1.		
0		

1	Species dispersal mediates opposing influences of a branching network on
2	genetic variation in a metapopulation
3	
4	Ming-Chih Chiu ¹ , Bin Li ¹ , Kei Nukazawa ² , Thaddeus Carvajal ¹ and Kozo Watanabe ^{1,*}
5	¹ Department of Civil and Environmental Engineering, Ehime University, Ehime Prefecture
6	790-8577, Japan
7	² Department of Civil and Environmental Engineering, University of Miyazaki, Miyazaki
8	Prefecture 889-2192, Japan
9	
10	*Corresponding Author:
11	E-mail address: watanabe_kozo@cee.ehime-u.ac.jp
12	
10	

13 **Running Head:** Genetic effects of river branching

14 Abstract

15	In nature, ubiquitous fractal networks can have two but opposing influences, by increasing
16	distal and confluent habitats, respectively, under raising branching complexity on
17	metapopulations' genetic structure, although this remains poorly understood, particularly
18	regarding the roles of species-specific traits. In this study, we evaluated the integrated
19	influences of network complexity and species dispersal mode/ability on genetic divergence
20	among populations at the catchment scale, using a theoretical framework with empirical
21	genetic data from four sympatric stream macroinvertebrate species. Empirical patterns of
22	spatial genetic structure were attributed to dispersal ability and the species' habitat
23	specialisation levels. Our theoretical evidence showed that both greater landscape connectivity
24	(via shorter watercourse distance) and greater isolation of distal habitats (e.g. headwater
25	streams) occur in the more-branched networks. These two spatial features have negative and
26	positve influences on genetic divergence, respectively, with their relative importance varying in
27	different species. Watersheds harbouring a higher number of local populations have larger
28	genetic divergence of metapopulations. Downstream- and upstream-biased asymmetric
29	dispersals dictate increases and declines, respectively, in genetic divergence. In addition, distal
30	populations (e.g. in headwaters) have higher genetic independence between themselves under
31	higher levels of downstream-biased asymmetry. A strong association between species features
32	and evolutionary processes (gene flow and genetic drift) mediates the pervasive influences of

	6
hto the importance	

- 33 branching complexity on metapopulation genetic divergence, which highlights the importance
- 34 of considering species dispersal patterns when developing management strategies in rapid
- 35 environmental change scenarios.
- 36
- 37 Keywords: distribution, fractal geometry, habitat fragmentation, isolation by distance,
- 38 landscape complexity, macroinvertebrate
- 39

40 Introduction

41	There is growing interest in understanding how landscape architecture determines
42	ecosystems' spatial biodiversity (Economo & Keitt, 2008; Albert et al., 2013; Wilson et al.,
43	2016). Despite comprehensive findings about spatial biodiversity, revealed by substantial
44	empirical and theoretical evidence (Chave, 2013), there is less information on spatial patterns
45	of intraspecific genetic diversity (Paz-Vinas et al., 2015). Eco-evolutionary evidence and
46	theories derived from simplified landscapes are insufficient for understanding spatial genetic
47	patterns in complex systems such as rivers (Campbell Grant et al., 2007; Thomaz et al., 2016;
48	Terui et al., 2018). Further explorations of the integrated genetic effects of species dispersal
49	and landscape connectivity on metapopulations (here defined as groups of subpopulations with
50	dispersal interactions) in complex habitats are needed.
51	In nature, ubiquitous fractal branching networks (e.g. with treelike patterns) have similar
52	structural features (Green, 2006), and species dispersal can mediate landscape genetic
53	structures (Paz-Vinas et al., 2015; Thomaz et al., 2016). Landscape connectivity shapes
54	
54	evolutionary processes, such as gene flow and genetic drift, driving spatial patterns of
55	evolutionary processes, such as gene flow and genetic drift, driving spatial patterns of intraspecific genetic variation (McRae, 2006; Paz-Vinas <i>et al.</i> , 2015). Dendritic ecological
55	intraspecific genetic variation (McRae, 2006; Paz-Vinas et al., 2015). Dendritic ecological

59	et al., 2016). The resulting spatial patterns within landscape networks are particularly
60	pronounced in species with low dispersal ability; for example, the genetic structures of sea
61	cucumbers (Parastichopus californicus) can be well explained by ocean circulation, which
62	mediates larvae dispersal (Xuereb et al., 2018). Branching networks can be characterised by
63	distal and confluent habitats with fewer and more corridor linkages, respectively, and the two
64	types of habitat have positive and negative influences on genetic divergence among local
65	populations. Dendritic riverscape systems provide an excellent opportunity to reveal the roles
66	of species dispersal in opposing influences of branching fractals and resulting consequences
67	(i.e., either increasing or decreasing genetic divergence) based on their landscape spatial
68	configuration (described below in detail).
69	Dispersal asymmetry (the situation in which dispersal tendency between two habitats is
70	not necessarily equal to the tendency in the opposite direction) can dictate the isolation
71	processes between pairs of populations, which provides mechanisms behind widely
72	acknowledged patterns of spatial genetic diversity and differentiation (Kawecki & Holt, 2002).
73	In river and stream systems, species dispersal ability and distribution pattern mediate their
74	spatial genetic patterns (Pilger et al., 2017). At all dispersal asymmetry levels,
75	streamflow-connected populations have habitat connectivity based on gene flows
76	predominantly in one direction or in both directions along a stream. Theoretically, more of
77	these isolated tributaries within a network, under high river conditions, result in higher genetic

78	differentiation between local populations (Thomaz et al., 2016). For example, populations in a
79	river network's distal branches (e.g. different headwaters) are connected to a common source
80	population in downstream confluences. Therefore, downstream-biased dispersal (a tendency
81	for higher dispersal downstream than upstream) may lead to weak connections among
82	headwaters and a large genetic divergence among riverine species such as fish and
83	macroinvertebrates (Paz-Vinas et al., 2013; Paz-Vinas & Blanchet, 2015).
84	In contrast, river branching can help enhance connectivity levels between demes by
85	naturally increasing the number of confluences and shortening their watercourse distances
86	(Labonne et al., 2008). Stream-dwelling species with a strong tendency to migrate upstream,
87	such as aquatic insects that disperse by flying during their terrestrial adult stages (Petersen et
88	al., 2004; Winterbourn et al., 2007), can have low downstream-biased asymmetries or even
89	upstream-biased gene flow. In this case, there is weaker isolation between distal populations in
90	the river network when these sink populations receive higher gene flows from their shared
91	source population at downstream confluences.
92	In this study, we evaluated the combined influences of landscape network and species
93	dispersal on genetic divergences in ubiquitous fractal branching networks, which remain
94	poorly understood. To the best of our knowledge, this is the first study to address how dispersal
95	asymmetry mediates the countervailing influence of network branching with empirical genetic
96	data, by which genetic divergence can potentially increase or decrease within natural

