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Abstract 

Genome-wide association studies (GWAS) of psychiatric phenotypes have tended to focus on 

categorical diagnoses, but to understand the biology of mental illness it may be more useful to study 

traits which cut across traditional boundaries. Here we report the results of a GWAS of mood 

instability (MI) as a trait in a large population cohort (UK Biobank, n=363,705). We also assess the 

clinical and biological relevance of the findings, including whether genetic associations show 

enrichment for nervous system pathways. Forty six unique loci associated with MI were identified 

with a heritability estimate of 9%. Linkage Disequilibrium Score Regression (LDSR) analyses identified 

genetic correlations with Major Depressive Disorder (MDD), Bipolar Disorder (BD), Schizophrenia 

(SZ), anxiety and Post Traumatic Stress Disorder (PTSD). Gene-level and gene set analyses identified 

total 244 significant genes and 6 enriched gene sets. Tissue expression analysis from the SNP level 

data found enrichment in multiple brain regions, and eQTL analyses highlighted an inversion on 

chromosome 17 plus two brain-specific eQTLs. Additionally, we used a Phenotype Linkage Network 

(PLN) analysis and community analysis to assess for enrichment of nervous system gene sets using 

mouse orthologue databases. The PLN analysis found enrichment in nervous system PLNs for a 

community containing serotonin and melatonin receptors. In summary, this work has identified 

novel loci, tissues, and gene sets contributing to MI as a normal trait and will inform future work on 

the biology of mood and psychotic disorders, and to point the way towards potential for new 

stratified medicine approaches and the identification of novel trans-diagnostic drug targets. 
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Introduction 

Mood instability (MI) is a subjective emotional state defined as rapid oscillations of intense affect, 

with difficulty regulating these oscillations and their behavioural consequences1. As a 

psychopathological phenotype, MI may be useful for psychiatric research within a Research 

Domain Classification (RDoC) framework2 because it is a symptom that occurs in several 

psychiatric disorders, particularly major depressive disorder (MDD) and bipolar disorder (BD). It is 

also present within general population samples, and is known to be associated with a range of 

adverse health outcomes3. 

We recently identified four loci associated with MI within a subsample of the UK Biobank cohort 

(N=113,968) and found genetic correlation with both MDD and schizophrenia4. Here, we report a 

significantly larger genome-wide association study (GWAS) of MI in the full UK Biobank dataset 

(N=363,705), using a BOLT-LMM approach to maximize statistical power. We also revisit the 

assessment of genetic correlations with psychiatric disorders, including the use of more recent 

GWAS outputs for MDD, schizophrenia and BD. Furthermore, we contextualize our findings in 

terms of affected tissues, eQTL analysis and Phenotype Linkage Network (PLN) analysis. PLN is a 

new methodology that harnesses the fact that variation in many complex traits results from 

perturbations of multiple molecular components within a smaller number of cellular pathways . 

These pathways can then be identified with using gene network approaches.  
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Methods 

UK Biobank sample 

UK Biobank is a large cohort of over 500,000 United Kingdom residents, aged between 39 and 69 

years5. UK Biobank was created to study the genetic, environmental and lifestyle factors that 

cause or prevent a range of morbidities in middle and older age. Baseline assessments occurred 

over a 4-year period, from 2006 to 2010, across 22 UK centres. These assessments covered a 

wide range of social, cognitive, lifestyle and physical health measures. Informed consent was 

obtained from all participants, and this study was conducted under generic approval from the 

NHS National Research Ethics Service (approval letter dated 13 May 2016, Ref 16/NW/0274) and 

under UK Biobank approvals for application #6553 'Genome-wide association studies of mental 

health' (PI Daniel Smith).  

Genotyping, imputation and quality control 

In March 2018 UK Biobank released genetic data for 487,409 individuals, genotyped using the 

Affymetrix UK BiLEVE Axiom or the Affymetrix UK Biobank Axiom arrays (Santa Clara, CA, USA) which 

contain over 95% common SNP content6.  Pre-imputation quality control, imputation and post-

imputation cleaning were conducted centrally by UK Biobank (described in the UK Biobank release 

documentation).  

