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Abstract 

Consensus scoring has become a commonly used strategy within structure-based virtual screening 

(VS) workflows with improved performance compared to those based in a single scoring function. 

However, no research has been devoted to analyze the worth of docking scoring functions 

components in consensus scoring. We implemented and tested a method that incorporates docking 

scoring functions components into the setting of high performance VS workflows. This method uses 
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genetic algorithms for finding the combination of scoring components that maximizes the VS 

enrichment for any target. Our methodology was validated using a dataset that contains ligands and 

decoys for 102 targets that has been widely used in VS validation studies. Results show that our 

approach outperforms other methods for all targets. It also boosts the initial enrichment 

performance of the traditional use of whole scoring functions in consensus scoring by an average of 

45%. Finally, our methodology was shown to be outstandingly predictive when challenged to 

rescore external (previously unseen) data. CompScore is freely available at: 

http://bioquimio.udla.edu.ec/compscore/. 

1. Introduction 

Structure-Based Drug Discovery (SBDD) uses the 3D-structure of proteins (targets) and compounds 

(ligands) in order to predict their potential interaction. Among SBDD applications, virtual screening 

(VS) aims at, given a large database of chemical compounds, rank them from highest to lowest 

probabilities of binding to a target of interest (Romano, 2007). One of the most widely used tool in 

SBDD is molecular docking which has been particularly useful in VS (Lionta et al., 2014). 

Any docking method has two main components: the conformational exploration of the receptor-

ligand complex and the evaluation of the predicted interactions in the complex. Among them, 

scoring functions remain the weakest component. Deficiencies in the scoring functions can be 

explained by the complexity in estimating the binding energy between the protein and the ligand 

(Drwal and Griffith, 2013). Each scoring function uses different physicochemical descriptions and 

parameters to estimate the binding affinity of the complex. However, no individual scoring function 

accounts for all the physicochemical events that are involved in the protein-ligand interactions and 

the computational estimation of the binding energy is just an approximation to the reality (Kitchen 

et al., 2004; Yunta, 2016). For example, one scoring function might be very good at treating solvation 

effects but not at taking into account shape complementarity. To overcome these deficiencies, 

consensus scoring (CS) has emerged as a strategy that has shown to outperform single scoring 

functions since it combines information from a variety of them and compensates their individual 

weaknesses (Wang and Wang, 2001; Houston and Walkinshaw, 2013; Klingler et al., 2015; Ballester 

et al., 2012). 

CS studies differ in the target, the combination of scoring functions they used and also in the method 

used to aggregate them. There are many reports of approaches of variable complexity to fuse 

scoring functions. Some of them employ classical aggregation methods such as majority voting, rank, 
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maximum, intersection and minimum (Yang et al., 2005; Plewczynski et al., 2011). Some other 

methods include multilinear regression, non-linear regression and multivariate analysis (Feher, 

2006). 

In this sense, the use of machine learning (ML) approaches for the design of CS strategies has shown 

promising results and proved to be an innovative and effective way to overcome difficulties in 

structure-based CS (James et al., 2009). Consequently, it leads to more accurate and general 

outcomes (Ballester and Mitchell, 2010). In a recent study, an unsupervised machine learning 

algorithm for structure-based VS (Gradient Boosting) was proposed (Ericksen et al., 2017). This 

method was tested on 21 targets from DUD-E database (Mysinger et al., 2012) and that the ML-CS 

strategies obtained better results in comparison to the traditional CS and the individual scoring 

methods. A supervised CS strategy using Random Forest to successfully predict protein-ligand 

binding poses has also been proposed (Teramoto and Fukunishi, 2007). 

So far, the existing CS strategies consist in combining the scoring functions from one or more 

software employing different methods. To the best of our knowledge, none of them has focus on 

the potential of scoring functions components for CS. Furthermore, many of these studies develop 

general models for any problem and have been validated on a limited number of cases study. Within 

this panorama we aim at addressing one question: Can individual scoring functions components be 

more effective than whole scoring functions for CS? 

