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Abstract 14 

In nature, ubiquitous fractal networks can have two but opposing influences, by increasing 15 

distal and confluent habitats, respectively, under raising branching complexity on 16 

metapopulations’ genetic structure, although this remains poorly understood, particularly 17 

regarding the roles of species-specific traits. In this study, we evaluated the integrated 18 

influences of network complexity and species dispersal mode/ability on genetic divergence 19 

among populations at the catchment scale, using a theoretical framework with empirical 20 

genetic data from four sympatric stream macroinvertebrate species. Empirical patterns of 21 

spatial genetic structure were attributed to dispersal ability and the species’ habitat 22 

specialisation levels. Our theoretical evidence showed that both greater landscape connectivity 23 

(via shorter watercourse distance) and greater isolation of distal habitats (e.g. headwater 24 

streams) occur in the more-branched networks. These two spatial features have negative and 25 

positve influences on genetic divergence, respectively, with their relative importance varying in 26 

different species. Watersheds harbouring a higher number of local populations have larger 27 

genetic divergence of metapopulations. Downstream- and upstream-biased asymmetric 28 

dispersals dictate increases and declines, respectively, in genetic divergence. In addition, distal 29 

populations (e.g. in headwaters) have higher genetic independence between themselves under 30 

higher levels of downstream-biased asymmetry. A strong association between species features 31 

and evolutionary processes (gene flow and genetic drift) mediates the pervasive influences of 32 
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branching complexity on metapopulation genetic divergence, which highlights the importance 33 

of considering species dispersal patterns when developing management strategies in rapid 34 

environmental change scenarios. 35 

 36 

Keywords: distribution, fractal geometry, habitat fragmentation, isolation by distance, 37 
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Introduction 40 

There is growing interest in understanding how landscape architecture determines 41 

ecosystems’ spatial biodiversity (Economo & Keitt, 2008; Albert et al., 2013; Wilson et al., 42 

2016). Despite comprehensive findings about spatial biodiversity, revealed by substantial 43 

empirical and theoretical evidence (Chave, 2013), there is less information on spatial patterns 44 

of intraspecific genetic diversity (Paz-Vinas et al., 2015). Eco-evolutionary evidence and 45 

theories derived from simplified landscapes are insufficient for understanding spatial genetic 46 

patterns in complex systems such as rivers (Campbell Grant et al., 2007; Thomaz et al., 2016; 47 

Terui et al., 2018). Further explorations of the integrated genetic effects of species dispersal 48 

and landscape connectivity on metapopulations (here defined as groups of subpopulations with 49 

dispersal interactions) in complex habitats are needed. 50 

In nature, ubiquitous fractal branching networks (e.g. with treelike patterns) have similar 51 

structural features (Green, 2006), and species dispersal can mediate landscape genetic 52 

structures (Paz-Vinas et al., 2015; Thomaz et al., 2016). Landscape connectivity shapes 53 

evolutionary processes, such as gene flow and genetic drift, driving spatial patterns of 54 

intraspecific genetic variation (McRae, 2006; Paz-Vinas et al., 2015). Dendritic ecological 55 

networks (e.g. riverscape structures) constrain species dispersal (Grant et al. 2007). For 56 

example, ocean circulation patterns across seascapes shape their network connectivity and 57 

intraspecific spatial genetic patterns (Braunisch et al., 2010; Ruiz-Gonzalez et al., 2015; Chust 58 
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et al., 2016). The resulting spatial patterns within landscape networks are particularly 59 

pronounced in species with low dispersal ability; for example, the genetic structures of sea 60 

cucumbers (Parastichopus californicus) can be well explained by ocean circulation, which 61 

mediates larvae dispersal (Xuereb et al., 2018). Branching networks can be characterised by 62 

distal and confluent habitats with fewer and more corridor linkages, respectively, and the two 63 

types of habitat have positive and negative influences on genetic divergence among local 64 

populations. Dendritic riverscape systems provide an excellent opportunity to reveal the roles 65 

of species dispersal in opposing influences of branching fractals and resulting consequences 66 