Phenotyping 

UK Biobank participants were asked as part of their baseline assessment: “Does your mood often go 

up and down?” Those who responded ‘yes’ to this question were defined as MI cases and those who 

responded ‘no’ were defined as controls. To minimise any impact of psychiatric disorders on 

observed genetic associations with MI, individuals reporting depression, bipolar disorder, 

schizophrenia, ‘nervous breakdown’, self-harm or suicide attempt (all from UK Biobank data field 

20002), and those who reported taking psychotropic medications (data field 20003) were excluded 
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from the analysis. Participants were also excluded if: their self-reported sex did not match their 

genetically determined sex; Biobank had determined them to have sex chromosome aneuploidy; 

they were considered by UK Biobank to be heterozygous outliers; they were missing over 10% of 

their genetic data; or they were not in subset classified the British participants of European ancestry. 

Genetic association and heritability 

Genetic association analysis was performed using BOLT-LMM7, 8  to control as robustly as possible for 

population structure while maximising power by avoiding the need to exclude related individuals. 

This also removes the need to adjust the model for principal genetic components (PGCs). 

Additionally, BOLT-LMM builds an infinitesimal model including all directly genotyped SNPs 

simultaneously, thereby further increasing power compared to logistic regression approaches that 

test each SNP in turn. This ‘genotyped SNPs only’ model has the imputed SNPs tested against it 

allowing for the imputation score cut criteria to be substantially reduced and increases the number 

of SNPs available to test for association with the outcome. Models were adjusted for age, sex and 

genotyping array. SNPs were filtered to remove those with MAF < 0.01, Hardy-Weinberg Equilibrium 

P < 1*10-6, or imputation quality score < 0.3. BOLT-LMM was also used to provide a heritability 

estimate and λGC estimate. The summary statistics were processed by FUMA9 (http://fuma.ctglab.nl/) 

for visualisation, MAGMA Gene Analysis, Gene-set Analysis and Tissue Expression Analysis10.  The 

Gene-level Analysis operates by grouping p values for individual SNPs into a gene test statistic using 

the mean chi-sq statistic for the gene whilst accounting for LD via the use of a European ancestry 

reference panel. The Gene-set Analysis groups genes according to MsigDB v6.111, a collection of both 

curated gene sets and GO terms, and tests each set in turn against all the other sets. The Tissue 

Expression Analysis performs a one-sided test based on the correlation between tissue-specific gene 

expression profiles and trait-gene associations.  

As FUMA only makes use of the 1000Genomes reference panel, regional plots were made via 

LocusZoom v1.412 as SNPs from the HRC reference panel were also imputed in the UK biobank 
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genetic data release. We defined a locus as the region of containing a lead SNP and all other SNPs (r2 

>0.1) within a 5MB radius of the lead SNP. The LD was calculated using 10,000 unrelated Biobank 

participants who had passed the same genetic QC as those used for the GWAS.   

Genetic correlations 

Linkage Disequilibrium Score Regression (LDSR)13 was used to calculate genetic correlations with 

psychiatric disorders. The intercept was left unconstrained to allow for sample overlap. For the 

MDD14, BD15, schizophrenia15 and PTSD16 phenotypes, we used the most up-to-date GWAS 

summary statistics provided by the Psychiatric Genomics Consortium. Anxiety disorder summary 

statistics came from the Anxiety NeuroGenetics STudy (ANGST) Consortium17.  

Tissue-specific expression and eQTL analysis 

The lead SNP for each locus (unless otherwise noted) was assessed for cis effects on gene expression 

(eQTLs) in publicly available human dorsolateral prefrontal cortex RNASeq datasets using the Lieber 

Institute for Brain Development (LIBD) eQTL browser (See URLs). Each locus was initially examined in 

the LIIBD BrainSeq dataset (n=738; See URLs); SNPs showing significant eQTLs were then assessed 

for replication in the Common Mind Consortium (CMC) dataset (n=547; See URLs). Only eQTLs that 

reached a threshold of p = 0.05 (FDR corrected) in both the LIBD and CMC datasets, and showed the 

same direction of effect in both, are reported. Tissue-specific expression patterns were assessed for 

implicated genes using the GTEx portal18.  All p values quoted in the text are FDR corrected. 