97	populations depending on species dispersal. First, we explored the spatial genetic variation of
98	four macroinvertebrate species with flying adult stages in a shared river network, using a
99	mechanistic model, based on evolutionary processes and asymmetric dispersal in northeastern
100	Japan. These species all have substantially diverse habitat specificities and distributions within
101	the network (Watanabe et al., 2014; Nukazawa et al., 2015; Nukazawa et al., 2017). Second,
102	with the model empirically validated through Bayesian inference, we theoretically evaluated
103	how branching complexity of random river networks, namely the network nodes' branching
104	prevalence (Terui et al., 2018), differentially affects the global genetic differentiation
105	throughout catchments in the context of different asymmetric gene flow modes. Here, we
106	hypothesised that 1) widely distributed, generalist species associated with strong dispersal have
107	smaller genetic divergence than specialist species with clumped, patchy or disjunctive
108	distributions, and 2) increased river branching has positive effects on genetic divergence in
109	species with downstream-biased dispersal but the opposite (negative) effect in those with
110	symmetric dispersal, or upstream-biased asymmetric dispersal, which contributes to the
111	dispersal-mediated consequences of the opposite effects of network branching (isolated
112	habitats and landscape connectivity).
113	

8

114 Materials and methods

115 Empirical catchment and genetic data

- 116 In the Natori and Nanakita Rivers in northeastern Japan (integrated catchment area c. 1200 km²;
- 117 Fig. 1), the flow regime exhibits a seasonal pattern, with flooding due to snowmelt in spring. In
- 118 the integrated catchment, the rivers flow from the western headwaters, at an elevation of 1350
- 119 m at Mount Kamuro, to the eastern river mouths at the Pacific Ocean, passing through Sendai
- 120 City with a population of one million. Approximately 60% of this area is forested and
- 121 mountainous. Two major reservoir dams (Kamafusa and Okura dams) are located there. The
- 122 regional lowlands are farmlands (13%, primarily with rice paddy fields) and a mixture of
- 123 residential and commercial areas (11%).

124 For both empirical and theoretical evidence, we used genetic data of neutral amplified

- 125 fragment length polymorphism (AFLP) markers from four macroinvertebrate species in this
- 126 catchment (Watanabe et al., 2014). Three species were caddisflies (Trichoptera), namely,

127 Hydropsyche orientalis, Stenopsyche marmorata and Hydropsyche albicephala, while the

- 128 fourth was a mayfly, *Ephemera japonica* (Ephemeroptera). In this integrated catchment, the
- species distributions vary considerably, from the widespread *H. orientalis* to the narrowly
- 130 distributed *E. japonica* (Fig. 1). These species have similar ecological functions in river
- 131 ecosystems by feeding on fine organic matter (< 1 mm diameter). Approximately 18 to 20
- 132 individuals collected at each sampling site were genotyped (128 to 473 polymorphic AFLP loci

for each species). Based on the locus-specific genetic differentiation across this catchment,
non-neutral loci identified by DFDIST (Beaumont & Nichols, 1996) and/or BayeScan (Foll &
Gaggiotti, 2008) were removed, and 98 to 449 neutral AFLP loci for each species (Fig. S1)
were retained and used for this study. Detailed protocols on the identification of non-neutral
loci are described in our previous report (Watanabe et al., 2014).
Metapopulation genetic modelling
We developed a metapopulation genetic model based on isolation by distance (lower gene flow

141 with greater separation in terms of distance along the watercourse) and asymmetric dispersal

142 (upstream- and downstream-biased movements) between local populations. This model was

143 validated using the empirical data on neutral AFLP loci of the four macroinvertebrate species

144 in the catchment. With its parameters estimated by Bayesian inference, this model was used to

simulate the river branching influence on each species. We describe the model development

146 and Bayesian estimation of parameters below.

133

134

135

136

137

138

139

140

147 Given a single locus with two allelic types, labelled '1' and '2' (e.g. an AFLP), $z_{k,l}$

148 denotes the number of type '1' alleles (number of individuals with the allele type) at locus l

- 149 from number of alleles $s_{k,l}$ (total number of types '1' and '2' together = total number of
- 150 individuals) observed in local population k. Here, neutral AFLP loci of individuals from local

151 populations were used as the observed modelling output. This random sampling process can be

153
$$z_{k,l} \sim \text{Binomial}(s_{k,l}, f_{k,l})$$
 [1]

154 where, in this local population, the frequency of allele '1' is denoted by f_{kl} . The allele

- 155 frequencies $z_{k,l}$ are independent between loci.
- 156 For each locus, the frequency of allele '1' in local populations is determined by their
- 157 genetic variations (related to genetic drift), the watercourse distance between local populations
- 158 within the network (related to gene flow) and allele frequencies of the metapopulation. Without
- 159 genetic drift and natural selection, gene flow leads to the genetic homogeneity among local
- 160 populations, leading to allele frequencies at loci in local populations matching those of their
- 161 metapopulation (Andrews, 2010). We denote by $\theta_{k,l}$ the random deviation of
- 162 logit-transformed allele frequency in local populations from that of the metapopulation, and the

163 allele frequency $f_{k,l}$ is obtained from the inverse logit transformation as follows:

164
$$f_{k,l} = \text{invLogit}(\theta_{k,l} + m_{k,l}) = \frac{1}{1 + \exp(-(\theta_{k,l} + m_{k,l}))}$$
[2]

165 where m_{ij} denotes the metapopulation's transformed allele frequency. The deviation $\theta_{k,l}$ can

be modelled by a multivariate normal distribution as follows (Bradburd *et al.*, 2013):

167
$$\theta_{k,l} \sim \text{MultiNormal}(\mu, \Omega)$$
 [3]

168 where μ denotes the mean of zero, and the covariance matrix Ω is a function of the

