728 

Digestible threonine 0.828 0.744 
Tryptophan 0.264 0.235 
 leucine 1.547 1.432 
Isoleucine 0.841 0.75 
valine 0.996 0.897 
Premix provides the following per kg of diet: VA, 8000 IU; VD 3 , 3000 IU; VE, 20 IU; VK, 

2 mg; VB 1 , 4 mg; riboflavin, 8 mg; D-pantothenic acid, 11 mg; VB 5 , 40 mg; VB 6 , 4 mg; VB 
12 , 0.02 mg; biotin, 0.15 mg; folic acid, 1.0 mg; choline, 700 mg; Fe (as ferrous sulfate), 80 mg; 
Zn (as zinc sulfate), 75 mg; Mn (as manganese sulfate), 80 mg; Cu (as copper sulfate) 10 mg, I (as 
potassium iodide), 0.40 mg; and Se (as sodium selenite), 0.30 mg. 
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Table 2  qRT-PCR primers 
Gene Sequence(5′–3′) 
FFAR2 Forward: AACGCCAACCTCAACAAGTC 

FFAR2 Reverse:TGGGAGAAGTCATCGTAGCA 
FFAR3 Forward:GAAGGTGGTTTGGGAGTGAA 
FFAR3 Reverse:CAGAGGATTTGAGGCTGGAG 
GADPH Forward:CTACACACGGACACTTCAAG 
GADPH Reverse:ACAAACATGGGGGCATCAG 
GLP-1R Forward:GCTGAGAATGGCTGAGGAAC 
GLP-1R Reverse: CTTTGACTTGCTGTGCTCCA 
ACC Forward: AATGGCAGCTTTGGAGGTGT 
ACC Reverse: TCTGTTTGGGTGGGAGGTG 
FAS Forward: TCCTTGGTGTTCGTGACG 
FAS Reverse: CGCAGTTTGTTGATGGTGAG 
SREBP-1c Forward: GCCCTCTGTGCCTTTGTCTTC 
SREBP-1c Reverse: ACTCAGCCATGATGCTTCTTCC 
LPL Forward: CAGTGCAACTTCAACCATACCA 
LPL Reverse: AACCAGCCAGTCCACAACAA 
PPARG Forward: TCCTTCCCTCTGACCAAA 
PPARG Reverse: AATCTCCTGCACTGCCTC 
Adipo Forward: TCACCTACGACCAGTTCCA 
Adipo Reverse: CCCGTTGTTGTTGCCCTC 
Fabp4 Forward: TGAAGCAGGTGCAGAAGT 
Fabp4 Reverse: CAGTCCCACATGAAGACG 
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Figure legends 

Figure 1. Effect of probiotics and Guar gum supplementations on parameters in 

plasma of chickens at d 21. (a) TG contents in the plasma; (b) TCH contents in the 

plasma; (c) ALT activity in the plasma; (d) AST activity in the plasma.SAS analysis 

followed by T- test (n=8). Data were presented as Mean±SE. *p <0.05, **p<0.01 and 

***p<0.001. 

Figure 2. Effects of probiotics and Guar gum supplementation on fat deposition 

in broilers. (a) liver index at d 21 and d 42 (n=10); (b) Abdominal fat index at d 21 

and d 42 (n=10); (c) TG contents in the liver(n=10); (d) H&E staining of the liver 

slides at d 21 and d 42 (original magnification: ×200, n=6); (e) TCH contents in the 

liver(n=10); (f) Quantitative RT-PCR analysis of FAS, ACC, PPARG, and SREBP1c 

at transcript levels in the liver at d 21(n=8); (g) H&E staining of the abdominal fat 

slides at d 21 and d 42 (original magnification: ×200, n=6); (h) Quantitative RT-PCR 

analysis of FAS, ACC, PPARG, FABP4, LPL, Adipo (adiponection) at transcript 

levels in abdominal adipose tissue at d 21(n=8).SAS analysis followed by T- test. Data 

were presented as Mean±SE. *p <0.05, **p<0.01 and ***p<0.001. 

Figure 3. Probiotics and guar gum affect microbiome gut community. Relative 

abundance of bacteria population in cecal microbiota of groups Control, PB and GG 

at 21 days of age, sequenced were analyzed by using Illumina MiSeq System. (a) 

Phylum level; (b) Genus level. (n=8). 