(i.e., either increasing or decreasing genetic divergence) based on their landscape spatial 67 

configuration (described below in detail). 68 

 Dispersal asymmetry (the situation in which dispersal tendency between two habitats is 69 

not necessarily equal to the tendency in the opposite direction) can dictate the isolation 70 

processes between pairs of populations, which provides mechanisms behind widely 71 

acknowledged patterns of spatial genetic diversity and differentiation (Kawecki & Holt, 2002). 72 

In river and stream systems, species dispersal ability and distribution pattern mediate their 73 

spatial genetic patterns (Pilger et al., 2017). At all dispersal asymmetry levels, 74 

streamflow-connected populations have habitat connectivity based on gene flows 75 

predominantly in one direction or in both directions along a stream. Theoretically, more of 76 

these isolated tributaries within a network, under high river conditions, result in higher genetic 77 
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differentiation between local populations (Thomaz et al., 2016). For example, populations in a 78 

river network’s distal branches (e.g. different headwaters) are connected to a common source 79 

population in downstream confluences. Therefore, downstream-biased dispersal (a tendency 80 

for higher dispersal downstream than upstream) may lead to weak connections among 81 

headwaters and a large genetic divergence among riverine species such as fish and 82 

macroinvertebrates (Paz-Vinas et al., 2013; Paz-Vinas & Blanchet, 2015).  83 

In contrast, river branching can help enhance connectivity levels between demes by 84 

naturally increasing the number of confluences and shortening their watercourse distances 85 

(Labonne et al., 2008). Stream-dwelling species with a strong tendency to migrate upstream, 86 

such as aquatic insects that disperse by flying during their terrestrial adult stages (Petersen et 87 

al., 2004; Winterbourn et al., 2007), can have low downstream-biased asymmetries or even 88 

upstream-biased gene flow. In this case, there is weaker isolation between distal populations in 89 

the river network when these sink populations receive higher gene flows from their shared 90 

source population at downstream confluences. 91 

In this study, we evaluated the combined influences of landscape network and species 92 

dispersal on genetic divergences in ubiquitous fractal branching networks, which remain 93 

poorly understood. To the best of our knowledge, this is the first study to address how dispersal 94 

asymmetry mediates the countervailing influence of network branching with empirical genetic 95 

data, by which genetic divergence can potentially increase or decrease within natural 96 
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populations depending on species dispersal. First, we explored the spatial genetic variation of 97 

four macroinvertebrate species with flying adult stages in a shared river network, using a 98 

mechanistic model, based on evolutionary processes and asymmetric dispersal in northeastern 99 

Japan. These species all have substantially diverse habitat specificities and distributions within 100 

the network (Watanabe et al., 2014; Nukazawa et al., 2015; Nukazawa et al., 2017). Second, 101 

with the model empirically validated through Bayesian inference, we theoretically evaluated 102 

how branching complexity of random river networks, namely the network nodes’ branching 103 

prevalence (Terui et al., 2018), differentially affects the global genetic differentiation 104 

throughout catchments in the context of different asymmetric gene flow modes. Here, we 105 

hypothesised that 1) widely distributed, generalist species associated with strong dispersal have 106 

smaller genetic divergence than specialist species with clumped, patchy or disjunctive 107 

distributions, and 2) increased river branching has positive effects on genetic divergence in 108 

species with downstream-biased dispersal but the opposite (negative) effect in those with 109 

symmetric dispersal, or upstream-biased asymmetric dispersal, which contributes to the 110 

dispersal-mediated consequences of the opposite effects of network branching (isolated 111 

habitats and landscape connectivity). 112 

  113 
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Materials and methods 114 

Empirical catchment and genetic data 115 

In the Natori and Nanakita Rivers in northeastern Japan (integrated catchment area c. 1200 km2; 116 

Fig. 1), the flow regime exhibits a seasonal pattern, with flooding due to snowmelt in spring. In 117 

the integrated catchment, the rivers flow from the western headwaters, at an elevation of 1350 118 

m at Mount Kamuro, to the eastern river mouths at the Pacific Ocean, passing through Sendai 119 

City with a population of one million. Approximately 60% of this area is forested and 120 

mountainous. Two major reservoir dams (Kamafusa and Okura dams) are located there. The 121 

regional lowlands are farmlands (13%, primarily with rice paddy fields) and a mixture of 122 

residential and commercial areas (11%). 123 

For both empirical and theoretical evidence, we used genetic data of neutral amplified 124 

fragment length polymorphism (AFLP) markers from four macroinvertebrate species in this 125 

catchment (Watanabe et al., 2014). Three species were caddisflies (Trichoptera), namely, 126 