169 watercourse distance between local populations and their spatial relationships (either

170 streamflow-connected or -disconnected). To model the covariance across local populations, we

171 modelled this as a function of the shortest watercourse distance along the river network h_{ii}

between populations *i* and *j* as follows (Ver Hoef & Peterson, 2010):

173
$$\Omega_{ij} = \begin{cases} \underbrace{\underbrace{\sigma_D^2}_{a} + \underbrace{\sigma_U^2}_{b} + \sigma_G^2}_{a, \underbrace{b}} & \text{if flow-connected and } i = j \\ \underbrace{\underbrace{\sigma_D^2 \exp\left(-(c_D h_{ij})\right)}_{a, \underbrace{\sigma_U^2 \exp\left(-(c_U h_{ij})\right)}_{b}} & \text{if flow-connected and } i \neq j \\ \underbrace{\underbrace{\sigma_U^2 \exp\left(-(c_U h_{ij})\right)}_{b, \underbrace{c}} & \text{if flow-disconnected} \end{cases}}_{if flow-disconnected} \end{cases}$$
[4]

174 where part *a* or *b* describes the autocovariance, with the variance σ_D^2 or σ_U^2 and the scale

175 parameter c_D or c_U related to the downstream (D) or upstream (U) movement, respectively.

- 176 In part *a*, the autocovariance is set to zero for any two streamflow-disconnected populations
- 177 (e.g. local populations in different headwaters). In other words, streamflow-disconnected
- 178 populations are independent and have no gene flow between them via downstream movement.
- 179 The nugget variance σ_G^2 describes the random error.
- 180 In the Bayesian framework 'Stan' (Stan Development Team, 2014b), the R interface
- 181 'RStan' (Stan Development Team, 2014a) was used to perform this metapopulation genetic
- 182 modelling. For each species, four Markov Chain Monte Carlo chains (for numerical
- approximations of Bayesian inference) ran with 60,000 iterations each, and the first half of the
- 184 iterations for each chain were discarded as burn-in. This was determined by modelling
- 185 convergence when the R-hat statistic of each parameter approached a value of 1. To estimate
- 186 the model parameters, 2,000 samples obtained, by collecting one sample every 60 iterations for

187 each chain, were used to build the each parameter's posterior distribution.

188

- 189 Simulation of river-branching influences
- 190 Before the simulations, we created artificial river networks with varying branching
- 191 complexities (Terui *et al.*, 2018). The river networks were made up of nodes with scale length
- 192 *e*, with each node representing a local population. These nodes were assigned to be either
- branching (or an upstream terminal) or non-branching with a probability of P or 1 P,
- 194 respectively. As a series of non-branching nodes terminated at a branching (or terminal) node.

195 The individual segments (watercourse stretches) were the geometric random variables with

196 branching probability *P*. Before merging the segments to create a river network, the drawing

197 process was repeated until the targeted number of notes (the number of local populations) and

198 an odd number of segments were reached. To create the river network, these segments were put

- 199 together as a pool merged hierarchically as follows (Fig. S2): Step 1): One segment was
- 200 randomly selected as the root and its upstream end was merged with the downstream end of
- 201 another two random segment selections. In this status, the semi-complete network had two
- 202 unmerged upstream ends each for the next possible merger. Step 2) Two more segments were
- 203 randomly selected and their downstream ends were merged together to the random draw one of
- 204 two (or even more at subsequent steps) unmerged upstream ends of the semi-complete network.

205 Step 3) Step 2 was repeated until there were no available segments in the pool.

206	We conducted stochastic simulations to illustrate the uncertainty of the global genetic
207	differentiation among local populations, G_{ST} (Nei, 1973), under river branching. We created
208	1,000 river networks (with scale length e equal to 1 km) with the branching probability P and
209	metapopulation size N (integer; the number of local populations in a river network) randomly
210	drawn from 0 to 1 and from 100 to 500, respectively. Our Bayesian model of each species with
211	median estimates was used to stimulate the global G_{ST} to be the metapopulation's genetic
212	divergence in each of the 1,000 random river networks. We performed this simulation using
213	the R packages 'stats' and 'base' (R Core Team, 2018).
214	Here, we built a regression model based on gradient boosting (GB) for each of the four
215	macroinvertebrate species, identifying the importance of 1) the fraction of any two local
216	populations being streamflow-disconnected in all combinations (any two being
217	streamflow-connected or -disconnected), 2) the mean watercourse distance between local
218	populations under different levels of river branching and 3) metapopulation size (number of
219	local populations) for genetic divergence (G_{ST}). GBs are a type of machine-learning algorithm
220	used for analysing unilinear relationships at the base of multiple decision trees and, in the
221	boosting process, each next tree model generated is added to improve on the performance of
222	the previous ensemble of models by minimising deviance (Friedman, 2001). Our GB
223	modelling was performed using the R package 'gbm' (Greenwell et al., 2018), in which the
224	genetic divergence and other factors (the river features and metapopulation size) were

225	independent and dependent variables, respectively. We used the R package 'dismo' to assess
226	the optimal number of boosting trees via a cross-validation procedure (Hijmans et al., 2017).
227	We illustrated how the downstream and upstream dispersal-related parameters of the
228	variances (σ_D^2 and σ_U^2 , respectively) or scales (c_D and c_U , respectively) influence river
229	branching on global genetic divergence. To illustrate this for each parameter type, we
230	considered 3×3 (nine) combinations of two parameters each with the same upper, median and
231	lower ends of ranges of their Bayesian median pooled estimates. For the same parameter type,
232	we replicated the nine combinations (see Fig. 5 and 6) in each of the 1,000 random river
233	networks, and parameters of the other type were fixed to the median of pooled estimates. In
234	addition to the variances and scales, each of the other model parameters was set to its Bayesian
235	median estimate.