Here, we propose the CompScore algorithm as a universal tool for CS that exploits the information 

provided by the components of scoring functions. In CompScore the scoring functions are 

decomposed into their components and a genetic algorithm is used to find the combination of them 

that maximizes the VS enrichment in each case study. This approach leads to tailored CS schemes 

for every target. Our methodology is extensively validated and found to be superior to any other 

tested scoring approach. CompScore is freely available through a Web Service at: 

http://bioquimio.udla.edu.ec/compscore/ 

2. Methods 

2.1 Datasets and preparation 

Validation datasets were downloaded from the Directory of Useful Decoys, Enhanced (DUD-E) 

(Mysinger et al., 2012). All the 102 targets from the DUD-E database were selected for the validation 

of our methodology. We employed the same receptors structures and docking boxes as in the DUD-
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E. Receptors preparation included the addition of hydrogen atoms and partial atomic charges and 

their conversion to MOL2 format. Receptors were prepared with UCSF Chimera (Pettersen et al., 

2004). 

In the DUD-E validation, docking calculations were performed with DOCK 3.6 (Mysinger and 

Shoichet, 2010). The DUD-E database contains more than one scored conformation per compound. 

Given that in a regular large scale VS campaign only one conformation per compound is analyzed, 

we filtered the provided conformers to keep the top-scored one of each compound. Ligands were 

converted to MOL2 format using UCSF Chimera. Atomic partial charges for compounds provided in 

the DUD-E were preserved. A summary of the composition of the dataset for each target is provided 

as Supplementary Data in Table TS1. 

2.2 Rescoring 

Conformers were rescored with DOCK 6.8 (Allen et al., 2015), OEDocking (Kelley et al., 2015) and 

Gold (Jones et al., 1997) using each scoring function default parameters. Python scripts were created 

to rescore molecules using OEDocking Toolkits and to produce scoring tables summaries without 

structures output. A total of 15 scoring functions were computed with these software and they are 

listed in Table 1. The Dock 3.6 scoring values provided in the DUD-E were included in our 

calculations. 

Table 1. Scoring functions computed per docking program 

Docking Program Scoring Function 

Dock 6.8 Grid 

Contact 

Continuous 

Hawkins 

PBSA 

SASA 

Gold PLP 

GoldScore 

ChemScore 

ASP 

OEDocking Shapegauss 
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ChemScore 

ChemGauss 3 

ChemGauss 4 

PLP 

 

2.3 The CompScore algorithm 

The CompScore algorithm searches for the combination of scoring functions components that 

maximizes a pre-selected VS enrichment metric. In this study, 15 scoring functions obtained by three 

docking programs were computed for each compound in the DUD-E. With this amount of scoring 

functions, the exhaustive search of all possible combinations of scoring functions (of size 1 to 16, 

65535 combinations) can be completed in a short time. However, these 15 scoring functions account 

for 87 scoring components in total. This leads to a combinatorial explosion making impossible to 

evaluate the VS quality of all of their possible combinations. For this reason, the CompScore 

algorithm implements a genetic algorithm (GA) to search for the combination of scoring 

components that maximizes the desired VS enrichment metric. 

2.3.1 Input and output data 

A helper python script was developed to summarize the rescoring results in a data table. This script 

extracts the molecules’ scoring information, including the value of scoring function components, 

from DOCK 6.8 scoring files, OEDocking scoring tables and Gold log files. It currently supports the 

scoring functions listed in Table 1 and is freely available for download from the CompScore server. 

In addition to scoring information, the scoring data table contains an ID, the number of heavy atoms 

and a classification as either ligand (1) or decoy (0) for each molecule. Compounds for which any 

scoring function failed were assigned score values extreme enough to be ranked at the end of the 

function’s ranked list.  