Principal component generation 

Principal components were created using plink 219 using pca approx. (with default settings). 

Pathway analysis  

PLN analysis builds on the fact that variation in complex traits results from perturbations of multiple 

molecular components within a smaller number of cellular pathways that can be identified using 
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gene network approaches. No single dataset or data type can provide a complete picture of the 

functional association between genes but a recent method combines information from multiple data 

types by weighing functional similarities between genes according to their likelihood of influencing 

the same mammalian phenotype(s). This approach has a greater specificity and sensitivity than 

analyses using a single data type and other comparable integrative methods20. The PLN approach 

exploits phenotypic information from over seven thousand genes whose function has been 

experimentally perturbed in the mouse and evaluates the ability of different data types such as 

protein-protein interactions (PPI), co-expression (RNA or protein), and semantic similarity score 

based on literature or Gene Ontology (GO) annotations or pathway annotations (KEGG), to predict 

whether knockout of the orthologues of a given pair of human genes will yield similar phenotypes. 

By weighting those data types accordingly, they are integrated to generate a single combined 

measure of functional similarity between gene pairs. The resulting network of pairwise gene 

functional similarities is termed a phenotypic-linkage network (PLN)20.To increase the sensitivity and 

specificity to detect functional associations relevant for a specific disease/trait, it is possible to select 

only those mouse phenotypes that are relevant for a specific disorder in the data type weighting 

evaluation step21. Following this approach, we re-weighted our generic PLN to be more sensitive to 

functional genomics data most informative to MI by considering only phenotypes within the over-

arching mouse phenotype ontology (MPO)  category Nervous System (MP:0003631). The PLN and 

nervous-PLN were built using the same 16 functional genomics datasets described by Honti et al20, 

with  64,640,972 and 49,656,123 weighted links respectively. 

Following the approach described by Sandor et al., we identified ‘communities’ of densely 

interconnected groups of genes (including at least 20 genes) within each PLN and tested whether 

any communities were enriched in genes harboured by GWA/subGWA intervals. This test examines 

how many of these intervals harboured at least one gene belonging to a given Community as 

compared to randomly shifted intervals equal in gene number. This approach makes no prior 

hypothesis about the number or nature of genes within each GWA interval. 
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Definition of GWA and subGWA intervals 

The GWAS and subGWA intervals were defined by considering SNPs attaining an association p-value 

of 5x10-8 and 1x10-6 identifying 6375 and 9358 SNPs, respectively. We then identified the haplotypic 

block within which each SNPs using genotypes in the 1000 Genome Project and the python pipeline 

developed by Brent Pedersen (https://gist.github.com/brentp/5050522). We defined GWA/sub GWA 

intervals by identifying the most distant block on a chromosome within a region of 500Kb of the lead 

SNP. We then added an additional 300 kb on either side of the interval to include genes that may be 

regulated by regulatory variants with effects captured by the lead SNPs. For subGWA regions, we 

excluded those subGWA intervals harbouring genes present in GWA intervals. 
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Results 

Demographics 

In the GWAS sample of 363,705 individuals, 43.2% reported MI (n=157,039) and the rest did not 

(n=206,666). There was a higher proportion of females in MI cases than in controls (55.4% versus 

51.2% respectively), and the mean age of cases was lower than controls (55.8 years versus 57.7 

years). 

GWAS findings 

We detected 46 loci across the genome with p < 5*10-8 (Figure 1 and Table S1) and an estimated SNP 

heritability (H2) of 0.09 (S.E.=0.02). The distribution of test statistics was consistent with a polygenic 

contribution to risk (λGC= 1.21; λ1000 = 1.001; LDSR intercept = 1.041; SE = 0.006).  

Gene-level and Gene Set Analysis 

244 significant genes were detected by MAGMA (Supplementary Table S2) and FUMA gene analysis. 