15

236 **Results**

237 Metapopulation genetic modelling

238	Our Bayesian model was fitted to the empirical genetic data in the Natori and Nanakita
239	catchment, and the R^2 values derived from the residual (differences between the observed and
240	predicted numbers of type '1' alleles at a locus from the number of alleles observed in a local
241	population; see Formula 1) are 0.97, 0.98, 0.97 and 0.93 for <i>H. orientalis</i> , <i>S. marmorata</i> , <i>H.</i>
242	albicephala and E. japonica, respectively (Fig. 2). The metapopulation allele frequencies are
243	species-specific, and the variation of allele frequency is greater in the widespread H. orientalis
244	and S. marmorata than in the other two species with narrower habitat distributions (Fig. S1).
245	The pairwise genetic difference between empirical local populations tended to increase with
246	their watercourse distances throughout the four macroinvertebrate species (Fig. S3). Despite
247	substantial variation in the scale parameter, amplifying the isolating effect of distance across
248	study species (Fig. S4), there was a consistent decline in the genetic correlation between
249	populations (the covariance Ω_{ij} divided by the variance $\sigma_D^2 + \sigma_U^2 + \sigma_G^2$; see Formula 4) with
250	the increasing distance between local populations (Fig. S5). In addition, there was a greater
251	decline in the genetic correlation with distance in the widely distributed H. orientalis than in
252	the other species.
253	

254 *River-branching influence*

255	We describe changes in the two landscape spatial configurations (fraction of any two local
256	populations being streamflow-disconnected in all combinations and mean watercourse distance
257	between local populations) with the increasing branching probability (P) in river networks (Fig.
258	3). Situations in which any two local populations are streamflow-disconnected (e.g. in different
259	tributaries) across metapopulations occur at higher rates in heavily branched river networks.
260	However, we found shorter watercourse distances between local populations in river networks
261	with higher branching probability. The metapopulation size (the number of interacting
262	subpopulations in a network) increases the values of both spatial configurations under the same
263	level of river branching.
264	Notably, changes in the values of the two spatial configurations act synergistically on the
265	genetic differentiation of metapopulations (G_{ST}) of the river network across four species (Fig.
266	4). Species-specific responses to the influence of river branching were identified. For example,
267	increased branching probability decreased the genetic divergence of the metapopulation for
268	three caddisflies (H. orientalis, S. marmorata and H. albicephala), but in the mayfly E.
269	japonica, the opposite response (higher genetic divergence) occurred. In addition, both a low
270	level and variation of genetic divergence are less likely to occur in the generalist H. orientalis
271	than in the other three speices. The findings showed that the metapopulation size was
272	positively correlated to genetic divergence in all species. According to the GB modelling
273	results, the relative importance of streamflow-disconnected habitats, compared to the landscape

274 connectivity via a shorter watercourse distance, was higher in the mayfly *E. japonica* than in

the other three caddisfly species (Table 1).

276	The genetic performances, varying across species, were illustrated by how these model
277	parameters related to upstream and downstream dispersals take effect on the genetic
278	divergences (Fig. 5 and 6). Branching complexity has various impacts on genetic divergence,
279	which is determined by the relative values of the upstream and downstream parameters (scale
280	and variance in genetic covariation function, see Formula 4). The positive and negative
281	influences of branching complexity on the genetic divergence are conferred through the
282	relatively high and low values of the upstream-dispersal scale parameter compared to the
283	downstream one, respectively (Fig. 5). These, in turn, indicated higher and lower isolation
284	effects of watercourse distance between local populations, respectively. Lower genetic
285	divergence levels occurred in more-branched networks when there was higher variance related
286	to upstream movement (σ_U^2) than downstream movement (σ_D^2) (Fig. 6). In other words, the
287	populations in the distal branches (e.g. headwaters) have relatively strong genetic covariation
288	between themselves, particularly in complex river networks. In addition, river branching has
289	the opposite (positive) influence on the genetic divergences when σ_U^2 is lower than or equal to
290	σ_D^2 (Fig. 6).

291 **Discussion**

292	In this study, we explored the integrated role of landscape architecture and species
293	ecological strategy in shaping genetic divergence at neutral loci. We compared the landscape
294	genetics of sympatric macroinvertebrate species in river networks, based on our Bayesian
295	model, explicitly accounting for the effects of evolutionary processes among components of
296	metapopulations on the spatial genetic structure. This model indicated that river-network
297	connectivity predicted spatial genetic structures in four macroinvertebrate species. In addition,
298	their empirical structuring patterns were determined by the species' intrinsic factors
299	parameterised in this model. In this case, these factors can be associated with dispersal ability
300	and mode, species distribution and effective population size (associated with the genetic
301	variance in our model) in characterising relationships between genetic divergence and
302	landscape connectivity, as shown in the discussion below (see the subsequent section
303	'Importance of species' intrinsic factors').
304	In our simulations, these intrinsic factors could cause varying levels of overall genetic
305	differentiation in river networks and induced increased river branching to have different or
306	even opposite effects. Moreover, greater landscape connectivity (via shortened watercourse
307	distance) and higher distal habitat isolation (e.g. headwater streams) simultaneously occur in
308	more-branched river networks and have countervailing influences on genetic divergence; they
309	also have different levels of relative importance across these sympatric species. This can

310	provide extensive insights into other complex networks (e.g. highly fragmented landscapes or
311	those with corridors via ocean and atmospheric circulation). Our empirical and theoretical
312	results highlight the fundamental importance of considering species' biological traits, which
313	make different contributions to genetic connectivity, for the successful management of
314	ecological corridors.
315	
316	River branching and metapopulation genetic divergence
317	In dendritic river networks, our simulation results showed a species-dependent change in
318	global genetic differentiation levels occurring with increases in network complexity and the
319	number of local populations in a metapopulation. We theoretically showed that the differential
320	downstream and upstream gene flows we considered in the model can act together to generate
321	such relationships. Our finding that increased populations in the river network enhanced
322	genetic differentiation is consistent with previous theoretical evidence (Thomaz et al., 2016).
323	River branching's role has been documented, to some extent, in riverscape genetics, when
324	higher genetic diversity is observed in downstream populations than in upstream ones
325	(Paz-Vinas et al., 2015) and greater river branching can increase the differences between such
326	populations (Thomaz et al., 2016). Little or no gene flow imposed by high river branching,
327	because of strong isolation of headwater populations, can generally be observed for some
328	riverine species with high or intermediate levels of downstream-biased vagility, such as fish