The output of the algorithm is a log file containing information relative to which scoring functions 

must be combined to maximize the desired VS enrichment metric and enrichment values. A second 

output file with a ranked list of the input compounds with aggregated scores is provided as output. 

For more information on data input and output for the CompScore algorithm, see the help pages 

available at http://bioquimio.udla.edu.ec/compscore-help/. 

2.3.2 Scoring components pre-processing 
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The first step of the CompScore algorithm is to convert the scores to relative rankings. For this, 

samples are ranked according to each scoring function and the relative ranks are computed as the 

ranks divided by the number of compounds in the dataset. For ranking molecules we considered, 

from the definition of the scoring functions within the docking programs, whether scores should be 

ranked in descending or in ascending order. 

To avoid redundancy in the input features, the correlation between the rankings produced by the 

scoring functions components are analyzed and only one ranking among those having a correlation 

above certain threshold are kept on the dataset. From a set of correlated rankings, the one 

appearing first in the dataset is removed. In our validations, the allowed correlation between 

relative rankings was set to 0.95. In addition, it is possible to establish a minimum number of scores 

levels that a scoring function component must provide. For example, a scoring component with the 

same value for all samples will produce a meaningless (constant) ranking of the compounds. The 

same applies to scoring functions components providing very few different values (levels). The 

CompScore algorithm provides the possibility of excluding scoring function components having a 

few levels. For our calculations, the scoring components providing less than four different score 

levels were excluded. 

2.3.3 Virtual Screening enrichment metrics 

VS protocols validation aims at obtaining the highest enrichment of ligand molecules at the 

beginning of the ranked list. This is achieved through the maximization of an enrichment metric, 

which is selected depending on the objective of the VS campaign. In the CompScore algorithm, 

either the Enrichment Factor (EF) or BEDROC metrics can maximized. These metrics have been 

extensively used for the estimation of the enrichment capacity of VS workflows, see (Truchon and 

Bayly, 2007; Huang et al., 2006; Perez-Castillo et al., 2018; Helguera et al., 2016) for definitions and 

applications. The main difference between them is that EF measures the enrichment of ligands at a 

specific fraction of the ranked list while BEDROC accounts for early enrichment. For the 

maximization of EF, the fraction of screened data at which this metric is expected to be maximum 

must be provided. On the other hand, if BEDROC is to be maximized, the value of the α parameter 

for BEDROC calculation should be provided as input. 

2.3.4 GA-guided consensus scoring 
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At this point, scoring components have been converted to relative rankings and filtered as described 

in section 2.3.2. Also, an enrichment metric has been selected for maximization (2.3.3). Now, the 

CompScore algorithm searches for the combination of scoring functions components providing the 

highest enrichment. The GA-guided search takes place in the context of a feature selection problem 

that maximizes an objective function and was implemented using the DEAP framework in Python 

(Fortin et al., 2012).  

Individuals in the population for GA evolution were coded as binary vectors of length equals to the 

number of input scoring functions components. Bits set to 1 indicate that the corresponding scoring 

component is considered for CS, while those corresponding to 0-coded bits are excluded. In our 

validations we used 100 individuals in the population and they evolved for 1000 generations. The 

initial population was randomly created. The selection operator was set to a tournament of size 2. 

The two points crossover operator was used for crossover and mutation proceeded according to the 

bit flipping operator. 

The objective function of the GA was set to either the EF or BEDROC metrics. To obtain the ranked 

list of compounds for enrichment computation, a subset of relative rankings was aggregated using 

the arithmetic mean and sorted in ascending order. Then, the chosen enrichment metric was 

computed for the aggregated ranking of compounds. 

After finishing the GA evolution, the best solution was chosen as the individual in the population 

with the highest fitting (VS enrichment metric). A bootstrap cross-validation was performed to the 

best solution to evaluate its robustness. For this, 1000 bootstrap samples containing the same 

number of ligands and decoys as the whole target dataset were generated. All calculations were 

performed using a single core in a computer equipped with two Intel Xeon CPU E5-2690 and with 

128 GB of RAM. The program was developed with Python 3.6 installed within the Anaconda 

Distribution and package management system. 