The Gene Set Analysis returned 6 enriched gene sets that met the threshold for significance after 

Bonferroni correction (Supplementary Table S3). Of these, 4 sets were related to brain development 

and differentiation of neurons, glial cells and astrocytes or neurogenesis. Other enriched sets 

included the Nikolsky breast cancer 16q24 amplicon genes and the prepulse inhibition gene sets. 

Tissue expression analysis 

MAGMA tissue expression analysis identified 11 tissue categories, all of which were in the brain 

(Figure S1). Indeed, all sampled brain areas except substantia nigra showed enrichment (i.e. frontal 

and anterior cingulate cortex, basal ganglia, hippocampus, amygdala, hypothalamus and 

cerebellum).  
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Genetic correlations 

Genetic correlations were calculated between MI and the five psychiatric phenotypes of interest 

(Table 1). All genetic correlations remained significant after False Discovery Rate (FDR) correction (Q 

<0.05). The largest correlations were with MDD (rg=0.66, p=1.28*10-35and anxiety (rg=0.64, 

p=3.23*10-6). PTSD had a moderate correlation with MI (rg=0.32, p=1.01*10-6) and both 

schizophrenia and bipolar disorder had weak but significant correlations (SCZ rg=0.14, p=1.01*10-6, 

BD rg=0.09, p=0.003). 

 

eQTL analysis 

Nine of the GWAS loci showed significant eQTLs (Supplementary Table S4). The strongest evidence 

of association with expression levels was for rs669915, a eQTL located within a region of strong 

linkage disequilibrium (LD) in chromosome 17q21 resulting from the existence of a 900kb inversion 

polymorphism that is common in European populations22. The extended region of LD across this 

portion of the chromosome makes it challenging to identify causal SNPs or the genes they regulate. 

The rs669915 eQTL was most strongly associated with expression of LRRC37A4P (LIBD dataset 

minimum p=1.96 x 10-99; CMC dataset p=3.99 x 10-65), an expressed pseudogene, but there are many 

alternative candidates for genes regulated by this SNP, including MAPT and CRHR1, for which it was 

also an eQTL. (Supplementary Table S4). 

The chromosome 17q21 inversion polymorphism has itself been reported to affect the expression of 

genes in this region23. We therefore investigated whether rs669915 might ‘tag’ the expression 

effects mediated by the inversion polymorphism in our sample. Using the method of de Jong and 

colleagues, we constructed genetic principal components (GPCs) from SNPs within the region 

between base positions 40,850,001 and 41,850,000 on chromosome 17. A plot of the first two PCs is 

shown in (Figure S2) and reveals three distinct clusters of individuals, each representing one of the 
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three inversion polymorphism genotypes, H1/H1 (right-most cluster; n=162,113), H1/H2 (middle 

cluster; n= 158,506) and H2/H2 (left-most cluster; n= 38,597). The H1 inversion allele had a 

population frequency of 0.32, far higher than the frequency reported by de Jong. In linear regression 

analyses, there was no association between  MI phenotype and inversion genotype using a model of 

additive allelic effects (no. of H2 alleles) and adjusting for age, sex and genotyping array (p=0.835).  

Many of the eQTL-positive loci showed associations with specific mRNA isoforms. Thus, rs763646 

predicted expression of a specific junction in EXOC4 (LIBD dataset p=0.001; CMC dataset p=0.03). 

Similarly, rs1962104 predicted expression of a splice junction and specific exons of PTK2 (LIBD 

dataset minimum p=6.02 x 10-7; CMC dataset p=0.0007). Rs11039182 predicted expression of a 

novel junction within SLC39A13 (LIBD dataset p=8.20 x 10-11; CMC dataset p=4.62 x 10-12). SLC39A13 

shows moderate expression across human tissues. Rs2898260 predicted expression of a specific 

start site in XKR6 (LIBD dataset p=4.25 x 10-5; CMC dataset p=0.00002), and specific junctions in TDH 

(LIBD dataset p=0.0001; CMC dataset p=0.0009) and SOX7 (LIBD dataset p = 0.0008; CMC dataset 

p=0.0004), all of which are expressed at low levels in human tissues.  