329	species (Osborne et al., 2014; Pilger et al., 2017). By adopting our mechanistic model				
330	validated by empirical data on macroinvertebrate species with flying adult stages, this				
331	theoretical evidence reveals their dispersal ability to overcome riverscape constraints, leading				
332	to low downstream-biased asymmetry and the opposite (negative) influence occurring under				
333	increased river branching. In addition, our comprehensive consideration of various branching				
334	river network topologies in simulations helped us to demonstrate the existence of opposing				
335	influences co-occurring under branching complexity. In one early theoretical study, not				
336	considering dispersal asymmetry (analogous to equal downstream and upstream dispersals in				
337	our study), the dendritic network structure was also documented to promote low genetic				
338	distances under high riverscape connectivity (Labonne et al., 2008).				
339					
340	Importance of species' intrinsic factors				
341	The river networks' architecture can be one important extrinsic factor for explaining the				

342 observed and simulated genetic patterns, but there was strong variation among species with

- 343 different intrinsic factors in our study. This finding was also previously observed; for example,
- 344 two sympatric salmonid species were found to have remarkably different spawning locations,
- 345 mating systems and population sizes, and these biological traits mediated the influences of
- 346 riverscape features shaping their dispersal and genetic divergence in the Clark Fork River in
- 347 the USA (Whiteley et al., 2004). For each upstream and downstream dispersal tendency in our

348	model, there are two parameters (scale and variance in the genetic covariation function; see
349	Formula 4) linked to species' intrinsic factors. In addition, these parameters together shape a
350	mechanism behind the countervailing influences of river branching on the genetic divergence
351	of metapopulations.
352	In our system, asymmetric (either downstream- or upstream-biased) dispersals could
353	determine the direction of the resulting influence on riverscape complexity. Stronger dispersal
354	can be associated with a lower value of the scale parameter since this parameter expands the
355	isolation effects of distance within river networks (see Formula 4). Our modelling results
356	showed that the widely distributed, generalist caddisfly (H. orientalis) has less intense genetic
357	divergence than other species with clumped, patchy or disjunctive distributions. In addition,
358	little change in genetic divergence, along with river branching, occurs in this caddisfly, which
359	can be explained by the low isolation effect by watercourse distance.
360	Furthermore, our results suggested that, in the mayfly species (E. japonica) with high
361	downstream-biased gene flow (based on a higher value of the scale parameter for upstream
362	than for downstream), as typically shown in fish species (e.g., Pilger et al., 2017), river
363	branching has a positive influence on its genetic divergence, in which a higher number of
364	isolated distal branches in river networks (e.g. headwaters) occur under this dispersal
365	asymmetry. Mayfly species larvae are susceptible to drift during high river flow and have great
366	potential to be strong downstream dispersers (Nukazawa et al., 2017). In our system, the

367	opposite (negative) influence of the branching network on the other three caddisfly species
368	with dispersal symmetry or even upstream-biased dispersal (based on the scale parameter for
369	upstream being similar to or higher than that for downstream, respectively; Fig. S4 and Fig. 5)
370	was identified. This might be attributable to their flying adults generally having a wide
371	dispersal range, showing strong terrestrial movement at least in the upstream direction. This
372	dampened the isolation between distal branches in river networks, compared to the case for
373	mayflies (or even stoneflies), exhibiting restricted distributions to areas very close to their
374	sources of emergence in the stream (Winterbourn et al., 2007).
375	Besides dispersal abilities, the effective population size was revealed to be a factor
376	potentially influencing genetic drift and mediating the countervailing influences of river
377	branching in our study. In our model, the uncertainty regarding allele frequency, determined by
378	the variance parameter, can describe the levels of genetic drift, which can theoretically be
379	associated with the effective population size (Nei & Tajima, 1981). Observational studies have
380	documented that a smaller effective size of local populations can result in their higher genetic
381	differentiation, induced by genetic drift (Weckworth et al., 2013; Richmond et al., 2018). In
382	addition, there is an association between species features (dispersal ability and habitat
383	requirements) and genetic divergence (Phillipsen et al., 2015). In our model, the variance
384	parameter can be separated into two parts related to upstream and downstream dispersals in the
385	genetic covariation function (Formula 4). Migration is one source of changes in population size,

386	and migrants themselves exhibit genetic variation derived from their source populations.
387	Different migrant population sizes can have varying influences on the genetic drift of sink
388	populations in the upstream or downstream direction. Therefore, the populations' locations (e.g.
389	in tributaries or the main stem) determine how immigration routes in upstream and/or
390	downstream directions act together in local populations, leading to their genetic drift. In our
391	mayfly species (E. japonica), for example, a higher value of downstream-related variance,
392	compared to the upstream one, theoretically determines the higher genetic variation among
393	local populations in distal branches of river networks (Fig. S4 and 6). As documented in both
394	theoretical and empirical studies, local populations of aquatic obligate species (e.g. fish
395	constrained to river channels) in main stem confluences experience less genetic drift than those
396	in isolated headwaters in river ecosystems (Thomaz et al., 2016; Pilger et al., 2017). As a result,
397	in cases with an increased number of tributaries and augmented river branching levels, there is
398	a higher likelihood that metapopulation genetic divergence will increase, for example, for this
399	mayfly species in our study or other downstream-biased species elsewhere (Osborne et al.,
400	2014).
401	From a conservation and management perspective that takes spatial genetic structure into
402	account (Luque et al., 2012), it is crucial to understand the branching structure's role in driving
403	metapopulation genetic divergence. Dispersal can dictate differences in landscape genetic
404	diversification (Medina et al., 2018), and predictive modelling, which can be validated by

405	empirical data based on asymmetric dispersals across networks, and shed light on the expected
406	impacts of global climate change and the consequences of management practices. To manage
407	native or even invasive species, our results shed light on the evolutionary importance of
408	dispersal abilities and modes, suggesting that these intrinsic factors should be considered in
409	decision-making processes when one managing strategy does not fit all species. For example,
410	the same management and conversation practices can produce different, or even the opposite,
411	results for species with varying levels of asymmetric gene flow and genetic drift (e.g. in
412	dendritic river systems).

25

414 Acknowledgements

- 415 This study was partly funded by the Japan Society for the Promotion of Science (JSPS). We
- 416 are grateful to Maribet Gamboa for her constructive comments on the manuscript.