Hydropsyche orientalis, Stenopsyche marmorata and Hydropsyche albicephala, while the 127 

fourth was a mayfly, Ephemera japonica (Ephemeroptera). In this integrated catchment, the 128 

species distributions vary considerably, from the widespread H. orientalis to the narrowly 129 

distributed E. japonica (Fig. 1). These species have similar ecological functions in river 130 

ecosystems by feeding on fine organic matter (< 1 mm diameter). Approximately 18 to 20 131 

individuals collected at each sampling site were genotyped (128 to 473 polymorphic AFLP loci 132 
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for each species). Based on the locus-specific genetic differentiation across this catchment, 133 

non-neutral loci identified by DFDIST (Beaumont & Nichols, 1996) and/or BayeScan (Foll & 134 

Gaggiotti, 2008) were removed, and 98 to 449 neutral AFLP loci for each species (Fig. S1) 135 

were retained and used for this study. Detailed protocols on the identification of non-neutral 136 

loci are described in our previous report (Watanabe et al., 2014). 137 

 138 

Metapopulation genetic modelling 139 

We developed a metapopulation genetic model based on isolation by distance (lower gene flow 140 

with greater separation in terms of distance along the watercourse) and asymmetric dispersal 141 

(upstream- and downstream-biased movements) between local populations. This model was 142 

validated using the empirical data on neutral AFLP loci of the four macroinvertebrate species 143 

in the catchment. With its parameters estimated by Bayesian inference, this model was used to 144 

simulate the river branching influence on each species. We describe the model development 145 

and Bayesian estimation of parameters below. 146 

Given a single locus with two allelic types, labelled ‘1’ and ‘2’ (e.g. an AFLP), ��,� 147 

denotes the number of type ‘1’ alleles (number of individuals with the allele type) at locus l 148 

from number of alleles ��,� (total number of types ‘1’ and ‘2’ together = total number of 149 

individuals) observed in local population k. Here, neutral AFLP loci of individuals from local 150 
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populations were used as the observed modelling output. This random sampling process can be 151 

characterised by a binomial distribution as follows (Guillot et al., 2014):  152 

��,�~ Binomial���,� , ��,�� [1] 153 

where, in this local population, the frequency of allele ‘1’ is denoted by ��,�. The allele 154 

frequencies ��,�  are independent between loci. 155 

For each locus, the frequency of allele ‘1’ in local populations is determined by their 156 

genetic variations (related to genetic drift), the watercourse distance between local populations 157 

within the network (related to gene flow) and allele frequencies of the metapopulation. Without 158 

genetic drift and natural selection, gene flow leads to the genetic homogeneity among local 159 

populations, leading to allele frequencies at loci in local populations matching those of their 160 

metapopulation (Andrews, 2010). We denote by θ�,� the random deviation of 161 

logit-transformed allele frequency in local populations from that of the metapopulation, and the 162 

allele frequency ��,� is obtained from the inverse logit transformation as follows: 163 

��,� � invLogit�θ�,� � ��,�� � �
�����	
���,���,���

  [2] 164 

where ��� denotes the metapopulation’s transformed allele frequency. The deviation θ�,� can 165 

be modelled by a multivariate normal distribution as follows (Bradburd et al., 2013): 166 

θ�,� ~ MultiNormal�μ, Ω� [3] 167 

where μ denotes the mean of zero, and the covariance matrix Ω is a function of the 168 

watercourse distance between local populations and their spatial relationships (either 169 
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streamflow-connected or -disconnected). To model the covariance across local populations, we 170 

modelled this as a function of the shortest watercourse distance along the river network  ��  171 

between populations i and j as follows (Ver Hoef & Peterson, 2010): 172 

Ω�� �
!"
"#
""
$ %��&

�
� %��&

�
� %�� if (low-connected and - � .