Two loci predicted expression of genes whose function is largely unknown but which show greater 

abundance in brain compared with other human tissues. Specifically, rs2729940 predicts expression 

of RP11-481A20.10 (LIBD dataset minimum p = 0.01; CMC dataset p=0.0008) and RP11-481A20.11 

(LIBD dataset minimum p=0.0003; CMC dataset p=0.00003), rs7818437 predicts expression of RP11-

981G7.1 (LIBD dataset minimum p=2.38 x 10-7; CMC dataset p=0.004), which is uniquely expressed in 

the brain.  

Other genes implicated by our eQTL analysis include SPINK9, associated with rs6889822 (LIBD 

dataset minimum p=0.0002; CMC dataset p=8.99 x 10-7), which is expressed at low levels, but is 

more abundant in the brain than other tissues. Expression of FAM86B3P (LIBD dataset minimum 

p=6.79 x 10-11; CMC dataset p=8.02 x 10-7), FAM85B (LIBD dataset minimum p=7.65 x 10-9; CMC 

dataset p=0.001) and ALG1L13P (LIBD dataset minimum p=2.28 x 10-5; CMC dataset p=0.004) was 
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associated with rs4398922. All three genes show low but consistent expression across different 

human tissues.  

Nervous system-PLN analyses 

Amongst both GWA and subGWA gene sets, we found a disproportionate aggregation of genes 

within only one community, Community 26 within the NS-PLN (21 GWAS loci including at least one 

gene, q=0.011; 25 “subGWAS “loci including at least one, q=0.018) (Fig 2 A). Examining the entire 

NS-PLN Community 26 gene, we found that it was significantly enriched in genes, whose unique 1:1 

orthologues in the mouse when disrupted induce abnormities in synaptic transmission (Mouse 

Phenotype Ontology term MP:0003635; q=2.77e-118, 75 genes expected vs 259 gene observed). 

However, we did not find evidence that the unique mouse orthologues of MI GWA and subGWA 

genes that belonged to Community 26 were enriched for any particular mouse phenotype. 

Nonetheless, we found that the 37 and 35 GWA and subGWA genes present in the Community 26 

were highly functionally connected with other Community 26 genes annotated with abnormal 

synaptic transmission phenotype term (Figure 2 B).  
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Discussion 

Main findings 

These analyses represent the largest genetic study of MI to date. Forty six unique loci associated 

with MI were identified, with a heritability estimate of 9%. Our findings confirm the four loci 

identified in our initial GWAS on the UK Biobank interim data release4 and are further validated by 

tissue expression analyses (enrichment for 11 brain regions) and pathway analyses (6 enrichment 

pathways, 4 of which relate to the development and differentiation of neurons). The large number 

of individuals in this study also provided substantial power to detect genetic correlations with 

psychiatric traits via LDSR. All six psychiatric traits assessed had a significant genetic correlation with 

MI. Some of these correlations were strong (particularly for MDD and anxiety) but others were 

weaker than expected: the genetic correlation between MI and BD was only 9%, perhaps suggesting 

that the MI phenotype in this study differs from the affective instability that is a core feature of BD.  

Biology of mood instability 

Loci associated with MI included genes that are involved across a variety of biochemical pathways, 

as well as brain development and function.  For example, several gene products localised to the 

synapse. PLCL1 and PLCL2 are involved in GABA signalling24 and melatonin signalling respectively, 

and RAPSN  assists in anchoring nicotinic acetylcholine receptors at synaptic sites25. PLCL1 has 

already been identified in a GWAS of schizophrenia26 and PLCL2 has been shown to be upregulated 

in bipolar disorder27. Additionally, we identified CALB2 which has many biological functions, 

including a role in modulating neuronal excitability28. Both DCC (identified in the previous MI GWAS) 

and BSN facilitate the release of neurotransmitters within the active zone of some axons29. BSN has 

also been shown to be associated with schizoaffective disorder via GABA signalling30. FARP1 

promotes dendritic growth31 and, although it has so far not been directly linked to mental health 

outcomes, it has been shown to regulate dendritic complexity32; reduced dendritic complexity is 

recognised as a feature of schizophrenia33. 
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We identified several developmental genes, including NEGR134, RARB35 and  EPHB136, and 

transcription factors such as HIVEP2 (loss of function of which causes intellectual disability37) and 