418 **References**

419	Albert, E.M., Fortuna, M.A., Godoy, J.A., & Bascompte, J. (2013) Assessing the robustness of
420	networks of spatial genetic variation. Ecol Lett, 16 Suppl 1, 86-93.
421	Andrews, C.A. (2010) Natural selection, genetic drift, and gene flow do not act in isolation in
422	natural populations. <i>Nature Education Knowledge</i> , 3 , 5.
423	Beaumont, M.A. & Nichols, R.A. (1996) Evaluating Loci for Use in the Genetic Analysis of
424	Population Structure. Proceedings: Biological Sciences, 263, 1619-1626.
425	Bradburd, G.S., Ralph, P.L., & Coop, G.M. (2013) Disentangling the effects of geographic and
426	ecological isolation on genetic differentiation. 67, 3258-3273.
427	Braunisch, V., Segelbacher, G., & Hirzel, A.H. (2010) Modelling functional landscape
428	connectivity from genetic population structure: a new spatially explicit approach.
429	<i>Molecular Ecology</i> , 19 , 3664-3678.
430	Campbell Grant, E.H., Lowe, W.H., & Fagan, W.F. (2007) Living in the branches: population
431	dynamics and ecological processes in dendritic networks. <i>Ecology Letters</i> , 10 , 165-175.
432	Chave, J. (2013) The problem of pattern and scale in ecology: what have we learned in
433	20 years? Ecology Letters, 16, 4-16.
434	Chust, G., Villarino, E., Chenuil, A., Irigoien, X., Bizsel, N., Bode, A., Broms, C., Claus, S.,
435	Fernández de Puelles, M.L., Fonda-Umani, S., Hoarau, G., Mazzocchi, M.G., Mozetič,
436	P., Vandepitte, L., Veríssimo, H., Zervoudaki, S., & Borja, A. (2016) Dispersal similarly

27

- 437 shapes both population genetics and community patterns in the marine realm. *Scientific*
- 438 *Reports*, **6**, 28730.
- 439 Economo, E.P. & Keitt, T.H. (2008) Species diversity in neutral metacommunities: a network
- 440 approach. *Ecol Lett*, **11**, 52-62.
- 441 Foll, M. & Gaggiotti, O. (2008) A Genome-Scan Method to Identify Selected Loci Appropriate
- for Both Dominant and Codominant Markers: A Bayesian Perspective. **180**, 977-993.
- 443 Friedman, J.H. (2001) Greedy function approximation: A gradient boosting
- 444 machine. Ann. Statist., **29**, 1189-1232.
- 445 Green, D. (2006) *Complexity in Landscape Ecology*.
- 446 Greenwell, B., Boehmke, B., Cunningham, J., & Developers, G. (2018) gbm: Generalized

447 Boosted Regression Models. R package version 2.1.4.

- 448 Guillot, G., Vitalis, R., Rouzic, A.I., & Gautier, M. (2014) Detecting correlation between allele
- 449 frequencies and environmental variables as a signature of selection. A fast
- 450 computational approach for genome-wide studies. *Spatial Statistics*, **8**, 145-155.
- 451 Hijmans, R.J., Phillips, S., Leathwick, J., & Elith, J. (2017) dismo: Species Distribution
- 452 *Modeling. R package version 1.1-4.* .
- 453 Kawecki, T.J. & Holt, R.D. (2002) Evolutionary consequences of asymmetric dispersal rates.
- 454 *The American Naturalist*, **160**, 333-347.
- 455 Labonne, J., Ravigné, V., Parisi, B., & Gaucherel, C. (2008) Linking dendritic network

456	structures to population demogenetics: The downside of connectivity. 117, 1479-1490.
457	Luque, S., Saura, S., & Fortin, MJ.J.L.E. (2012) Landscape connectivity analysis for
458	conservation: insights from combining new methods with ecological and genetic data.
459	27 , 153-157.
460	McRae, B.H. (2006) Isolation by resistance. Evolution, 60, 1551-1561.
461	Medina, I., Cooke, G.M., & Ord, T.J. (2018) Walk, swim or fly? Locomotor mode predicts
462	genetic differentiation in vertebrates. Ecology Letters, 21, 638-645.
463	Nei, M. (1973) Analysis of gene diversity in subdivided populations. Proceedings of the
464	National Academy of Sciences of the United States of America, 70, 3321-3323.
465	Nei, M. & Tajima, F. (1981) Genetic drift and estimation of effective population size. <i>Genetics</i> ,
466	98 , 625-40.
467	Nukazawa, K., Kazama, S., & Watanabe, K. (2015) A hydrothermal simulation approach to
468	modelling spatial patterns of adaptive genetic variation in four stream insects. Journal
469	of Biogeography, 42 , 103-113.
470	Nukazawa, K., Kazama, S., & Watanabe, K. (2017) Catchment-scale modeling of riverine
471	species diversity using hydrological simulation: application to tests of species-genetic
472	diversity correlation. <i>Ecohydrology</i> , 10 , e1778.
473	Osborne, M.J., Perkin, J.S., Gido, K.B., & Turner, T.F. (2014) Comparative riverscape genetics
474	reveals reservoirs of genetic diversity for conservation and restoration of Great Plains

475	fishes. 2	23 , 5	6663-5	679.
-----	-----------	---------------	--------	------

476	Paz-Vinas, I. & Blanchet, S. (2015) Dendritic connectivity shapes spatial patterns of genetic
477	diversity: a simulation-based study. Journal of Evolutionary Biology, 28, 986-994.
478	Paz-Vinas, I., Loot, G., Stevens, V.M., & Blanchet, S. (2015) Evolutionary processes driving
479	spatial patterns of intraspecific genetic diversity in river ecosystems. Mol Ecol, 24,
480	4586-604.
481	Paz-Vinas, I., Quéméré, E., Chikhi, L., Loot, G., & Blanchet, S. (2013) The demographic
482	history of populations experiencing asymmetric gene flow: combining simulated and
483	empirical data. <i>Molecular Ecology</i> , 22 , 3279-3291.
484	Petersen, I., Masters, Z., Hildrew, A.G., & Ormerod, S.J. (2004) Dispersal of adult aquatic
485	insects in catchments of differing land use. 41, 934-950.
486	Phillipsen, I.C., Kirk, E.H., Bogan, M.T., Mims, M.C., Olden, J.D., & Lytle, D.A. (2015)
487	Dispersal ability and habitat requirements determine landscape-level genetic patterns in
488	desert aquatic insects. Molecular Ecology, 24, 54-69.
489	Pilger, T.J., Gido, K.B., Propst, D.L., Whitney, J.E., & Turner, T.F. (2017) River network
490	architecture, genetic effective size and distributional patterns predict differences in
491	genetic structure across species in a dryland stream fish community. Mol Ecol, 26,
492	2687-2697.
493	R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation

494	for Statistical Computing, Vienna, Austria. https://www.R-project.org/.						
495	Richmond, J.Q., Backlin, A.R., Galst-Cavalcante, C., O'Brien, J.W., & Fisher, R.N. (2018)						
496	Loss of dendritic connectivity in southern California's urban riverscape facilitates						
497	decline of an endemic freshwater fish. 27, 369-386.						
498	Ruiz-Gonzalez, A., Cushman, S.A., Madeira, M.J., Randi, E., & Gómez-Moliner, B.J. (2015)						
499	Isolation by distance, resistance and/or clusters? Lessons learned from a forest-dwelling						
500	carnivore inhabiting a heterogeneous landscape. 24, 5110-5129.						
501	Stan Development Team (2014a) RStan: the R interface to Stan, Version 2.5.						
502	http://mc-stan.org/rstan.html.						
503	Stan Development Team (2014b) Stan Modeling Language Users Guide and Reference Manual,						
504	Version 2.5.0.						
505	Terui, A., Ishiyama, N., Urabe, H., Ono, S., Finlay, J.C., & Nakamura, F. (2018)						
506	Metapopulation stability in branching river networks. Proc Natl Acad Sci USA, 115,						
507	E5963-E5969.						
508	Thomaz, A.T., Christie, M.R., & Knowles, L.L. (2016) The architecture of river networks can						
509	drive the evolutionary dynamics of aquatic populations. <i>Evolution</i> , 70 , 731-739.						
510	Ver Hoef, J.M. & Peterson, E.E. (2010) A moving average approach for spatial statistical						
511	models of stream networks. Journal of the American Statistical Association, 105, 6-18.						
512	Watanabe, K., Kazama, S., Omura, T., & Monaghan, M.T. (2014) Adaptive genetic divergence						

31
along narrow environmental gradients in four stream insects. PLoS One, 9, e93055.
Weckworth, B.V., Musiani, M., Decesare, N.J., McDevitt, A.D., Hebblewhite, M., & Mariani,
S. (2013) Preferred habitat and effective population size drive landscape genetic
patterns in an endangered species. Proc Biol Sci, 280, 20131756.
Whiteley, A.R., Spruell, P., & Allendorf, F.W. (2004) Ecological and life history characteristics
predict population genetic divergence of two salmonids in the same landscape. 13,
3675-3688.
Wilson, M.C., Chen, XY., Corlett, R.T., Didham, R.K., Ding, P., Holt, R.D., Holyoak, M., Hu,
G., Hughes, A.C., Jiang, L., Laurance, W.F., Liu, J., Pimm, S.L., Robinson, S.K., Russo,
S.E., Si, X., Wilcove, D.S., Wu, J., & Yu, M. (2016) Habitat fragmentation and
biodiversity conservation: key findings and future challenges. Landscape Ecology, 31,
219-227.
Winterbourn, M.J., Chadderton, W.L., Entrekin, S.A., Tank, J.L., & Harding, J.S. (2007)
Distribution and dispersal of adult stream insects in a heterogeneous montane
environment. Fundamental and Applied Limnology / Archiv f??r Hydrobiologie, 168,
127-135.
Xuereb, A., Benestan, L., Normandeau, É., Daigle, R.M., Curtis, J.M.R., Bernatchez, L., &
Fortin, MJ. (2018) Asymmetric oceanographic processes mediate connectivity and

531 population genetic structure, as revealed by RADseq, in a highly dispersive marine

32

532	invertebrate (Parastichopu	ıs californicus). Molecular	<i>Ecology</i> , 27 , 2347-2364.

533

535 **Table 1.** Performance measures and relative importance of predictors in gradient boosting models for *Ephemera japonica* (EJ), *Stenopsyche marmorata*,

536 *Hydropsyche orientalis* (HO) and *Hydropsyche albicephala* (HA), in which the simulated genetic divergence of the metapopulation (global G_{ST}) is the

537 response variable and fraction of any two local populations streamflow-disconnected, mean watercourse distance between populations and

538 metapopulation size are predictor variables.

		Model performance		Relative importance (%)		
Species	Number of trees	RMSE	R ²	Streamflow-disconnected fraction	Watercourse distance	Metapopulation size
EJ	2250	0.03	0.94	90.4	4.5	5.1
НА	800	0.06	0.88	1.0	95.1	3.9
НО	600	0.05	0.64	4.3	85.3	10.4
SM	650	0.03	0.65	6.0	79.4	14.6

34

539 Figure legends

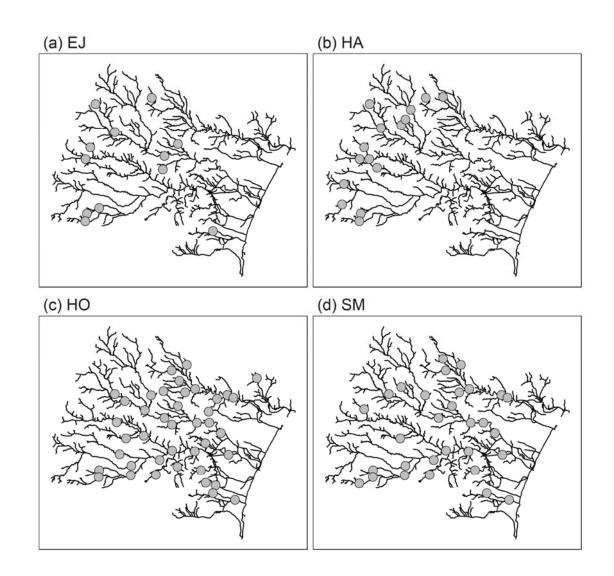
- 540 **Fig. 1.** The study catchment and distribution of (a) *Ephemera japonica* (EJ), (b) *Hydropsyche*
- 541 albicephala (HA), (c) Hydropsyche orientalis (HO) and (d) Stenopsyche marmorata (SM) in
- 542 northeastern Japan
- 543 Fig. 2. Observed and predicted numbers of type '1' alleles at a locus from the number of alleles
- observed in a local population (see Formula 1) for (a) *Ephemera japonica* (EJ), (b)
- 545 Hydropsyche albicephala (HA), (c) Hydropsyche orientalis (HO) and (d) Stenopsyche
- 546 *marmorata* (SM) with posterior distribution in Bayesian modelling.
- 547 Fig. 3. Theoretical predictions for relationships of (a) mean watercourse distance between
- 548 populations or (b) fraction of any two streamflow-disconnected populations (e.g. in headwaters)
- 549 in all combinations with branching complexity under differential metapopulation sizes (range:
- 550 100 to 500, number of local populations).
- 551 Fig. 4. Theoretical predictions for relationships between metapopulation genetic divergence
- (global G_{ST}) and branching complexity under differential metapopulation sizes (range: 100 to
- 553 500, number of local populations) for (a) *Ephemera japonica* (EJ), (b) *Hydropsyche*
- albicephala (HA), (c) Hydropsyche orientalis (HO) and (d) Stenopsyche marmorata (SM).
- 555 Fig. 5. Theoretical predictions for relationships between metapopulation genetic divergence
- 556 (global G_{ST}) and branching complexity under differential metapopulation sizes (range: 100 to
- 557 500, number of local populations) for combinations of dispersal-related scale parameters in