%�� exp 12�3� ���45666667666668
�

� %�� exp 12�3� ���45666667666668
�

if (low-connected and - 9 .
%�� exp 12�3� ���45666667666668

�

if (low-disconnected
; [4] 173 

where part a or b describes the autocovariance, with the variance %�� or %�� and the scale 174 

parameter 3� or 3� related to the downstream (D) or upstream (U) movement, respectively. 175 

In part a, the autocovariance is set to zero for any two streamflow-disconnected populations 176 

(e.g. local populations in different headwaters). In other words, streamflow-disconnected 177 

populations are independent and have no gene flow between them via downstream movement. 178 

The nugget variance %�� describes the random error. 179 

In the Bayesian framework ‘Stan’ (Stan Development Team, 2014b), the R interface 180 

‘RStan’ (Stan Development Team, 2014a) was used to perform this metapopulation genetic 181 

modelling. For each species, four Markov Chain Monte Carlo chains (for numerical 182 

approximations of Bayesian inference) ran with 60,000 iterations each, and the first half of the 183 

iterations for each chain were discarded as burn-in. This was determined by modelling 184 

convergence when the R-hat statistic of each parameter approached a value of 1. To estimate 185 

the model parameters, 2,000 samples obtained, by collecting one sample every 60 iterations for 186 
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each chain, were used to build the each parameter’s posterior distribution. 187 

 188 

Simulation of river-branching influences 189 

Before the simulations, we created artificial river networks with varying branching 190 

complexities (Terui et al., 2018). The river networks were made up of nodes with scale length 191 

e, with each node representing a local population. These nodes were assigned to be either 192 

branching (or an upstream terminal) or non-branching with a probability of P or 1 – P, 193 

respectively. As a series of non-branching nodes terminated at a branching (or terminal) node. 194 

The individual segments (watercourse stretches) were the geometric random variables with 195 

branching probability P. Before merging the segments to create a river network, the drawing 196 

process was repeated until the targeted number of notes (the number of local populations) and 197 

an odd number of segments were reached. To create the river network, these segments were put 198 

together as a pool merged hierarchically as follows (Fig. S2): Step 1): One segment was 199 

randomly selected as the root and its upstream end was merged with the downstream end of 200 

another two random segment selections. In this status, the semi-complete network had two 201 

unmerged upstream ends each for the next possible merger. Step 2) Two more segments were 202 

randomly selected and their downstream ends were merged together to the random draw one of 203 

two (or even more at subsequent steps) unmerged upstream ends of the semi-complete network. 204 

Step 3) Step 2 was repeated until there were no available segments in the pool. 205 
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We conducted stochastic simulations to illustrate the uncertainty of the global genetic 206 

differentiation among local populations, <�� (Nei, 1973), under river branching. We created 207 

1,000 river networks (with scale length e equal to 1 km) with the branching probability P and 208 

metapopulation size N (integer; the number of local populations in a river network) randomly 209 

drawn from 0 to 1 and from 100 to 500, respectively. Our Bayesian model of each species with 210 

median estimates was used to stimulate the global <�� to be the metapopulation’s genetic 211 

divergence in each of the 1,000 random river networks. We performed this simulation using 212 

the R packages ‘stats’ and ‘base’ (R Core Team, 2018). 213 

Here, we built a regression model based on gradient boosting (GB) for each of the four 214 

macroinvertebrate species, identifying the importance of 1) the fraction of any two local 215 

populations being streamflow-disconnected in all combinations (any two being 216 

streamflow-connected or -disconnected), 2) the mean watercourse distance between local 217 

populations under different levels of river branching and 3) metapopulation size (number of 218 

local populations) for genetic divergence (<��). GBs are a type of machine-learning algorithm 219 

used for analysing unilinear relationships at the base of multiple decision trees and, in the 220 

boosting process, each next tree model generated is added to improve on the performance of 221 

the previous ensemble of models by minimising deviance (Friedman, 2001). Our GB 222 

modelling was performed using the R package ‘gbm’ (Greenwell et al., 2018), in which the 223 

genetic divergence and other factors (the river features and metapopulation size) were 224 
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independent and dependent variables, respectively. We used the R package ‘dismo’ to assess 225 

the optimal number of boosting trees via a cross-validation procedure (Hijmans et al., 2017). 226 