TCF4 (previously associated with schizophrenia38). NEGR1 was identified by 23andMe within their 

GWAS of MDD39 and increased levels of NEGR1 protein in spinal fluid have been identified in both 

MDD and BD40. RARB is involved in retinoic acid synthesis pathways that have been associated 

depressive symptoms in mice41 and has also been found to have increased expression in patients 

with schizophrenia42. The methylation state of the EPHB1 gene has been linked to MDD43 and SNP-

based analyses have identified association between EPHB1’s and symptoms of schizophrenia44.  

We also found association with several genes involved in mitochondrial energy production, such as 

NDUFAF3, NDUFS3, PTPMT1, KBTBD4 and MTCH2, suggesting that part of the physiology of MI may 

relate to energy dysregulation. 

In addition to protein coding genes, several loci were identified in regions containing non-coding 

protein sequences such as AC019330.1, AC133680.1, RP11-6N13.1 and RP11-436d23.1. Additionally, 

eQTL analyses identified three more possible non-coding genes (RP11-481A20.10, RP11-481A20.11 

and FAM85B) suggesting a possible RNA interference or post-transcriptional regulation basis to MI. 

Furthermore, the eQTL analyses highlighted the 17q21 inversion. Our principal component analysis 

of this region did not detect a significant association leading us to conclude that it is the SNPs in the 

region (not the inversion itself) driving the association. It is possible that lead SNPs may tag, 

enhancer RNA or eRNA which we were unable to detect here, as LIBD data are based on poly A-

selected mRNA. However, our findings are consistent with the association of dopamine neurons with 

LRRC37A4P reported recently45.  

Genes within regions associated with MI were functionally associated with synaptic transmission, a 

key pathway for psychiatric disorders, albeit this functional association was only detectable after 

focussing our gene network towards data types most informative for mammalian nervous system 
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phenotypes. Among the genes lying within associated loci that contribute to this functional 

association are several interesting candidate genes. HTR4 is a member of the family of serotonin 

receptors, G protein coupled receptors that stimulate cAMP production in response to serotonin (5-

hydroxytryptamine). MCHR1, melanin concentrating hormone receptor 1, is a G protein-coupled 

which binds melanin-concentrating hormone. MCHR1 can inhibit cAMP accumulation and stimulate 

intracellular calcium flux, and may be involved in the neuronal regulation of food consumption46 and 

this locus showed association with schizophrenia in a Danish sample47. 

Strengths and Limitations 

As noted above, this is the largest GWAS of a MI phenotype to date and has successfully identified 

new loci, eQTLs, genetic correlations and gene network enrichments. However, there are several 

limitations, most notably the use of a single question to define MI, and the lack of objective 

verification of the phenotype.  Similarly, exclusions for psychiatric disorder were based on self-

report.  Nevertheless, this approach has previously identified robust associations with a range of 

health outcomes and disorders1, 3.   

It is also important to note that direct links between genetic risk loci and network constituents in the 

PLN analysis will have to await the release of more completely annotated gene databases. The 

incompleteness of phenotypic annotations is likely to explain why the genes identified in the PLN 

analysis don’t have corresponding organismal or physiological phenotypes, but the fact that there 

were strong functional associations between the genes in the network we detected and mouse 

orthologues that have the synaptic transmission phenotype annotation suggests that the MI genes 

will also reveal this phenotype when more completely annotated databases become available. 

We also note the large difference in frequencies of the inversion polymorphism on chromosome 17 

from that reported by De Jong23. This difference could be due to the populations sampled to 

estimate the frequency or just over prevalence in those who joined UK Biobank. It is however 
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important to note that the inversion itself, whether acting under any of the models tested would 

contribute such a small fraction of MI phenotype that even larger sample sizes than used here would 

be needed to detect an significant correlation.   