35	

558	genetic covariation	function (Formula	4), including (a, e and i)	$c_D = c_U$, (b, c and f) $c_D < c_U$
-----	---------------------	-------------------	----------------------------	--

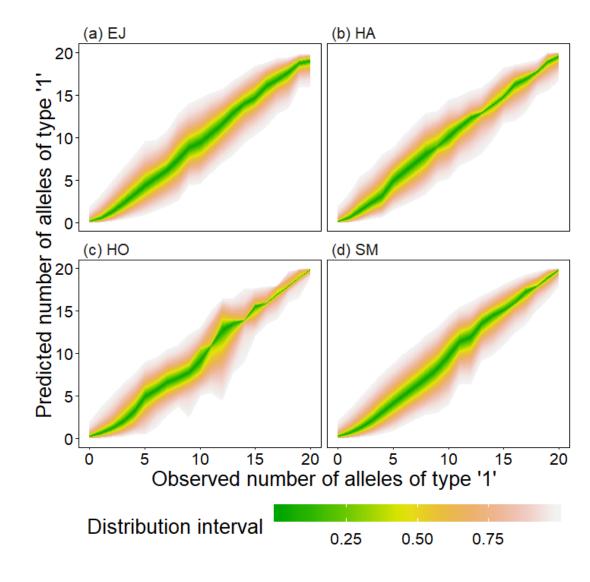
- 559 and (d, g and h) $c_D > c_U$.
- 560 Fig. 6. Theoretical predictions for relationships between metapopulation genetic divergence
- 561 (global G_{ST}) and branching complexity under differential metapopulation sizes (range: 100 to
- 562 500, number of local populations) for combinations of dispersal-related variances in genetic
- 563 covariation function (Formula 4), including (a, e and i) $\sigma_D^2 = \sigma_U^2$, (b, c, and f) $\sigma_D^2 < \sigma_U^2$ and (d,
- 564 g and h) $\sigma_D^2 > \sigma_U^2$.
- 565

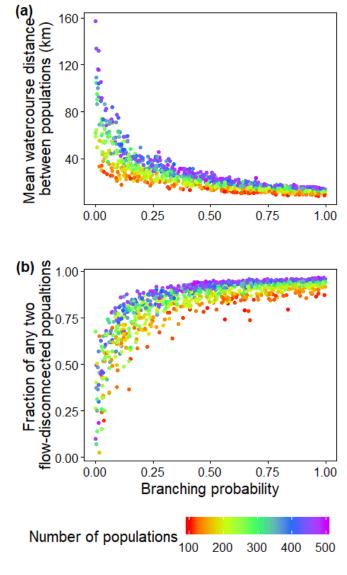
36

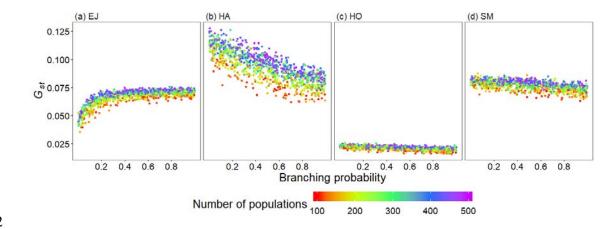


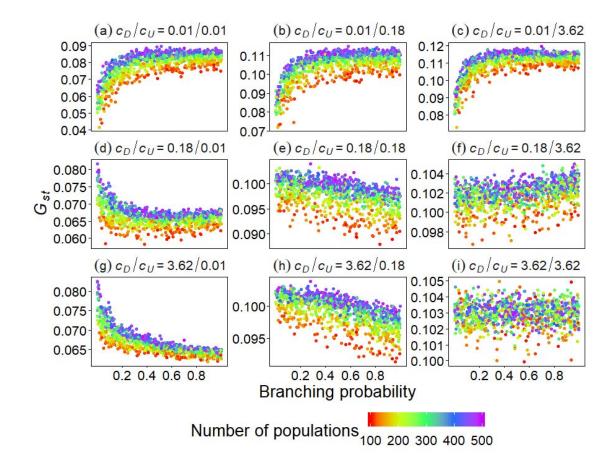
566

567 Fig. 1

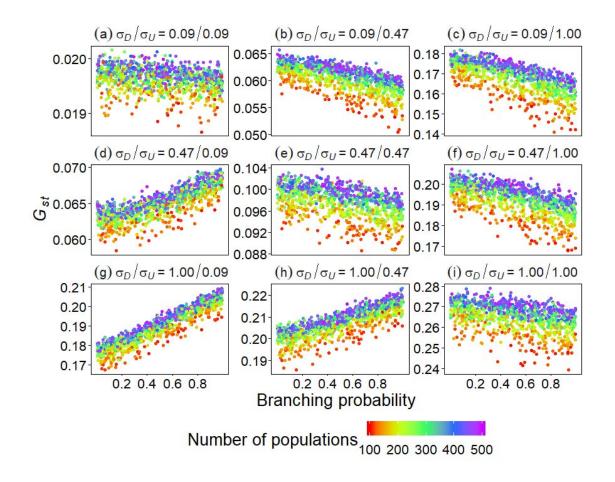








575 **Fig. 5**



576

577 Fig. 6