2.4 External validation 

For external validation, targets’ datasets were randomly split into training and external validation 

sets containing 80% and 20% of data, respectively. To maintain the same proportion of ligands and 

decoys in these sets as in the whole datasets, splitting was performed for ligands and decoys 

separately. That is, the training sets contained 80% of ligands and 80% of decoys and the external 

validation sets contained the remaining compounds. Then, we used the training data to obtain the 
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set of scoring functions components maximizing the initial enrichment of actives by employing 

BEDROC with α=160.9 as fitness function. Afterward, the resulting CompScore model was used to 

rescore the compounds on the external dataset and initial enrichment was measured over this 

rescored data. This external validation procedure was repeated 100 times for each target. 

3. Results and discussion 

We performed calculations with the aim of establishing the VS performance of the CompScore 

algorithm and testing how it compares to that of other scoring schemes. To this end, we explored 

all possible combinations of the 16 scoring functions of size 1 to 16, totaling 65535 CS solutions. This 

experiment provides the maximum possible enrichment value that could be achieved by combining 

any of the 16 scoring functions and is referred to as Exhaustive Search (ES). The best performing 

scoring function component (including whole scoring functions) was also analyzed and is referred 

to as Best Individual Scoring Component (BISC). The fourth CS approach consisted in the aggregation 

of all non-correlated and non-close to constant scoring components. This last approach is referred 

to as All Scoring Components (ASC) from here on. Finally, we explored the worth of incorporating 

the values of the scoring components weighted by the number of heavy atoms into the CS 

procedure.  

As previously mentioned, the CompScore algorithm can be used to find the combination of scoring 

functions components that maximizes either EF or BEDROC employing any metric specific 

parameter. Although both metrics evaluate the enrichment ability of VS methodologies, unlike EF, 

BEDROC is able to account for the early enrichment factor. Thus, we made experiments with both 

metrics. For the sake of simplicity, from here on all analyses will focus on BEDROC computed for the 

α parameter equals to 160.9 and on EF computed for the first 1% of screened data. In contrast to 

BEDROC, that is bounded between 0 and 1, EF is an unbounded metric which makes difficult its use 

in comparisons between the VS performance scoring method across different datasets. For this 

reason, the maximum possible EF (for a perfect ranking) was computed for each dataset and 

comparative analyses were carried out with the fraction of this optimal EF achieved by the VS 

scoring methods.  

The results obtained for all the DUD-E targets employing the four CS strategies previously described 

are provided as Supplementary Data. Table TS2 contains the enrichment metrics obtained with the 

different scoring approaches when BEDROC with α=160.9 is used as the model selection criterion. 

On the other hand, table TS3 includes the equivalent information when EF at the first 1% of scoring 
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data is employed as criterion for the selection of the best VS strategy. The results obtained for the 

early enrichment performance of the four CS strategies explored are summarized in Fig 1. In addition 

to the best solution per scoring strategy, we also summarize the best performance obtained per 

target with any of the ASC, BISC and ES strategies (cyan). 

 

Fig 1 Box plot of the Initial enrichment performance of the evaluated scoring strategies. Initial enrichment is measured as 
BEDROC for α=160.9. Black lines within the boxes indicate the value of the median. Plot is built with the values of BEDROC 
for all DUD-E targets as provided in Supplementary Data table TS2. 

Fig 1 shows that the CompScore methodology (blue) outperforms the ASC, BISC and ES strategies 

and that it is the approach that provides the highest value of minimum early enrichment. The 

improvement resulted statistically significant (p=8∙10-8) according to the two-tail unpaired t-Test. 