Conclusion 

In summary, with a tripling in sample size from the previous GWAS, we identified substantially more 

associations with MI in the UK Biobank cohort4. This has allowed us to more confidently place these 

findings within a relevant biological context. Future analyses of the precise roles that the 

associations reported here play in the clinical expression of MI will likely be relevant for a wide range 

of psychiatric phenotypes and we anticipate that our findings will stimulate further research on the 

biology and treatment of MI across a range of mood and psychotic disorders. 
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URLs 

LIBD website - http://eqtl.brainseq.org/ 

LIBD eQTL Browser phase 1 - http://eqtl.brainseq.org/phase1/eqtl/ 

CommonMind Consortium public–private partnership http://commonmind.org/WP 
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 Figure 1 Manhattan and QQ plot of mood instability GWAS 

Supplementary Table S1 genomic Loci associated with MI. SNP = lead SNP for the Peak, CHR = 

chromosome number, BP = Base position of lead SNP, A1 = minor frequency allele, A2 = other allele, 

Beta = coefficient for the lead SNP, SE = Standard Error for A1 allele, P = p value, start_BP = start of 

associated region, stop_bp = end of associated region.  

Supplementary Table S2 genes identified by MAGMA, geneName = the name of the gene, strand = 

the direction of the gene on the chromosome, txStart = the base position where the gene starts, 

txEnd = the base position where the gene ends. 

Supplementary Table S3, significant pathways. Gene Set = the gene set that is significant, N genes = 

the number of genes in the gene set, Beta = the coefficient of the genes in the gene set, Beta STD= 

the standardised coefficient of the genes in the gene set, SE = The standard error of the genes in the 

gene set, P = p value, Pbon = the bonferoni corrected p value 
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Figure S1 MAGMA tissue expression analysis. 

Trait Rg se z P Q 

MDD 0.74 0.03 26.7 1.28*10-35 6.40*10-35 

Anxiety 0.64 0.14 4.7 3.23*10-6 5.38*10-6 

PTSD 0.32 0.13 2.5 1.12*10-2 1.12*10-2 

Schizophrenia 0.14 0.03 4.4 1.01*10-6 2.53*10-6 

Bipolar Disorder 0.09 0.04 2.5 2.8*10-3 3.5*10-3 

Table 1 Genetic correlations of mood instability with psychiatric phenotypes. Rg genetic correlation 

with mood instability, SE standard error of the genetic correlation, Z the test statistic, P the p value, 

Q the False discovery rate corrected p value. MDD major depressive disorder, PTSD post-traumatic 

stress disorder. 

Supplementary Table S4. eQTL analysis.  
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Figure S2, Analysis of chromosome 17q21.31 inversion polymorphism genotype using genetic 

principal components. PCs 1 and 2 are plotted, calculated using SNP data from individuals used in 

the GWAS. Individuals were assigned to inversion genotypes if they fell within regions defined by the 

green boxes, otherwise they were excluded from the association analysis. The three green regions 

from left to right represent H2/H2 homozygotes, H1/H2 heterozygotes and H1/H1 homozygotes, 

respectively. Data points lying between the green regions probably represent genotyping errors or 

rare intra-haplotypic recombinant individuals. 

 

Figure. 2 Different Mood associated genetic risk variants converge in a nervous specific gene 

network 
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A Enrichments of gene functional communities from a generic PLN and from a Nervous-System (NS) 

PLN within Mood-GWA and subGWA loci (see Methods). The Community ID is given first in the 

descriptor followed by the number of genes within that community. Only communities formed from 

over 20 genes are shown.  (B)  Gene subnetwork of Community 26 from NS-PLN showing functional 

associations between genes residing in Mood-associated GWA (red squares) and subGWA (orange 

squares) intervals and genes whose unique mouse orthologues are annotated with abnormal 

synaptic transmission phenotype (cyan squares). To increase clarity, only genes with abnormal 

synaptic transmission phenotype annotation with at least three functional links to genes residing in 

GWA and subGWA regions are shown. The colour of the link connecting two genes indicates the 

strongest information source supporting the functional association.  
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