We illustrated how the downstream and upstream dispersal-related parameters of the 227 

variances (%�� and %��, respectively) or scales (3� and 3�, respectively) influence river 228 

branching on global genetic divergence. To illustrate this for each parameter type, we 229 

considered 3 × 3 (nine) combinations of two parameters each with the same upper, median and 230 

lower ends of ranges of their Bayesian median pooled estimates. For the same parameter type, 231 

we replicated the nine combinations (see Fig. 5 and 6) in each of the 1,000 random river 232 

networks, and parameters of the other type were fixed to the median of pooled estimates. In 233 

addition to the variances and scales, each of the other model parameters was set to its Bayesian 234 

median estimate.235 
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Results 236 

Metapopulation genetic modelling 237 

Our Bayesian model was fitted to the empirical genetic data in the Natori and Nanakita 238 

catchment, and the R2 values derived from the residual (differences between the observed and 239 

predicted numbers of type ‘1’ alleles at a locus from the number of alleles observed in a local 240 

population; see Formula 1) are 0.97, 0.98, 0.97 and 0.93 for H. orientalis, S. marmorata, H. 241 

albicephala and E. japonica, respectively (Fig. 2). The metapopulation allele frequencies are 242 

species-specific, and the variation of allele frequency is greater in the widespread H. orientalis 243 

and S. marmorata than in the other two species with narrower habitat distributions (Fig. S1). 244 

The pairwise genetic difference between empirical local populations tended to increase with 245 

their watercourse distances throughout the four macroinvertebrate species (Fig. S3). Despite 246 

substantial variation in the scale parameter, amplifying the isolating effect of distance across 247 

study species (Fig. S4), there was a consistent decline in the genetic correlation between 248 

populations (the covariance Ω�� divided by the variance %�� � %�� � %��; see Formula 4) with 249 

the increasing distance between local populations (Fig. S5). In addition, there was a greater 250 

decline in the genetic correlation with distance in the widely distributed H. orientalis than in 251 

the other species. 252 

 253 

River-branching influence 254 
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We describe changes in the two landscape spatial configurations (fraction of any two local 255 

populations being streamflow-disconnected in all combinations and mean watercourse distance 256 

between local populations) with the increasing branching probability (P) in river networks (Fig. 257 

3). Situations in which any two local populations are streamflow-disconnected (e.g. in different 258 

tributaries) across metapopulations occur at higher rates in heavily branched river networks. 259 

However, we found shorter watercourse distances between local populations in river networks 260 

with higher branching probability. The metapopulation size (the number of interacting 261 

subpopulations in a network) increases the values of both spatial configurations under the same 262 

level of river branching. 263 

Notably, changes in the values of the two spatial configurations act synergistically on the 264 

genetic differentiation of metapopulations (<��) of the river network across four species (Fig. 265 

4). Species-specific responses to the influence of river branching were identified. For example, 266 

increased branching probability decreased the genetic divergence of the metapopulation for 267 

three caddisflies (H. orientalis, S. marmorata and H. albicephala), but in the mayfly E. 268 

japonica, the opposite response (higher genetic divergence) occurred. In addition, both a low 269 

level and variation of genetic divergence are less likely to occur in the generalist H. orientalis 270 

than in the other three speices. The findings showed that the metapopulation size was 271 

positively correlated to genetic divergence in all species. According to the GB modelling 272 

results, the relative importance of streamflow-disconnected habitats, compared to the landscape 273 
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connectivity via a shorter watercourse distance, was higher in the mayfly E. japonica than in 274 

the other three caddisfly species (Table 1). 275 

The genetic performances, varying across species, were illustrated by how these model 276 

parameters related to upstream and downstream dispersals take effect on the genetic 277 

divergences (Fig. 5 and 6). Branching complexity has various impacts on genetic divergence, 278 

which is determined by the relative values of the upstream and downstream parameters (scale 279 

and variance in genetic covariation function, see Formula 4). The positive and negative 280 

influences of branching complexity on the genetic divergence are conferred through the 281 

relatively high and low values of the upstream-dispersal scale parameter compared to the 282 

downstream one, respectively (Fig. 5). These, in turn, indicated higher and lower isolation 283 

effects of watercourse distance between local populations, respectively. Lower genetic 284 

divergence levels occurred in more-branched networks when there was higher variance related 285 

to upstream movement (%��) than downstream movement (%��) (Fig. 6). In other words, the 286 

populations in the distal branches (e.g. headwaters) have relatively strong genetic covariation 287 

between themselves, particularly in complex river networks. In addition, river branching has 288 

the opposite (positive) influence on the genetic divergences when %�� is lower than or equal to 289 