While any of the methodologies used for comparison (cyan) yield BEDROC values around 0.1, the 

minimum value obtained with the CompScore methodology is 0.23. Furthermore, more than 50% 

of the top BEDROC values obtained with CompScore are higher than the top 25% values provided 

by any of the other methodologies. More important, when a target by target analysis is performed, 

it is observed that the proposed methodology outperforms any of the other methods for all of them 

(see Supplementary Data table TS2). 

The worst initial enrichment is obtained when all scoring components are aggregated (ASC). This 

result is expected since no scoring components selection is performed before aggregation. It is well 

established that any consensus decision making system must contain a diverse subset of decision 
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makers which are meaningful for the problem under investigation (Polikar, 2006). The latter is 

addressed by the CompScore algorithm through the GA search. 

Another interesting result is that the performances of the BISC and ES approaches are highly similar. 

Thus, in general it can be concluded that a single scoring component can achieve a similar VS 

performance as the best combination of whole scoring functions. A deeper analysis of the data 

presented in Supplementary Data table TS2 shows that for 12 targets a single scoring function 

component (BISC approach) produces BEDROC values more than 5% higher than the best 

combination of whole scoring functions derived from the ES approach. This improvement can reach 

up to 73.5% for the mmp13 target. This finding supports our hypothesis that docking scoring 

functions components provide meaningful information for implementing VS workflows and that in 

some cases they can be more relevant than whole scoring functions. 

The execution time analysis shows that, in average, the CompScore algorithm requires 356 seconds 

while 150 seconds are required for completing the exhaustive exploration of the combinations of 

the 16 scoring functions. It must be considered that, according to the run time for the ES approach 

with 16 scoring functions, for completing the exhaustive exploration of 18 scoring functions the 

estimated required time for the exhaustive exploration of all their possible combinations will almost 

double that needed by CompScore. Moreover, the bootstrap cross-validation of our methodology 

shows that it is stable relative to changes in the dataset composition (see Supplementary Data table 

TS2). 

We also analyzed the BEDROC increase achieved by our methodology across all targets relative to 

the other tested scoring methodologies. This analysis reveals that CompScore improves, in average, 

the performance of any other tested method in 45%. However, there are large variations in this 

improvement among all DUD-E targets as shown in Fig 2. According to Fig 2, for more than 50% of 

the targets BEDROC improves in more than 33.87% and in more than 64.29% for 25% of the targets 

when the CompScore methodology is employed.  
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Fig 2. Percent of improvement in BEDROC of the CompScore method relative to the best performing VS models obtained 
with either the ASC, BISC and ES approaches. 

For the 18 targets with BEDROC lower than 0.25 according to all of the ASC, BISC and SE approaches, 

only two of them increase their BEDROC in less than 50% when CompScore is employed for scoring 

(see Fig 2). For 10 of them BEDROC increases in more than 100%, that is, BEDROC according to our 

methodology is more than twice the maximum value obtained with any of the other tested 

approaches. On the other hand, targets for which BEDROC higher than 0.75 could be obtained with 

other methods presented an improvement of this metric lower than 25%. The largest improvement 

in BEDROC is observed for the ampc target with 266.67% (over 3.5 times). For this target the BISC 

approach yields the Dock 3.6 scoring function as the best performing one with BEDROC=0.16. The 

next best performing approach is the ES with BEDROC=0.18 through the combination of the scoring 

functions: Dock 3.6, Dock 6.8 Pbsa, Gold Goldscore and OEDocking ChemGauss 4. On the other side, 

the CompScore algorithm achieves a value of BEDROC=0.66 by aggregating two scoring functions 

(Dock 3.6 and OEDocking ShapeGauss) and 12 scoring functions components. These components 

include four from Dock 6.8, two from Gold and six from OEDocking. 