Figure 4. Higher contents of SCFAs increase FFARs and GLP-1R expression in 

the intestine of both PB and GG groups at 21 days of age. (a) SCFAs contents in the 

content of caecum (mmol/g wet weight) of HFD chickens in control, PB and GG 

groups at 21 days of age (n=10 in control and PB groups; n=8 in GG group); (b) 

SCFAs/ Total SCFA(T-SCFAs) in the content of caecum of HFD chickens in control, 

PB and GG groups at 21 days of age (n=10 in control and PB groups; n=8 in GG 

group); (c-e) Effect of probiotics and guar gum on mRNA expression level of 

FFAR2/3 and GLP-1R in the intestine of HFD chickens at 21 d of age (n=8): (c) 

FFAR2; (d) FFAR3; (e) GLP-1R.*p<0.05.SAS analysis followed by T- test. Data were 

presented as Mean±SE, *p <0.05. 
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Figure 5. SCFAs stimulate the FFAR2/3 and GLP-1R expressions and mediate 

GLP-1 secretion in IECs, and SCFAs mediated GLP-1 secretion via MAPKs 

pathways. (a-c) Transcript levels of FFAR2/3 and GLP-1R were assessed by qPCR in 

primary IECs after treatments with 3mM acetate, 1mM propionate and 1mM butyrate 

for 24 hrs (n=8): (a) FFAR2; (b) FFAR3; (c) GLP-1R; (d) GLP-1 concentrations in the 

culture of the IECs were detected by high sensitive GLP-1 Elisa kit (n=6) after 

stimulated with 3mM acetate, 1mM propionate and 1mM butyrate for 2 hrs 

respectively (n=8); (e) SCFAs-mediated activation of ERK, JNK and p38MAPK. 

IECs were treated with 3mM acetate, 1mM propionate and 1mM butyrate respectively 

for the indicated times. Intracellular levels of pERK, pJNK,and p-p38 were analyzed 

by western blotting, relative phosphorylation levels were calculated by p-p38, and 

pERK/ERK and pJNK/JNK and normalized for control (n=4); (f-h) Quantity of 

pERK, pJNK and p38MAPK at 5min under the stimulation of SCFAs: (f) Acetate; (g) 

Propionate; (h) Butyrate; (i-k) MAPK inhibitors block SCFA-induced increase of GLP-1 

secretion. IECs were treated with 3mM acetate, 1mM propionate and 1mM butyrate, with or 

without the ERK-specific inhibitor (UO126,10 μM), JNK inhibitor (SP600125, 20 μM), and p38 

inhibitor (SB203580, 10 μM) respectively, GLP-1 concentration was detected by high sensitivity 

GLP-1 Active ELISA-Chemiluminescent kit (n=6): (i) Acetate; (g) Propionate; (h) Butyrate; 

Significant comparisons were calculated by SAS with a post T-test. Data were presented as mean 

± SE. *p <0.05, **p<0.01 and ***p<0.001. 

Figure 6. GLP-1 reduces lipid accumulation in the primary hepatocytes. 

Hepatocytes were stimulated with 100 nM GLP-1 for 24 h, (a) Oil red O staining (original 

magnification: ×200, n=6); (b) TG content in hepatocytes was measured and normalized to the 

total protein; (c) GLP-1 increased the phosphorylation of AMPK and ACC. Intracellular levels of 

pAMPK and pACC were analyzed by western blotting, relative phosphorylation levels were 

calculated by and the ratio of pAMPK/AMPK and pACC/ACC and normalized for control. 

Significant comparisons were calculated by SAS with a post T-test. Data were presented as mean 

± SE (n= 6). *p <0.05, **p<0.01 and ***p<0.001. 

Figure 7. Liraglutide can mimic the effect of GLP-1 on lipid accumulation in the 

primary hepatocytes. Hepatocytes were stimulated with 100 nM liraglutide for 24 h, (a) Oil 
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red O staining (original magnification: ×200, n=6); (b) TG content in hepatocytes was 

measured and normalized to the total protein (n=6) ; (c) Liraglutide reduced transcript 

expression levels of genes associated with lipid accumulation at primary hepatocytes. 

mRNA expression of GLP-1R,ACC, FABP4, LPL, PPARG, and SREBP-1C were assessed by 

qPCR after 24 hrs stimulation with liraglutide (n=6); (d) Liraglutide increased the 

phosphorylation of AMPK and ACC in primary hepatocytes. Gene expressions were 

analyzed by western blotting, quantification is shown in the right panel. Relative 

phosphorylation levels were calculated by the ratio of pAMPK/AMPK and 

pACC/ACC and normalized for control (n=4); (e) Liraglutide has no effect on the 

expression of PPARG and CPT1 in primary hepatocytes (n=4). (f) Exendin(9-39)(Exd) 

recovered TG content Primary hepatocytes; (g) Exendin(9-39) inhibited the 

phosphorylation of AMK in primary hepatocytes (n=6).Primary hepatocytes were 

stimulated with liraglutide for 2 h for the detection of protein phosphorylation or for 24 h for TG 

detection in the presence or absence of 100 nM exendin (9–39). Triglyceride content in 

hepatocytes was measured and normalized to the total protein in the samples. Gene expressions 

were analyzed by western blotting, relative phosphorylation levels were calculated by the ratio of 

pAMPK/AMPK and pACC/ACC and normalized for control. Data were presented as mean± SE; 

*p<0.05, **p<0.01, ***p<0.001. 
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