%�� (Fig. 6).290 
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Discussion 291 

In this study, we explored the integrated role of landscape architecture and species 292 

ecological strategy in shaping genetic divergence at neutral loci. We compared the landscape 293 

genetics of sympatric macroinvertebrate species in river networks, based on our Bayesian 294 

model, explicitly accounting for the effects of evolutionary processes among components of 295 

metapopulations on the spatial genetic structure. This model indicated that river-network 296 

connectivity predicted spatial genetic structures in four macroinvertebrate species. In addition, 297 

their empirical structuring patterns were determined by the species’ intrinsic factors 298 

parameterised in this model. In this case, these factors can be associated with dispersal ability 299 

and mode, species distribution and effective population size (associated with the genetic 300 

variance in our model) in characterising relationships between genetic divergence and 301 

landscape connectivity, as shown in the discussion below (see the subsequent section 302 

‘Importance of species’ intrinsic factors’).  303 

In our simulations, these intrinsic factors could cause varying levels of overall genetic 304 

differentiation in river networks and induced increased river branching to have different or 305 

even opposite effects. Moreover, greater landscape connectivity (via shortened watercourse 306 

distance) and higher distal habitat isolation (e.g. headwater streams) simultaneously occur in 307 

more-branched river networks and have countervailing influences on genetic divergence; they 308 

also have different levels of relative importance across these sympatric species. This can 309 
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provide extensive insights into other complex networks (e.g. highly fragmented landscapes or 310 

those with corridors via ocean and atmospheric circulation). Our empirical and theoretical 311 

results highlight the fundamental importance of considering species’ biological traits, which 312 

make different contributions to genetic connectivity, for the successful management of 313 

ecological corridors.  314 

 315 

River branching and metapopulation genetic divergence 316 

In dendritic river networks, our simulation results showed a species-dependent change in 317 

global genetic differentiation levels occurring with increases in network complexity and the 318 

number of local populations in a metapopulation. We theoretically showed that the differential 319 

downstream and upstream gene flows we considered in the model can act together to generate 320 

such relationships. Our finding that increased populations in the river network enhanced 321 

genetic differentiation is consistent with previous theoretical evidence (Thomaz et al., 2016). 322 

River branching’s role has been documented, to some extent, in riverscape genetics, when 323 

higher genetic diversity is observed in downstream populations than in upstream ones 324 

(Paz-Vinas et al., 2015) and greater river branching can increase the differences between such 325 

populations (Thomaz et al., 2016). Little or no gene flow imposed by high river branching, 326 

because of strong isolation of headwater populations, can generally be observed for some 327 

riverine species with high or intermediate levels of downstream-biased vagility, such as fish 328 
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species (Osborne et al., 2014; Pilger et al., 2017). By adopting our mechanistic model 329 

validated by empirical data on macroinvertebrate species with flying adult stages, this 330 

theoretical evidence reveals their dispersal ability to overcome riverscape constraints, leading 331 

to low downstream-biased asymmetry and the opposite (negative) influence occurring under 332 

increased river branching. In addition, our comprehensive consideration of various branching 333 

river network topologies in simulations helped us to demonstrate the existence of opposing 334 

influences co-occurring under branching complexity. In one early theoretical study, not 335 

considering dispersal asymmetry (analogous to equal downstream and upstream dispersals in 336 

our study), the dendritic network structure was also documented to promote low genetic 337 

distances under high riverscape connectivity (Labonne et al., 2008). 338 

 339 

Importance of species’ intrinsic factors 340 

The river networks’ architecture can be one important extrinsic factor for explaining the 341 

observed and simulated genetic patterns, but there was strong variation among species with 342 

different intrinsic factors in our study. This finding was also previously observed; for example, 343 

two sympatric salmonid species were found to have remarkably different spawning locations, 344 

mating systems and population sizes, and these biological traits mediated the influences of 345 

riverscape features shaping their dispersal and genetic divergence in the Clark Fork River in 346 

the USA (Whiteley et al., 2004). For each upstream and downstream dispersal tendency in our 347 
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model, there are two parameters (scale and variance in the genetic covariation function; see 348 