All the solutions found by CompScore include scoring components of at least two different docking 

software. Specifically, 60 solutions contain scoring functions components from the four docking 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/550590doi: bioRxiv preprint 

https://doi.org/10.1101/550590
http://creativecommons.org/licenses/by-nc-nd/4.0/


software, 37 from 3 software and 5 of only two programs. Also, for nine targets: cp3a4, def, fak1, 

hdac8, kit, kpcb, pgh1, reni and rxra the best solution found with our algorithm contains no whole 

scoring functions but only their components. Regarding the representativeness of each docking 

software in the solutions found by CompScore, Dock 3.6 scoring function appears in the best 

combination for 65 targets, Dock 6.8 scoring components in 101, OEDocking scoring components in 

96 and Gold ones in 99. In addition, 17 scoring functions components out of 87 were not part of any 

CompScore solution because of being either constant or correlated in more than 90% of the targets 

under investigation. The log files containing the list of the scoring functions included in each target’s 

best solution are provided at the CompScore’s web site. 

Hitherto, all the evidence indicates that decomposing the docking scoring functions into their 

components and the aggregation of a subset of them ensures high performance VS workflows in 

terms of initial enrichment. We also evaluated the performance of CompScore when VS campaigns 

focus on maximizing EF. When the maximum value of EF achieved by each method is analyzed, the 

results are similar to those obtained with BEDROC as shown in Fig 3. For EF, the proposed algorithm 

also outperforms the rest of the test scoring schemes. The performance improvement for EF is also 

statistically significant (p=1.5∙10-7). As for BEDROC, more than the top 50% performing solutions 

found by the CompScore methodology are higher than the top 25% solutions found by any of the 

other methods. The target by target analysis of the achieved fraction of the maximum possible EF 

yields that for five targets our methodology is unable to improve this metric relative to the other 

approaches. Also, there is a 3.94% decrease in performance for the mmp13 target relative to the 

BISC method. Nevertheless, for 50% of the targets the EF improvement is higher than 39.84% and 

for 25% of them it is of more than 70% relative to any of the other methodologies. 
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Fig 3 Box plot of the EF performance of the evaluated scoring strategies. EF is measured for a fraction of screened data 
equals to 0.01. Black lines within the boxes indicate the value of the median. Plot is built with the values of EF for all DUD-
E targets as provided in Supplementary Data table TS3. 

We explored whether the addition of the docking scoring components weighted by the number of 

heavy atoms to the GA search could improve the previously presented results. Given that using the 

weighted scores in the ES approach for the 16 computed scoring functions will take an estimate of 

more than 100 days per target, this approach was excluded from these analyses. The results of the 

inclusion of the weighted scores into CompScore are presented as Supplementary Data in tables TS4 

and TS5 for BEDROC and EF, respectively, and summarized in Fig 4. 
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Fig 4 Performance comparison when the weighted scores are added to the CompScore algorithm. EF is represented as the 
fraction of its maximum possible value for each target.  

From Fig 4 it can be observed that the inclusion of the weighted scores dos not increase, in average, 

the performance of the CompScore algorithm when either BEDROC or EF are used as VS selection 

metrics. However, a closer look at the results of this last experiment shows that the inclusion of the 

weighted scoring components can increase in 20% or more the initial enrichment of the VS models 

of the targets dhi1 (20%), hivint (25%), mcr (25%) and hivpr (50%). Likewise, the EF for targets aldr, 

mmp13, hivint and hivpr increase by 22%, 22%, 24% and 27%, respectively, when weighted scoring 

components are considered in the algorithm. In DUD-E, ligands and decoys have similar molecular 

weight. Thus, we speculate that in databases with uneven distribution of molecules’ sizes the 

inclusion of the weighted scoring components can translate into improved VS workflows. 