Formula 4) linked to species’ intrinsic factors. In addition, these parameters together shape a 349 

mechanism behind the countervailing influences of river branching on the genetic divergence 350 

of metapopulations.  351 

In our system, asymmetric (either downstream- or upstream-biased) dispersals could 352 

determine the direction of the resulting influence on riverscape complexity. Stronger dispersal 353 

can be associated with a lower value of the scale parameter since this parameter expands the 354 

isolation effects of distance within river networks (see Formula 4). Our modelling results 355 

showed that the widely distributed, generalist caddisfly (H. orientalis) has less intense genetic 356 

divergence than other species with clumped, patchy or disjunctive distributions. In addition, 357 

little change in genetic divergence, along with river branching, occurs in this caddisfly, which 358 

can be explained by the low isolation effect by watercourse distance. 359 

Furthermore, our results suggested that, in the mayfly species (E. japonica) with high 360 

downstream-biased gene flow (based on a higher value of the scale parameter for upstream 361 

than for downstream), as typically shown in fish species (e.g., Pilger et al., 2017), river 362 

branching has a positive influence on its genetic divergence, in which a higher number of 363 

isolated distal branches in river networks (e.g. headwaters) occur under this dispersal 364 

asymmetry. Mayfly species larvae are susceptible to drift during high river flow and have great 365 

potential to be strong downstream dispersers (Nukazawa et al., 2017). In our system, the 366 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 14, 2019. ; https://doi.org/10.1101/550194doi: bioRxiv preprint 

https://doi.org/10.1101/550194


 
 

 

22 

opposite (negative) influence of the branching network on the other three caddisfly species 367 

with dispersal symmetry or even upstream-biased dispersal (based on the scale parameter for 368 

upstream being similar to or higher than that for downstream, respectively; Fig. S4 and Fig. 5) 369 

was identified. This might be attributable to their flying adults generally having a wide 370 

dispersal range, showing strong terrestrial movement at least in the upstream direction. This 371 

dampened the isolation between distal branches in river networks, compared to the case for 372 

mayflies (or even stoneflies), exhibiting restricted distributions to areas very close to their 373 

sources of emergence in the stream (Winterbourn et al., 2007). 374 

Besides dispersal abilities, the effective population size was revealed to be a factor 375 

potentially influencing genetic drift and mediating the countervailing influences of river 376 

branching in our study. In our model, the uncertainty regarding allele frequency, determined by 377 

the variance parameter, can describe the levels of genetic drift, which can theoretically be 378 

associated with the effective population size (Nei & Tajima, 1981). Observational studies have 379 

documented that a smaller effective size of local populations can result in their higher genetic 380 

differentiation, induced by genetic drift (Weckworth et al., 2013; Richmond et al., 2018). In 381 

addition, there is an association between species features (dispersal ability and habitat 382 

requirements) and genetic divergence (Phillipsen et al., 2015). In our model, the variance 383 

parameter can be separated into two parts related to upstream and downstream dispersals in the 384 

genetic covariation function (Formula 4). Migration is one source of changes in population size, 385 
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and migrants themselves exhibit genetic variation derived from their source populations. 386 

Different migrant population sizes can have varying influences on the genetic drift of sink 387 

populations in the upstream or downstream direction. Therefore, the populations’ locations (e.g. 388 

in tributaries or the main stem) determine how immigration routes in upstream and/or 389 

downstream directions act together in local populations, leading to their genetic drift. In our 390 

mayfly species (E. japonica), for example, a higher value of downstream-related variance, 391 

compared to the upstream one, theoretically determines the higher genetic variation among 392 

local populations in distal branches of river networks (Fig. S4 and 6). As documented in both 393 

theoretical and empirical studies, local populations of aquatic obligate species (e.g. fish 394 

constrained to river channels) in main stem confluences experience less genetic drift than those 395 

in isolated headwaters in river ecosystems (Thomaz et al., 2016; Pilger et al., 2017). As a result, 396 

in cases with an increased number of tributaries and augmented river branching levels, there is 397 

a higher likelihood that metapopulation genetic divergence will increase, for example, for this 398 

mayfly species in our study or other downstream-biased species elsewhere (Osborne et al., 399 

2014).  400 

From a conservation and management perspective that takes spatial genetic structure into 401 

account (Luque et al., 2012), it is crucial to understand the branching structure’s role in driving 402 

metapopulation genetic divergence. Dispersal can dictate differences in landscape genetic 403 

diversification (Medina et al., 2018), and predictive modelling, which can be validated by 404 
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empirical data based on asymmetric dispersals across networks, and shed light on the expected 405 

impacts of global climate change and the consequences of management practices. To manage 406 

native or even invasive species, our results shed light on the evolutionary importance of 407 

dispersal abilities and modes, suggesting that these intrinsic factors should be considered in 408 

decision-making processes when one managing strategy does not fit all species. For example, 409 

the same management and conversation practices can produce different, or even the opposite, 410 

results for species with varying levels of asymmetric gene flow and genetic drift (e.g. in 411 

dendritic river systems).  412 

413 
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Table 1. Performance measures and relative importance of predictors in gradient boosting models for Ephemera japonica (EJ), Stenopsyche marmorata, 535 

Hydropsyche orientalis (HO) and Hydropsyche albicephala (HA), in which the simulated genetic divergence of the metapopulation (global ���) is the 536 

response variable and fraction of any two local populations streamflow-disconnected, mean watercourse distance between populations and 537 

metapopulation size are predictor variables. 538 

 
 

  
Model 

performance 
  Relative importance (%) 

Species 
Number of 

trees 
  RMSE R2   

Streamflow-disconnected 

fraction 

Watercourse 

distance 

Metapopulation 

size 

EJ 2250   0.03 0.94   90.4 4.5 5.1 

HA 800   0.06 0.88   1.0 95.1 3.9 

HO 600   0.05 0.64   4.3 85.3 10.4 

SM 650   0.03 0.65   6.0 79.4 14.6 
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Figure legends 539 

Fig. 1. The study catchment and distribution of (a) Ephemera japonica (EJ), (b) Hydropsyche 540 

albicephala (HA), (c) Hydropsyche orientalis (HO) and (d) Stenopsyche marmorata (SM) in 541 

northeastern Japan. 542 

Fig. 2. Observed and predicted numbers of type ‘1’ alleles at a locus from the number of alleles 543 

observed in a local population (see Formula 1) for (a) Ephemera japonica (EJ), (b) 544 

Hydropsyche albicephala (HA), (c) Hydropsyche orientalis (HO) and (d) Stenopsyche 545 

marmorata (SM) with posterior distribution in Bayesian modelling. 546 

Fig. 3. Theoretical predictions for relationships of (a) mean watercourse distance between 547 

populations or (b) fraction of any two streamflow-disconnected populations (e.g. in headwaters) 548 

in all combinations with branching complexity under differential metapopulation sizes (range: 549 

100 to 500, number of local populations). 550 

Fig. 4. Theoretical predictions for relationships between metapopulation genetic divergence 551 

(global ���) and branching complexity under differential metapopulation sizes (range: 100 to 552 

500, number of local populations) for (a) Ephemera japonica (EJ), (b) Hydropsyche 553 

albicephala (HA), (c) Hydropsyche orientalis (HO) and (d) Stenopsyche marmorata (SM). 554 

Fig. 5. Theoretical predictions for relationships between metapopulation genetic divergence 555 

(global ���) and branching complexity under differential metapopulation sizes (range: 100 to 556 

500, number of local populations) for combinations of dispersal-related scale parameters in 557 
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genetic covariation function (Formula 4), including (a, e and i) �� � ��, (b, c and f) �� � ��, 558 

and (d, g and h) �� � �� . 559 

Fig. 6. Theoretical predictions for relationships between metapopulation genetic divergence 560 

(global ���) and branching complexity under differential metapopulation sizes (range: 100 to 561 

500, number of local populations) for combinations of dispersal-related variances in genetic 562 

covariation function (Formula 4), including (a, e and i) ��
�
� ��

�, (b, c, and f) ��
�
� ��

� and (d, 563 

g and h) ��
�
� ��

�. 564 

 565 
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Fig. 1567 
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Fig. 2569 
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Fig. 3571 
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Fig. 4573 
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Fig. 6 577 
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