The only criterion that can be used to evaluate the generalization capability of CompScore to new 

data is its performance on a data subset not used for model training. This external validation 

experiments were performed following the procedure described in the Methods section. External 

validation results are provided as Supplementary Data in table TS6 and summarized in Fig 5. Results 

are presented for the average BEDROC over the 100 training/external validation splits performed 

for each target. First, it can be seen that the initial enrichment obtained for the training data does 

not differ from that of the previous experiments when all data was used to train CompScore models 

(blue and cyan boxes, respectively). This result is in agreement with the robustness shown by 

CompScore in the bootstrap cross-validation experiments. 
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Fig 5 External validation results. CompScore enrichment when all data is used for training is presented as a dark blue box. 
Cyan and red boxes correspond to the training and external data predictions, respectively 

Likewise, the enrichment values observed for the external validation sets (red box in Fig 5) are close 

to those observed for the training set. The closeness of the enrichment on the external validation 

set to that of the training set shows that CompScore provides predictive models. The data presented 

in table TS6 shows that the difference in average BEDROC between the training and external 

validation sets is lower than 0.1 for 85 out of 102 targets. That is, BEDROC difference between 

training and prediction is lower than 10% of its theoretical maximum for more that 83% of the DUD-

E targets. In addition, BEDROC differences higher than 0.2 can only be observed for the targets 

mk01, cxcr4 and inha. These targets are among the lowest represented ones in the DUD-E database 

with 78, 40 and 44 ligands, respectively. The larger differences in BEDROC between the training and 

external validation sets in these targets could be a consequence of the low amount of data available 

for training when 20% of it is removed. We consider that these reductions in predictability for these 

few targets do not represent a loos of generalization in CompScore. In summary, the results of the 

external validation show that the proposed methodology is not only able to provide high initial 

enrichment for the training data, but also to extend this enrichment to previously unseen data. 

4. Conclusions 

Here, we introduce CompScore, a simple, fast, interpretable and universal algorithm that 

incorporates for the first time the idea of decomposing docking scoring functions into their 
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components for consensus scoring in VS. The problem of the combinatorial explosion due the large 

pool of features that can be extracted from docking scoring functions, is addressed by using a GA as 

feature selection tool that searches for a subset of them maximizing either the BEDROC or EF 

metrics. We evaluated our method using the whole DUD-E database and compared its performance 

with that obtained with all the 65535 combinations of 16 diverse scoring functions from 3 docking 

software. In addition, we accomplished comparisons with the best performing scoring component 

and with the aggregation of all of them.  

In terms of initial enrichment, for all DUD-E targets CompScore outperformed the rest of that we 

tested, including the exhaustive exploration of the 16 scoring functions. Our method was also found 

to highly improve, in more than 100%, the performance for targets for which the rest of the tested 

methods provided very low initial enrichment. The obtained results also highlight the importance of 

using a diverse set of scoring functions for consensus scoring since all found solutions included 

scoring components from at least two docking software. Similar conclusions could be extracted for 

the VS experiments performed using EF as objective function. It must be highlighted that this 

exceptional performance could be obtained in less than 8 minutes for more than 75% of the targets. 

We also showed that the inclusion of the weighted scores can, in some cases, improve the VS 

performance of consensus scoring strategies. Finally, CompScore was shown to achieve a VS 

performance on unseen data similar to that observed for the training data. The latter demonstrated 

that the models proposed by CompScore are able to provide rankings highly enriched with ligands 

when new collections of compounds are predicted. 

Altogether, our results show that scoring functions components are more effective than whole 

functions for setting high performance VS protocols. In terms of docking calculations time, no extra 

effort is necessary to apply the CompScore algorithm since all the information that it requires is 

included in the docking output files provided by the software. Finally, we propose that docking 

scoring functions breakdown into their components should become a routinary task for the 

development of CS workflows. 

CompScore can be seen as a take the best of each world (docking software and scoring functions) 

approach. We are aware that the affirmation that the use of scoring components for CS outperforms 

current CS methods based on whole scoring functions, can be polemic. However, we expect that the 

availability of CompScore along with the good performance that it achieved will attract the attention 

of researchers to further corroborate or reject our hypothesis. 
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